Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Print publication year: 2014
  • Online publication date: June 2014

Computable model theory

Related content

Powered by UNSILO
[1] S. I., Adyan, Algorithmic unsolvability of problems of recognition of certain properties of groups, Doklady Akademii Nauk SSSR, vol. 103 (1955), pp. 533-535, (Russian).
[2] B. M., Andersen, A. M., Kach, A. G., Melnikov, and D. R., Solomon, Jump degrees of torsion-free abelian groups, The Journal of Symbolic Logic, (to appear).
[3] B. A., Anderson and B. F., Csima, Degrees that are not degrees of categoricity, preprint.
[4] U., Andrews, New spectra of strongly minimal theories in finite languages, Annals of Pure and Applied Logic, vol. 162 (2011), pp. 367-372.
[5] U., Andrews, A new spectrum of recursive models using an amalgamation construction, The Journal of Symbolic Logic, vol. 76 (2011), pp. 883-896.
[6] U., Andrews, The degrees of categorical theories with recursive models, Proceedings of the American Mathematical Society, vol. 131 (2013), pp. 2501-2514.
[7] U., Andrews and J. F., Knight, Spectra of atomic theories, The Journal of Symbolic Logic, vol. 78 (2013), pp. 1189-1198.
[8] U., Andrews, S., Lempp, J. S., Miller, K. M., Ng, L. S., Mauro, and A., Sorbi, Universal computably enumerable equivalence relations, preprint.
[9] U., Andrews and J. S., Miller, Spectra of theories and structures, Proceedings of the American Mathematical Society, (to appear).
[10] C., Ash, J., Knight, M., Manasse, and T., Slaman, Generic copies of countable structures, Annals of Pure and Applied Logic, vol. 42 (1989), pp. 195-205.
[11] C. J., Ash, Recursive labeling systems and stability of recursive structures in hyperarithmetical degrees, Transactions of the American Mathematical Society, vol. 298 (1986), pp. 497-514.
[12] C. J., Ash, Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic, vol. 34 (1987), pp. 1-14.
[13] C. J., Ash, P., Cholak, and J. F., Knight, Permitting, forcing, and copying of a given recursive relation, Annals of Pure and Applied Logic, vol. 86 (1997), pp. 219-236.
[14] C. J., Ash, C. G., Jookusoh Jr. and J. F., Knight, Jumps of orderings, Transactions of the American Mathematical Society, vol. 319 (1990), pp. 573-599.
[15] C. J., Ash and J. F., Knight, Possible degrees in recursive copies, Annals of Pure and Applied Logic, vol. 75 (1995), pp. 215-221.
[16] C. J., Ash and J. F., Knight, Possible degrees in recursive copies II, Annals of Pure and Applied Logic, vol. 87 (1997), pp. 151-165.
[17] C. J., Ash and J. F., Knight, Computable structures and the hyperarithmetical hierarchy, Elsevier, Amsterdam, 2000.
[18] C. J., Ash, J. F., Knight, and J. B., Remmel, Quasi-simple relations in copies of a given recursive structure, Annals of Pure and Applied Logic, vol. 86 (1997), pp. 203-218.
[19] C. J., Ash and A., Nerode, Intrinsically recursive relations, Aspects of effective algebra (J. N., Crossley, editor), U. D. A. Book Company, Steel's Creek, Australia, 1981, pp. 26-41.
[20] S. A., Badaev, Computable enumerations of families of general recursive functions, Algebra and Logic, vol. 16 (1977), pp. 129-148, (Russian); (1978) pp. 83-98 (English translation).
[21] J., Baldwin and A., Laohlan, On strongly minimal sets, The Journal of Symbolic Logic, vol. 36 (1971), pp. 79-96.
[22] V., Baleva, The jump operation for structure degrees, Archive for Mathematical Logic, vol. 45 (2006), pp. 249-265.
[23] E., Barker, Intrinsically relations, Annals of Pure and Applied Logic, vol. 39 (1988), pp. 105-130.
[24] E., Barker, Back andforth relations for reduced abelian p-groups, Annals of Pure and Applied Logic, vol. 75 (1995), pp. 223-249.
[25] J., Barwise, Infinitary logic and admissible sets, The Journal of Symbolic Logic, vol. 34 (1969), pp. 226-252.
[26] J., Barwise and J., Schlipf, On recursively saturated models of arithmetic, Model theory and algebra, Lecture Notes in Mathematics 498, Springer, Berlin, 1975, pp. 42-55.
