[1]Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5, 3–48.
[2]Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover, Mineola, NY.
[3]Bacaër, N. (2011). A Short History of Mathematical Population Dynamics. Springer, London.
[4]Bansaye, V. and Simatos, F. (2015). On the scaling limits of Galton-Watson processes in varying environments. Electron. J. Prob. 20, 75.
[5]Berestycki, N. (2009). Recent Progress in Coalescent Theory (Math. Surveys 16). Sociedade Brasileira de Matemática, Rio de Janeiro.
[6]Berestycki, J., Berestycki, N. and Limic, V. (2014). A small-time coupling between λ-coalescents and branching processes. Ann. Appl. Prob. 24, 449–475.
[7]Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. H. Poincaré Prob. Statist. 44, 214–238.
[8]Bertoin, J. (2000). Subordinators, Lévy processes with no negative jumps, and branching processes. Preprint. Université Pierre et Marie Curie.
[9]Bertoin, J. (2006). Random Fragmentation and Coagulation Processes (Camb. Studies Adv. Math. 102). Cambridge University Press.
[10]Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Prob. Theory Relat. Fields 117, 249–266.
[11]Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126, 261–288.
[12]Bertoin, J. and Le Gall, J.-F. (2005). Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. H. Poincaré Prob. Statist. 41, 307–333.
[13]Bertoin, J. and Le Gall, J.-F. (2006). Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50, 147–181.
[14]Birkner, M.et al. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Prob. 10, 303–325.
[15]Caballero, M. E., Lambert, A. and Uribe Bravo, G. (2009). Proof(s) of the Lamperti representation of continuous-state branching processes. Prob. Surveys 6, 62–89.
[16]Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York.
[17]Gnedin, A., Iksanov, A. and Marynych, A. (2014). λ-coalescents: a survey. In Celebrating 50 Years of The Applied Probability Trust (J. Appl. Prob. 51A), pp. 23–40.
[18]Grey, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Prob. 11, 669–677.
[19]Grimvall, A. (1974). On the convergence of sequences of branching processes. Ann. Prob. 2, 1027–1045.
[20]Grosjean, N. and Huillet, T. (2016). On a coalescence process and its branching genealogy. J. Appl. Prob. 53, 1156–1165.
[21]Heyde, C. C. and Seneta, E. (1977). I. J. Bienaymé: Statistical Theory Anticipated. Springer, New York.
[22]Iyer, G., Leger, N. and Pego, R. L. (2015). Limit theorems for Smoluchowski dynamics associated with critical continuous-state branching processes. Ann. Appl. Prob. 25, 675–713.
[23]Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235–248.
[24]Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob. 19A), pp. 27–43.
[25]Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications, 2nd edn. Springer, Heidelberg.
[26]Lambert, A. (2003). Coalescence times for the branching process. Adv. Appl. Prob. 35, 1071–1089.
[27]Lambert, A. (2007). Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Prob. 12, 420–446.
[28]Lamperti, J. (1967). Continuous state branching processes. Bull. Amer. Math. Soc. 73, 382–386.
[29]Lamperti, J. (1967). The limit of a sequence of branching processes. Z. Wahrscheinlichkeitsth. 7, 271–288.
[30]Laurençot, P. and van Roessel, H. (2015). Absence of gelation and self-similar behavior for a coagulation-fragmentation equation. SIAM J. Math. Anal. 47, 2355–2374.
[31]Li, Z.-H. (2000). Asymptotic behaviour of continuous time and state branching processes. J. Austral. Math. Soc. Ser. A 68, 68–84.
[32]Menon, G. and Pego, R. L. (2004). Approach to self-similarity in Smoluchowski's coagulation equations. Commun. Pure Appl. Math. 57, 1197–1232.
[33]Menon, G. and Pego, R. L. (2008). The scaling attractor and ultimate dynamics for Smoluchowski's coagulation equations. J. Nonlinear Sci. 18, 143–190.
[34]Pakes, A. G. (2008). Conditional limit theorems for continuous time and state branching process. In Records and Branching Processes, Nova, New York, pp. 63–103.
[35]Pakes, A. G. (2010). Critical Markov branching process limit theorems allowing infinite variance. Adv. Appl. Prob. 42, 460–488.
[36]Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 1870–1902.
[37]Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36, 1116–1125.
[38]Schilling, R. L., Song, R. and Vondraček, Z. (2010). Bernstein Functions (De Gruyter Studies Math. 37). De Gruyter, Berlin.
[39]Schweinsberg, J. (2003). Coalescent processes obtained from supercritical Galton-Watson processes. Stoch. Process. Appl. 106, 107–139.
[40]Vatutin, V. A. and Zubkov, A. M. (1985). Branching processes. I. In Probability Theory: Mathematical Statistics: Theoretical Cybernetics, Akad. Nauk SSSR, Moscow, pp. 3–67.
[41]Vatutin, V. A. and Zubkov, A. M. (1993). Branching processes. II. J. Soviet Math. 67, 3407–3485.
[42]Von Smoluchowski, M. (1916). Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Physik. Z. 17, 557–585.
[43]Von Smoluchowski, M. (1918). Experiments on a mathematical theory of kinetic coagulation of coloid solutions. Z. Physikalische Chem. Stoch. Verwandtschaftslehre 92, 129–168.
[44]Watson, H. W. and Galton, F. (1875). On the probability of the extinction of families. J. Anthropological Inst. Great Britain Ireland 4, 138–144.