[1]Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Cambridge University Press.

[2]Burnecki, K. and Michna, Z. (2002). Simulation of Pickands constants. Prob. Math. Statist. 22, 193–199.

[3]Dębicki, K. (2002). Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98, 151–174.

[4]Dębicki, K. and Kosiński, K. M. (2014). On the infimum attained by the reflected fractional Brownian motion. Extremes 17, 431–446.

[5]Dębicki, K. and Liu, P. (2016). Extremes of stationary Gaussian storage models. Extremes 19, 273–302.

[6]Dębicki, K. and Mandjes, M. (2003). Exact overflow asymptotics for queues with many Gaussian inputs. J. Appl. Prob. 40, 704–720.

[7]Dębicki, K. and Palmowski, Z. (1999). On-off fluid models in heavy traffic environment. Queueing Systems 33, 327–338.

[8]Dębicki, K. and Rolski, T. (2002). A note on transient Gaussian fluid models. Queueing Systems 41, 321–342.

[9]Dębicki, K., Es-Saghouani, A. and Mandjes, M. (2009). Transient characteristics of Gaussian queues. Queueing Systems 62, 383–409.

[10]Dębicki, K., Hashorva, E. and Liu, P. (2017). Extremes of γ-reflected Gaussian processes with stationary increments. ESAIM Prob. Statist. 21, 495–535.

[11]Dębicki, K., Hashorva, E. and Liu, P. (2017). Uniform tail approximation of homogenous functionals of Gaussian fields. Adv. Appl. Prob. 49, 1037–1066.

[12]Dieker, A. B. (2005). Extremes of Gaussian processes over an infinite horizon. Stoch. Process. Appl. 115, 207–248.

[13]Dieker, A. B. and Mikosch, T. (2015). Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18, 301–314.

[14]Dieker, A. B. and Yakir, B. (2014). On asymptotic constants in the theory of extremes for Gaussian processes. Bernoulli 20, 1600–1619.

[15]Harper, A. J. (2013). Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann. Appl. Prob. 23, 584–616.

[16]Harper, A. J. (2017). Pickands' constant *H* _{α} does not equal 1/Γ(1/α), for small α. Bernoulli 23, 582–602.

[17]Hashorva, E. (2018). Representations of max-stable processes via exponential tilting. To appear in Stoch. Process. Appl.

[18]Hashorva, E., Ji, L. and Piterbarg, V. I. (2013). On the supremum of γ-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123, 4111–4127.

[19]Hüsler, J. and Piterbarg, V. (1999). Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83, 257–271.

[20]Hüsler, J. and Piterbarg, V. (2004). On the ruin probability for physical fractional Brownian motion. Stoch. Process. Appl. 113, 315–332.

[21]Mandjes, M. (2007). Large Deviations for Gaussian Queues. John Wiley, Chichester.

[22]Mandjes, M., Norros, I. and Glynn, P. (2009). On convergence to stationarity of fractional Brownian storage. Ann. Appl. Prob. 19, 1385–1403.

[23]Michna, Z. (1999). On tail probabilities and first passage times for fractional Brownian motion. Math. Meth. Operat. Res. 49, 335–354.

[24]Mikosch, T. and Samorodnitsky, G. (2007). Scaling limits for cumulative input processes. Math. Operat. Res. 32, 890–918.

[25]Norros, I. (1994). A storage model with self-similar input. Queueing Systems 16, 387–396.

[26]PickandsJ., III J., III (1967). Maxima of stationary Gaussian processes. Z. Wahrscheinlichkeitsth. 7, 190–223.

[27]PickandsJ., III J., III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 51–73.

[28]Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society, Providence, RI.

[29]Piterbarg, V. I. (2015). Twenty Lectures About Gaussian Processes. Atlantic Financial Press, London.

[30]Piterbarg, V. I. and Prisjažnjuk, V. P. (1978). Asymptotic behavior of the probability of a large excursion for a nonstationary Gaussian process. Teor. Verojatnost. Mat. Statist. 18, 121–134, 183.

[31]Shao, Q.-M. (1996). Bounds and estimators of a basic constant in extreme value theory of Gaussian processes. Statistica Sinica 6, 245–258.

[32]Taqqu, M. S., Willinger, W. and Sherman, R. (1997). Proof of a fundamental result in self-similar traffic modeling. Comput. Commun. Rev. 27, 5–23.

[33]Willinger, W., Taqqu, M. S., Sherman, R. and Wilson, D. V. (1995). Self-similarity through high variability: statistical analysis of ethernet LAN traffic at the source level. Comput. Commun. Rev. 25, 100–113.