[27] C., Bernardi and A., Sorbi, Classifying positive equivalence relations, The Journal of Symbolic Logic, vol. 48 (1983), pp. 529-538.
[28] W. W., Boone, The word problem, Proceedings of the National Academy of Sciences, vol. 44 (1958), pp. 1061-1065.
[29] W., Calvert, The isomorphism problem for classes of computable fields, Archive for Mathematical Logic, vol. 43 (2004), pp. 327-336.
[30] W., Calvert, Algebraic structure and computable structure, PhD dissertation, University of Notre Dame, 2005.
[31] W., Calvert, The isomorphism problem for computable abelian p-groups of bounded length, The Journal of Symbolic Logic, vol. 70 (2005), pp. 331-345.
[32] W., Calvert, D., Cenzer, V., Harizanov, and A., Morozov, Effective categoricity of equivalence structures, Annals of Pure and Applied Logic, vol. 141 (2006), pp. 61-78.
[33] W., Calvert, D., Cenzer, V., Harizanov, and A., Morozov, Effective categoricity of Abelian p-groups, Annals of Pure and Applied Logic, vol. 159 (2009), pp. 187-197.
[34] W., Calvert, D., Cummins, J. F., Knight, and S., Miller, Comparing classes of finite structures, Algebra and Logic, vol. 43 (2004), pp. 374-392.
[35] W., Calvert, E., Fokina, S., Gonoharov, J., Knight, O., Kudinov, A., Morozov, and V., Puzarenko, Index sets for classes of high rank structures, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1418-1432.
[36] W., Calvert, S., Gonoharov, J., Millar, and J., Knight, Categoricity of computable infinitary theories, Archive for Mathematical Logic, vol. 48 (2009), pp. 25-38.
[37] W., Calvert, S. S., Gonoharov, and J. F., Knight, Computable structures of Scott rank rank in familiar classes, Contemporary mathematics (S., Gao, S., Jackson, and Y., Zhang, editors), Advances in Logic, vol. 425, American Mathematical Society, Providence, RI, 2007, pp. 49-66.
[38] W., Calvert, V., Harizanov, and A., Shlapentokh, Turing degrees of the isomorphism types of geometric objects, Computability, (to appear).
[39] W., Calvert, V., Harizanov, and A., Shlapentokh, Turing degrees of isomorphism types of algebraic objects, Journal of the London Mathematical Society, vol. 75 (2007), pp. 273-286.
[40] W., Calvert, V. S., Harizanov, J. F., Knight, and S., Miller, Index sets of computable structures, Algebra and Logic, vol. 45 (2006), pp. 306-325.
[41] W., Calvert and J. F., Knight, Classification from a computable point of view, The Bulletin of Symbolic Logic, vol. 12 (2006), pp. 191-218.
[42] W., Calvert, J. F., Knight, and J., Millar, Computable trees of Scott rank, and computable approximability, The Journal of Symbolic Logic, vol. 7 (2006), pp. 283-298.
[43] J., Carson, E., Fokina, V., Harizanov, J., Knight, S., Quinn, C., Safranski, and J., Wallbaum, The computable embedding problem, Algebra and Logic, vol. 50 (2011), pp. 707-732.
[44] J., Carson, V., Harizanov, J., Knight, K., Lange, C., McCoy, A., Morozov, S., Quinn, C., Safranski, and J., Wallbaum, Describing free groups, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 5715-5728.
[45] D., Cenzer, V., Harizanov, and J., Remmel, and equivalence structures, Annals of Pure and Applied Logic, vol. 162 (2011), pp. 490-503.
[46] D., Cenzer, V., Harizanov, and J., Remmel, Effective categoricity of injection structures, Algebra and Logic, (to appear).
[47] D., Cenzer, G., LaForte, and J., Remmel, Equivalence structures and isomorphisms in the difference hierarchy, The Journal of Symbolic Logic, vol. 74 (2009), pp. 535-556.
[48] D., Cenzer and J. B., Remmel, Complexity-theoretic model theory and algebra, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 381-513.
[49] C. C., Chang and H. J., Keisler, Model theory, North-Holland, Amsterdam, 1973.
[50] J., Chisholm, Effective model theory vs. recursive model theory, The Journal of Symbolic Logic, vol. 55 (1990), pp. 1168-1191.
[51] J., Chisholm, E., Fokina, S., Gonoharov, V., Harizanov, J., Knight, and S., Quinn,Intrinsic bounds on complexity and definability at limit levels, The Journal of Symbolic Logic, vol. 74 (2009), pp. 1047-1060.
