Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.533 Render date: 2021-04-19T13:03:23.653Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Statistical spatial series modelling

Published online by Cambridge University Press:  01 July 2016

Dag Tjøstheim
Affiliation:
Royal Norwegian Council for Scientific and Industrial Research (NORSAR)

Abstract

A random spatial series is a collection of random variables F(xi , · · ·, xn ) depending on several spatial coordinates (x 1, · · ·, xn ). An attempt is made to construct a statistical second-order theory of such series when (x 1, · · ·, xn ) varies over a regular cartesian lattice. Using the properties of the linear (Hilbert) space associated with the series, the concepts of innovation and purely non-deterministic (p.n.d.) series are introduced. For a p.n.d. series F(x 1, · · ·, xn ) a unilateral representation is obtained in terms of a white innovations series Z(y 1, · · ·, yn ) where The representatation is specialized to the homogeneous case and we discuss spectral conditions for p.n.d. The familiar time-series condition ∫ log f(λ) dλ > –∞ on the spectral density f is necessary but not sufficient. A sufficient condition is stated. Motivated by the p.n.d. unilateral representation results we define unilateral arma (autoregressive-moving average) spatial series models. Stability and invertibility conditions are formulated in terms of the location of zero sets of polynomials relative to the unit polydisc in Cn , and a rigorous shift operator formalism is established. For autoregressive spatial series a Yule–Walker-type matrix equation is formulated and it is shown how this can be used to obtain estimates of the autoregressive parameters. It is demonstrated that under mild conditions the estimates are consistent and asymptotically normal.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

This research was supported by the Advanced Research Projects Agency of the U.S. Department of Defense and was monitored by AFTAC, Patrick AFB FL 32925, under Contract No. F08606-77-C-0001.

References

[1] Agterberg, F. P. (1967) Computer techniques in geology. Earth Science Reviews 3, 4777.CrossRefGoogle Scholar
[2] Anderson, T. W. (1971) The Statistical Analysis of Time Series. Wiley, New York.Google Scholar
[3] Barry, R. G. and Perry, A. (1973) Synoptic Climatology. Methuen, London.Google Scholar
[4] Bartlett, M. S. (1975) The Statistical Analysis of Spatial Pattern. Chapman and Hall, London.Google Scholar
[5] Berry, B. L. J. and Marble, D. F., (eds.) (1968) Spatial Analysis: A Reader in Statistical Geography. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
[6] Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. J.R. Statist. Soc. B 36, 192236.Google Scholar
[7] Cliff, A. D. and Ord, J. K. (1973) Spatial Autocorrelation. Pion, London.Google Scholar
[8] Cramér, H. (1961) On some classes of nonstationary stochastic processes. Proc. 4th Berkeley Symp. Math. Statist. Prob. 2, 5777.Google Scholar
[9] Davies, J. C. (1973) Statistics and Data Analysis in Geology. Wiley, New York.Google Scholar
[10] Delfiner, P. and Delhomme, J. P. (1975) Optimum interpolation by Kriging. In Nato Advanced Study Institute on Display and Analysis of Spatial Data, Wiley, New York, 96115.Google Scholar
[11] Fisher, W. D. (1971) Econometric estimation with spatial dependence. Regional and Urban Economics 1, 4064.CrossRefGoogle Scholar
[12] Hoffman, K. (1962) Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
[13] Kershaw, K. A. (1964) Quantitative and Dynamic Ecology. Arnold, London.Google Scholar
[14] Kung, S. Y., Levy, B., Morf, M. and Kailath, T. (1977) New results in 2D systems theory, II: 2D state-space models–realization and the notions of controllability, observability and minimality. Proc. IEEE 65, 945960.CrossRefGoogle Scholar
[15] Levy, B., Kung, S. Y., and Morf, M. (1976) New results in 2D systems theory—realization and the notions of controllability, observability and minimality. Information Systems Laboratory, Department of Electrical Engineering, Stanford University.CrossRefGoogle Scholar
[16] Riesz, F. and Sz.-Nagy, B. (1955) Functional Analysis, 2nd edn. Ungar, New York.Google Scholar
[17] Rozanov, Yu. A. (1967) Stationary Random Processes. Holden-Day, San Francisco.Google Scholar
[18] Rudin, W. (1969) Function Theory in Polydiscs. Benjamin, New York.Google Scholar
[19] Tjøstheim, D. (1976) Spectral representations and density operators for infinite-dimensional homogeneous random fields. Z. Wahrscheinlichkeitsth. 35, 323336.CrossRefGoogle Scholar
[20] Tjøstheim, D. (1977) Autoregressive modelling and spectral estimation for spatial data. Some simulation experiments. Stanford Exploration Project SEP-11, Department of Geophysics, Stanford University.Google Scholar
[21] Unwin, D. J. and Hepple, L. W. (1974) The statistical analysis of spatial series. The Statistician 23, 211227.CrossRefGoogle Scholar
[22] Whittle, P. (1974) On stationary processes in the plane. Biometrika 41, 434449.CrossRefGoogle Scholar
[23] Yaglom, A. M. (1957) Some classes of random fields in n-dimensional space, related to stationary processes. Theory Prob. Appl. 2, 273320.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Statistical spatial series modelling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Statistical spatial series modelling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Statistical spatial series modelling
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *