Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2015
  • Online publication date: February 2015

10 - The origin of gases that caused the Permian–Triassic extinction

from Part Two - Assessing gas and tephra release in the present day and palaeo-record

References

Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. and Peate, I. U. (2012). Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317, 363–373.
Bucholz, C. E., Gaetani, G. A., Behn, M. D. and Shimizu, N. (2013). Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett., 374, 145–155.
Carlson, R. W., Czamanske, G., Fedorenko, V. and Ilupin, I. (2006). A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem. Geophys. Geosys. 7, Q11014.
Cartigny, P., Pineau, F., Aubaud, C. and Javoy, M. (2008). Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet. Sci. Lett., 265, 672–685.
Danyushevsky, L. V., McNeil, A.W. and Sobolev, A.V. (2002). Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol., 183, 5–24.
Dasgupta, R. and Hirschmann, M. M. (2007). Effect of variable carbonate concentration on the solidus of mantle peridotite. Am. Mineral., 92, 370–379.
Dasgupta, R. and Hirschmann, M. M. (2010). The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett., 298, 1–13.
Fedorenko, V. A., Lightfoot, P. C., Naldrett, A. J.et al. (1996). Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int. Geol. Rev., 38, 99–135.
Ganino, C. and Arndt, N. T. (2009). Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37, 323–326.
Ganino, C., Arndt, N. T., Chauvel, C., Jean, A. and Athurion, C. (2013). Melting of carbonate wall rocks at the margins of mafic intrusions at Panzhihua, China. Geosci. Front., 4, 535–546.
Ganino, C., Arndt, N. T., Zhou, M. F., Gaillard, F. and Chauvel, C. (2008) Interaction of the magma with the sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic layered intrusion, SW China. Mineral. Deposita, 43, 677–694.
Grinenko, L. N. (1985). Sources of sulfur of the nickeliferous and barren gabbro–dolerite intrusions of the northwest Siberian platform. Int. Geol. Rev., 28, 695–708.
Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.
Hofmann, A. W. (2002). Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treat. Geochem., 2, 61–101.
Kamo, S. L., Czamanske, G. K., Amelin, Yu.et al. (2003). Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett., 214, 75–91.
Koleszar, A. M., Saal, A. E., Hauri, E. H.et al. (2009). The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet. Sci. Lett., 287, 442–452.
Krivolutskaya, N. A., Sobolev, A. V., Snisar, S. G.et al. (2012). Structure and mineralogical–geochemical characteristics of the Maslovskoe Pt–Cu–Ni deposit, Norilsk area. Mineral. Deposita, 47, 69–88.
Iacono-Marziano, G., Gaillard, F., Scaillet, S.et al. (2012a) Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments. Earth Planet Sci Lett., 357, 319–326.
Iacono-Marziano, G., Gaillard, F., Scaillet, S.et al. (2012b) Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet Sci Lett., 357, 308–318.
Li, C., Ripley, E. M., Naldrett, A. J., Schmitt, A. K. and Moore, C. H. (2009). Magmatic anhydrite–sulfide assemblages in the plumbing system of the Siberian Traps. Geology 37, 259–262.
Michael, P. J. and Schilling, J. G. (1989). Chlorine in mid-ocean ridge magmas – evidence for assimilation of seawater-influenced components. Geochimica et Cosmochimica Acta, 53 (12), 3131–3143.
Pang, K. W., Arndt, N. T., Svensen, H.et al. (2012). Contact metamorphism and degassing of Siberian evaporites: a mineralogical, whole-rock geochemical and Sr–Nd isotopic study. Geochim. Cosmochim. Acta, doi 10.1007/s00410-012-0830-9.
Portnyagin, M., Almeev, R., Matveev, S. and Holtz, F. (2008). Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett., 272 (3–4), 541–552.
Ryabchikov, I. D., Ntaflos, T., Buchl, A. and Solovova, I. P. (2001a). Subalkaline picrobasalts and plateau basalts from the Putorana plateau (Siberian continental flood basalt province). I. Mineral compositions and geochemistry of major and trace elements. Geochem. Int., 39, 415–431.
Ryabchikov, I. D., Solovova, I. P., Ntaflos, T., Buchl, A. and Tikhonenkov, P. I. (2001b). Subalkaline picrobasalts and plateau basalts from the Putorana plateau (Siberian continental flood basalt province). II. Melt inclusion chemistry, composition of ‘primary’ magmas and P–T regime at the base of the superplume. Geochem. Int., 39, 432–446.
Ripley, E. M., Lightfoot, P. C., Li, C., Elswick, E. R. (2003). Sulfur isotopic studies of continental flood basalts in the Norilsk region: implications for the association between lavas and ore-bearing intrusions. Geochim. et Cosmochim. Acta, 67, 2805–2817.
Ripley, E. M., Li, C., Moore, C. H., Schmidt, A. K. (2010). Micro-scale S isotope studies of the Kharaelakh intrusion, Norilsk region, Siberia: constraints on the genesis of coexisting anhydrite and sulfide minerals. Geochim. et Cosmochim. Acta, 74, 634–644.
Sobolev, A. V. (1996). Melt inclusions in minerals as a source of principal petrologic information. Petrology, 4, 209–220.
Sobolev, A. V. and Danyushevsky, L.V. (1994). Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol., 35, 1183–1213.
Sobolev, A. V., Krivolutskaya, N. A. and Kuzmin, D. V. (2009a). Petrology of the parental melts and mantle sources of Siberian Trap magmatism. Petrology, 17, 253–286.
Sobolev, A. V., Sobolev, S. V., Kuzmin, D. V., Malitch, K. N. and Petrunin, A. G. (2009b). Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys., 50, 999–1033.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V.et al. (2011). Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477, 312–316.
Song, H., Wignall, P. B., Tong, J. and Yin, H. (2012). Two pulses of extinction during the Permian–Triassic crisis. Nature Geosci., 6, 52–56.
Svensen, H., Planke, S., Malthe-Sørenssen, A.et al. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545.
Svensen, H., Planke, S., Chevallier, L.et al. (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett., 256, 554–566.
Svensen, H., Planke, S. and Polozov, A. G.et al. (2009). Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett., 277, 490–500.
Wignall, P. B., Sun, Y., Bond, D. P. G.et al. (2009).Volcanism, mass extinction and carbon isotope fluctuations in the Middle Permian of China. Science, 324, 1179–1182.
White, R. V. and Saunders, A. D. (2005). Volcanism, impact and mass extinctions: incredible or credible coincidences?Lithos, 79, 299–316.
Vasilev, Y. R. (1988). Plagioclase bearing picrites of Ayan River. Russ. Geol. Geophys., 29, 68–75.