[52] J., Chisholm and M., Moses, An undecidable linear order that is n-decidable for all n, Notre Dame Journal of Formal Logic, vol. 39 (1998), pp. 519-526.
[53] J. A., Chisholm, J., Chubb, V. S., Harizanov, D. R., Hirsohfeldt, C. G., Jookusoh Jr., T. H., MoNioholl, and S., Pingrey, classes and strong degree spectra of relations, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1003-1018.
[54] P., Cholak, S., Gonoharov, B., Khoussainov, and R. A., Shore, Computably categorical structures and expansions by constants, The Journal of Symbolic Logic, vol. 64 (1999), pp. 13-37.
[55] P., Cholak, R. A., Shore, and R., Solomon, A computably stable structure with no Scott family offinitary formulas, Archive for Mathematical Logic, vol. 45 (2006), pp. 519-538.
[56] J., Chubb, A., Frolov, and V., Harizanov, Degree spectra of the successor relation on computable linear orderings, Archive for Mathematical Logic, vol. 48 (2009), pp. 7-13.
[57] J., Chubb, V., Harizanov, A., Morozov, S., Pingrey, and E., Ufferman, Partial automorphism semigroups, Annals of Pure and Applied Logic, vol. 156 (2008), pp. 245-258.
[58] R. J., Coles, R. G., Downey, and T. A., Slaman, Every set has a least jump enumeration, Journal of the London Mathematical Society, vol. 62 (2000), pp. 641-649.
[59] S., Coskey, J., Hamkins, and R., Miller, The hierarchy of equivalence relations on the natural numbers under computable reducibility, Computability, vol. 1 (2012), pp. 15-38.
[60] T. C., Craven, The Boolean space of orderings of a field, Transactions of the American Mathematical Society, vol. 209 (1975), pp. 225-235.
[61] B., Csima, V., Harizanov, D., Hirsohfeldt, and R., Soare, Bounding homogeneous models, The Journal of Symbolic Logic, vol. 72 (2007), pp. 305-323.
[62] B., Csima, V., Harizanov, R., Miller, and A., Montalbá, Computability of Fraïssé limits, The Journal of Symbolic Logic, vol. 76 (2011), pp. 66-93.
[63] B., Csima and I. Sh., Kalimullin, Degree spectra and immunity properties, Mathematical Logic Quarterly, vol. 56 (2010), pp. 67-77.
[64] B. F., Csima, Degree spectra of prime models, The Journal of Symbolic Logic, vol. 69 (2004), pp. 430–412.
[65] B. F., Csima, J. N. Y., Franklin, and R. A., Shore, Degrees of categoricity and the hyperarithmetic hierarchy, Notre Dame Journal of Formal Logic, vol. 54 (2013), pp. 215-231.
[66] B. F., Csima, D. R., Hirsohfeldt, J. F., Knight, and R. I., Soare, Bounding prime models, The Journal of Symbolic Logic, vol. 69 (2004), pp. 1117-1142.
[67] M., Dabkowska, M., Dabkowski, V., Harizanov, J., Przytyoki, and M., Veve, Compactness of the space of left orders, Journal of Knot Theory and Its Ramifications, vol. 16 (2007), pp. 257-366.
[68] M., Dabkowska, M., Dabkowski, V., Harizanov, and A., Sikora, Turing degrees of non-abelian groups, Proceedings of the American Mathematical Society, vol. 135 (2007), pp. 3383-3391.
[69] M. A., Dabkowska, Turing degree spectra of groups and their spaces of orders, PhD dissertation, George Washington University, 2006.
[70] M. A., Dabkowska, M. K., Dabkowski, V. S., Harizanov, and A. A., Togha, Spaces of orders and their Turing degree spectra, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 1134-1143.
[71] R., Dimitrov, V., Harizanov, and A. S., Morozov, Dependence relations in computably rigid computable vector spaces, Annals of Pure and Applied Logic, vol. 132 (2005), pp. 97-108.
[72] V. P., Dobritsa, Some constructivizations of abelian groups, Siberian Mathematical Journal, vol. 24(1983), pp. 167-173, (English translation).
[73] A., Dolioh, C., Laskowski, and A., Raiohev, Model completeness for trivial, uncountably categorical theories of Morley rank one, Archive for Mathematical Logic, vol. 45 (2006), pp. 931-945.
[74] R., Downey and D., Hirsohfeldt, Algorithmic randomness and complexity, Springer, 2010.
[75] R., Downey and C. G., Jookusoh Jr., Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871-880.
[76] R., Downey, A., Kaoh, S., Lempp, A., Lewis, A., Montalbán, and D., Turetsky, The complexity of computable categoricity, preprint.
[77] R., Downey and J., Knight, Orderings with ath jump degree 0(α), Proceedings of the American Mathematical Society, vol. 114 (1992), pp. 545-552.
[78] R., Downey, S., Lempp, and G., Wu, On the complexity of the successivity relation in computable linear orderings, Journal of Mathematical Logic, vol. 10 (2010), pp. 83-99.
[79] R., Downey and A. G., Melnikov, Computable completely decomposable groups, preprint.
[80] R., Downey and A. G., Melnikov, Effectively categorical abelian groups, Journal of Algebra, (to appear).
[81] R. G., Downey, On presentations of algebraic structures, Complexity, logic and recursion theory (A., Sorbi, editor), Lecture Notes in Pure and Applied Mathematics 187, Marcel Dekker, New York, 1997, pp. 157-205.
[82] R. G., Downey, S. S., Gonoharov, and D. R., Hirsohfeldt, Degree spectra of relations on Boolean algebras, Algebra and Logic, vol. 42 (2003), pp. 105-111.
[83] R. G., Downey, A. M., Kach, S., Lempp, and D. D., Turetsky, Computable categoricity versus relative computable categoricity, Fundamenta Mathematicae, vol. 221 (2013), pp. 129-159.
[84] R. G., Downey and S. A., Kurtz, Recursion theory and ordered groups, Annals of Pure and Applied Logic, vol. 32 (1986), pp. 137-151.
[85] R. G., Downey and M. F., Moses, Recursive linear orders with incomplete successivities, Transactions of the American Mathematical Society, vol. 326 (1991), pp. 653-668.
[86] R. G., Downey and J. B., Remmel, Computable algebras and closure systems: coding properties, Handbook of recursive mathematics, volume 2 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 997-1039.
[87] B. N., Drobotun, Enumerations of simple models, Siberian Mathematical Journal, vol. 18 (1977), pp. 707-716, (English translation).
[88] V. D., Dzgoev, Recursive automorphisms of constructive models, Proceedings of the 15th All-Union Algebraic Conference (Novosibirsk, 1979), Part 2, (Russian), p. 52.
[89] R., Epstein, Computably enumerable degrees of prime models, The Journal of Symbolic Logic, vol. 73 (2008), pp. 1373-1388.
[90] Yu. L., Ershov, Theorie der Numierungen III, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 23 (1977), pp. 289-371.
[91] Yu. L., Ershov, Theory of numberings, Nauka, Moscow, 1977, (Russian).
[92] Yu. L., Ershov, Decidability problems and constructive models, Nauka, Moscow, 1980, (Russian).
[93] Yu. L., Ershov and S. S., Gonoharov, Constructive models, Siberian School of Algebra and Logic, Kluwer Academic/Plenum Publishers, 2000, (English translation).
[94] L., Feiner, Hierarchies of Boolean algebras, The Journal of Symbolic Logic, vol. 35 (1970), pp. 365-374.
[95] E., Fokina, On complexity of categorical theories with computable models, Vestnik NGU, vol. 5 (2005), pp. 78-86, (Russian).
[96] E., Fokina, S., Friedman, V., Harizanov, J., Knight, C., McCoy, and A., Montalbán, Isomorphism relations on computable structures, The Journal of Symbolic Logic, vol. 77 (2012), pp. 122-132.
[97] E., Fokina, S. D., Friedman, and A., Nies, Equivalence relations that are complete for computable reducibility, Logic, Language, Information and Computation, 19th International Workshop, WoLLIC 2012 (C.-H. L., Ong and R. J. G. B., de Queiroz, editors), Springer, Berlin, 2012, pp. 26-33.
[98] E., Fokina, A., Frolov, and I., Kalimullin, Spectra of categoricity for rigid structures, Notre Dame Journal of Formal Logic, (to appear).
[99] E. B., Fokina, Index sets of decidable models, Siberian Mathematical Journal, vol. 48 (2007), pp. 939-948, (English translation).
[100] E. B., Fokina, Index sets for some classes of structures, Annals of Pure and Applied Logic, vol. 157 (2009), pp. 139-147.
[101] E. B., Fokina and S. D., Friedman, Equivalence relations on classes of computable structures, Proceedings of Computability in Europe 2009, Lecture Notes in Computer Science 5635, Springer, Heidelberg, 2009, pp. 198-207.
[102] E. B., Fokina and S. D., Friedman, On equivalence relations over the natural numbers, Mathematical Logic Quarterly, vol. 58 (2012), pp. 3-24.
[103] E. B., Fokina, I., Kalimullin, and R., Miller, Degrees of categoricity of computable structures, Archive for Mathematical Logic, vol. 49 (2010), pp. 51-67.
[104] C., Freer, Models with high Scott rank, PhD dissertation, Harvard University, 2008.
[105] H., Friedman and L., Stanley, A Borel reducibility theory for classes of countable structures, The Journal of Symbolic Logic, vol. 54 (1989), pp. 894-914.
[106] S. D., Friedman and L., Motto Ros, Analytic equivalence relations and bi-embeddability, The Journal of Symbolic Logic, vol. 76 (2011), pp. 243-266.
[107] A., Fröhlich and J., Shepherdson, Effective procedures in field theory, Philosophical Transactions of the Royal Society. Series A, vol. 248 (1956), pp. 407-432.
[108] A., Frolov, V., Harizanov, I., Kalimullin, O., Kudinov, and R., Miller, Degree spectra of highn and nonlown degrees, Journal of Logic and Computation, vol. 22 (2012), pp. 755-777.
[109] A., Frolov, I., Kalimullin, and R., Miller, Spectra of algebraic fields and subfields, Mathematical theory and computational practice, Computability in Europe (K., Ambos-Spies, B., Löwe, and W., Merkle, editors), Lecture Notes in Computer Science 5635, Springer, Berlin, 2009, pp. 232-241.
[110] L., Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
[111] S., Gao, Invariant descriptive set theory, Pure and Applied Mathematics, CRC Press/Chapman & Hall, 2009.
[112] S., Gao and P., Gerdes, Computably enumerable equivalence relations, Studia Logica, vol. 67 (2001), pp. 27-59.
[113] A., Gavryushkin, Computable models of Ehrenfeucht theories, Centre de Recerca Matemática (Barcelona), vol. 11 (2012), pp. 67-77.
[114] A. N., Gavryushkin, Spectra of computable models for Ehrenfeucht theories, Algebra and Logic, vol. 46(2007), pp. 149-157, (English translation).
[115] A. M. W., Glass, Ordered permutation groups, London Mathematical Society Lecture Note Series, vol. 55, Cambridge University Press, 1981.
[116] S., Gonoharov, V., Harizanov, J., Knight, C., McCoy, R., Miller, and R., Solomon, Enumerations in computable structure theory, Annals of Pure and Applied Logic, vol. 136 (2005), pp. 219-246.
[117] S., Gonoharov, V., Harizanov, J., Knight, A., Morozov, and A., Romina, On automorphic tuples of elements in computable models, Siberian Mathematical Journal, vol. 46 (2005), pp. 405-412, (English translation).
[118] S., Gonoharov, V., Harizanov, C., Laskowski, S., Lempp, and C., McCoy, Trivial, strongly minimal theories are model complete after naming constants, Proceedings of the American Mathematical Society, vol. 131 (2003), pp. 3901-3912.
[119] S., Gonoharov, S., Lempp, and R., Solomon, The computable dimension of ordered abelian groups, Advances in Mathematics, vol. 175 (2003), pp. 102-143.
[120] S. S., Gonoharov, Selfstability and computable families of constructivizations, Algebra and Logic, vol. 14 (1975), pp. 647-680, (Russian).
[121] S. S., Gonoharov, Restricted theories of constructive Boolean algebras, Siberian Mathematical Journal, vol. 17 (1976), pp. 601-611, (English translation).
[122] S. S., Gonoharov, The quantity of nonautoequivalent constructivizations, Algebra and Logic, vol. 16 (1977), pp. 169-185, (English translation).
[123] S. S., Gonoharov, Constructive models of and ℵ1-categorical theories, Matematicheskie Zametki, vol. 23 (1978), pp. 885-888, (Russian).(English translation in Mathematical Notes, vol. 23 (1978), no. 5–6, pp. 486–488).
[124] S. S., Gonoharov, Strong constructivizability of homogeneous models, Algebm and Logic, vol. 17 (1978), pp. 247-263, (English translation).
[125] S. S., Gonoharov, Autostability of models and abelian groups, Algebra and Logic, vol. 19 (1980), pp. 13-27, (English translation).
[126] S. S., Gonoharov, Computable single valued numerations, Algebra and Logic, vol. 19 (1980), pp. 325-356, (English translation).
[127] S. S., Gonoharov, Problem of number of nonautoequivalent constructivizations, Algebra and Logic, vol. 19 (1980), pp. 401-414, (English translation).
[128] S. S., Gonoharov, A totally transcendental decidable theory without constructivizable homogeneous models, Algebra and Logic, vol. 19 (1980), pp. 85-93, (English translation).
[129] S. S., Gonoharov, Autostable models and algorithmic dimensions, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), North-Holland, Amsterdam, 1998, pp. 261-287.
[130] S. S., Gonoharov, Autostability of prime models with respect to strong constructivizations, Algebra and Logic, vol. 48 (2009), pp. 410-417, (English translation).
[131] S. S., Gonoharov, On the autostability of almost prime models with respect to strong constructivizations, Russian Mathematical Surveys, vol. 65 (2010), pp. 901-935, (English translation).
[132] S. S., Gonoharov, Degrees of autostability relative to strong constructivizations, Proceedings of the Steklov Institute of Mathematics, vol. 274(2011), pp. 105-115, (English translation).
[133] S. S., GOnoharov and B. N., Drobotun, Numerations of saturated and homogeneous models, Siberian Mathematical Journal, vol. 21 (1980), pp. 164-176, (English translation).
[134] S. S., Gonoharov and V. D., Dzgoev, Autostability of models, Algebra and Logic, vol. 19 (1980), pp. 28-37, (English translation).
[135] S. S., Gonoharov, V. S., Harizanov, J. F., Knight, and C. F. D., McCoy, Simple and immune relations on countable structures, Archive for Mathematical Logic, vol. 42 (2003), pp. 279-291.
[136] S. S., Gonoharov, Relatively hyperimmune relations on structures, Algebra and Logic, vol. 43 (2004), pp. 94-101, (English translation).
[137] S. S., Gonoharov, V. S., Harizanov, J. F., Knight, and R. A., Shore, relations and paths through, The Journal of Symbolic Logic, vol. 69 (2004), pp. 585-611.
[138] S. S., Gonoharov and B., Khoussainov, On the spectrum of degrees of decidable relations, Doklady Mathematics, vol. 55 (1997), pp. 55-57, (English translation).
[139] S. S., Gonoharov and B., Khoussainov, Complexity of theories of computable categorical models, Algebm and Logic, vol. 43 (2004), pp. 365-373, (English translation).
[140] S. S., Gonoharov and J. F., Knight, Computable structure and non-structure theorems, Algebra and Logic, vol. 41 (2002), pp. 351-373.
[141] S. S., Gonoharov, A. V., Molokov, and N. S., Romanovskii, Nilpotent groups of finite algorithmic dimension, Siberian Mathematical Journal, vol. 30 (1989), pp. 63-68.
[142] S. S., Gonoharov and A. T., Nurtazin, Constructive models of complete decidable theories, Algebra and Logic, vol. 12 (1973), pp. 125-142 (Russian); (1974) pp.67–77, (English translation).
[143] N., Greenberg, A., Montalbán, and T. A., Slaman, Relative to any non-hyperarithmetic set, Journal of Mathematical Logic, vol. 13 (2013), pp. 1-26.
[144] N., Greenberg, A., Montalbán, and T. A., Slaman, The Slaman–Wehner theorem in higher recursion theory, Proceedings of the American Mathematical Society, vol. 139 (2011), pp. 1865-1869.
[145] V., Harizanov, Effectively nowhere simple relations on computable structures, Recursion theory and complexity (M. M., Arslanov and S., Lempp, editors), Walterde Gruyter, Berlin, 1999, pp. 59-70.
[146] V., Harizanov, Turing degrees of hypersimple relations on computable structures, Annals of Pure and Applied Logic, vol. 121 (2003), pp. 209-226.
[147] V., Harizanov, C., Jookusoh Jr., and J., Knight, Chains and antichains in computable partial orderings, Archive for Mathematical Logic, vol. 48 (2009), pp. 39-53.
[148] V., Harizanov, J., Knight, C., McCoy, V., Puzarenko, R., Solomon, and J., Wallbaum, Orders on F∞, preprint.
[149] V., Harizanov and R., Miller, Spectra of structures and relations, The Journal of Symbolic Logic, vol. 72 (2007), pp. 324-348.
[150] V., Harizanov, R., Miller, and A. S., Morozov, Simple structures with complex symmetry, Algebra and Logic, vol. 49 (2010), pp. 98-134, (English translation).
[151] V. S., Harizanov, Degree spectrum of a recursive relation on a recursive structure, PhD dissertation, University of Wisconsin, Madison, 1987.
[152] V. S., Harizanov, Some effects of Ash–Nerode and other decidability conditions on degree spectra, Annals of Pure and Applied Logic, vol. 55 (1991), pp. 51-65.
[153] V. S., Harizanov, Uncountable degree spectra, Annals of Pure and Applied Logic, vol. 54 (1991), pp. 255-263.
[154] V. S., Harizanov, The possible Turing degree of the nonzero member in a two-element degree spectrum, Annals of Pure and Applied Logic, vol. 60 (1993), pp. 1-30.
[155] V. S., Harizanov, Turing degrees of certain isomorphic images of computable relations, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 103-113.
[156] V. S., Harizanov, J. F., Knight, and A. S., Morozov, Sequences of n-diagrams, The Journal of Symbolic Logic, vol. 67 (2002), pp. 1227-1247.
[157] L., Harrington, Recursively presentable prime models, The Journal of Symbolic Logic, vol. 39 (1974), pp. 305-309.
[158] K., Harris, Categoricity in Boolean algebras, preprint.
[159] K., Harris, On bounding saturated models, preprint.
[160] K., Harris and A., Montalbán, Boolean algebra approximations, preprint.
[161] K., Harris, On the n-back-and-forth types of Boolean algebras, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 827-866.
[162] J., Harrison, Recursive pseudo-well-orderings, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526-543.
[163] E., Herrmann, Infinite chains and antichains in computable partial orderings, The Journal of Symbolic Logic, vol. 66 (2001), pp. 923-934.
[164] B., Herwig, S., Lempp, and M., Ziegler, Constructive models of uncountably categorical theories, Proceedings of the American Mathematical Society, vol. 127 (1999), pp. 3711-3719.
[165] G., Higman, Subgroups of finitely presented groups, Proceedings of the Royal Society of London, vol. 262 (1961), pp. 455-475.
[166] G., Hird, Recursive properties of intervals of recursive linear orders, Logical methods (J. N., Crossley, J. B., Remmel, R. A., Shore, and M. E., Sweedler, editors), Birkhäuser, 1993, pp. 422-437.
[167] G. R., Hird, Recursive properties of relations on models, Annals of Pure and Applied Logic, vol. 63 (1993), pp. 241-269.
[168] D., Hirsohfeldt, K., Kramer, R., Miller, and A., Shlapentokh, Categoricity properties for computable algebraic fields, Transactions of the American Mathematical Society, (to appear).
[169] D. R., Hirsohfeldt, Prime models of theories of computable linear orderings, Proceedings of the American Mathematical Society, vol. 129 (2001), pp. 3079-3083.
[170] D. R., Hirsohfeldt, Degree spectra of relations on computable structures in the presence of isomorphisms, The Journal of Symbolic Logic, vol. 67 (2002), pp. 697-720.
[171] D. R., Hirsohfeldt, Computable trees, prime models and relative decidability, Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 1495-1498.
[172] D. R., Hirsohfeldt, B., Khoussainov, and P., Semukhin, An uncountably categorical theory whose only computably presentable model is saturated, Notre Dame Journal of Formal Logic, vol. 47 (2006), pp. 63-71.
[173] D. R., Hirsohfeldt, B., Khoussainov, and R. A., Shore, A computably categorical structure whose expansion by a constant has infinite computable dimension, The Journal of Symbolic Logic, vol. 68 (2003), pp. 1199-1241.
[174] D. R., Hirsohfeldt, B., Khoussainov, R. A., Shore, and A. M., Slinko, Degree spectra and computable dimensions in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71-113.
[175] D. R., Hirsohfeldt and W. M., White, Realizing levels of the hyperarithmetic hierarchy as degree spectra of relations on computable structures, Notre Dame Journal of Formal Logic, vol. 43 (2002), pp. 51-64.
[176] G., Hjorth, The isomorphism relation on countable torsion-free Abelian groups, Fundamenta Mathematicae, vol. 175 (2002), pp. 241-257.
[177] E., Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic, vol. 62 (1993), pp. 147-166, Stability in model theory, III (Trento, 1991).
[178] C. G., Jookusoh Jr., Ramsey's theorem and recursion theory, The Journal of Symbolic Logic, vol. 37 (1972), pp. 268-280.
[179] C. G., Jookusoh Jr. and R. I., Soare, classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 33-56.
[180] C. G., Jookusoh, Degrees of orderings not isomorphic to recursive linear orderings, Annals of Pure and Applied Logic, vol. 52 (1991), pp. 39-64.
[181] C. G., Jookusoh, Boolean algebras, Stone spaces, and the iterated Turing jump, The Journal of Symbolic Logic, vol. 59 (1994), pp. 1121-1138.
[182] A. M., Kach, K., Lange, and R., Solomon, Degrees of orders on torsion-free abelian groups, Annals of Pure and Applied Logic, (to appear).
[183] A. M., Kach and D., Turetsky, -categoricity of equivalence structures, New Zealand Journal of Mathemtics, vol. 39 (2009), pp. 143-149.
[184] I., Kalantari and A., Retzlaff, Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces, The Journal of Symbolic Logic, vol. 42 (1977), pp. 481-491.
[185] I., Kalimullin, B., Khoussainov, and A., Melnikov, Limitwise monotonic sequences and degree spectra of structures, Proceedings of the American Mathematical Society, (to appear).
[186] I. Sh., Kalimullin, Some notes on degree spectra of structures, Computation and logic in the real world, Computability in Europe (S. B., Cooper, B., Ltowe, and A., Sorbi, editors), Lecture Notes in Computer Science 4497, Springer, Berlin, 2007, pp. 389-397.
[187] I. Sh., Kalimullin, Spectra of degrees of some algebraic structures, Algebra and Logic, vol. 46 (2007), pp. 399-408, (English translation).
[188] I. Sh., Kalimullin, Almost computably enumerable families of sets, Sbornik. Mathematics, vol. 199 (2008), pp. 1451-1458, (English translation).
[189] I. Sh., Kalimullin, Restrictions on the spectra of degrees of algebraic structures, Siberian Mathematical Journal, vol. 49 (2008), pp. 1034-1043, (English translation).
[190] V., Kanovei, Borel equivalence relations. structure and classification, University Lecture Series 44, American Mathematical Society, Providence, RI, 2008.
[191] A., Keohris and A., Louveau, The classification of hypersmooth Borel equivalence relations, Journal of the American Mathematical Society, vol. 10 (1997), pp. 215-242.
[192] C. F., Kent, Constructive analogues of the group of permutations of the natural numbers, Transactions of the American Mathematical Society, vol. 104 (1962), pp. 347-362.
[193] O., Kharlampovioh and A., Myasnikov, Elementary theory of free non-abelian groups, Journal of Algebra, vol. 302 (2006), pp. 451-552.
[194] A. N., Khisamiev, On the upper semilattice LE, Siberian Mathematical Journal, vol. 45 (2004), pp. 173-187, (English translation).
[195] N. G., Khisamiev, Strongly constructive models of a decidable theory, Izvestiya Akademii Nauk Kazakhskoj SSR, Seriya Fiziko-Matematicheskaya, vol. 1 (1974), pp. 83-84, (Russian).
[196] N. G., Khisamiev, A constructibility criterion for the direct product of cyclic p-groups, Izvestiya Akademii Nauk Kazakhskoj SSR, Seriya Fiziko-Matematicheskaya, vol. 51 (1981), pp. 51-55, (Russian).
[197] N. G., Khisamiev, Theory of abelian groups with constructive models, Siberian Mathematical Journal, vol. 27 (1986), pp. 572-585, (English translation).
[198] N. G., Khisamiev and A. A., Krykpaeva, Effectively totally decomposable abelian groups, Siberian Mathematical Journal, vol. 38 (1997), pp. 1227-1229, (English translation).
[199] B., Khoussainov, C., Laskowski, S., Lempp, and R., Solomon, On the computability-theoretic complexity of trivial, strongly minimal models, Proceedings of the American Mathematical Society, vol. 135 (2007), pp. 3711-3721.
[200] B., Khoussainov and M., Minnes, Three lectures on automatic structures, Logic Colloquium '07 (F., Delon, U., Kohlenbach, P., Maddy, and F., Stephan, editors), Lecture Notes in Logic 35, Cambridge University Press, 2010, pp. 132-176.
[201] B., Khoussainov and A., Montalbán, A computable ℵ0-categorical structure whose theory computes true arithmetic, The Journal of Symbolic Logic, vol. 75 (2010), pp. 728-740.
[202] B., Khoussainov and A., Nerode, Automatic presentations of structures, Logic and Computational Complexity: International Workshop, LCC '94, Indianapolis (D., Leivant, editor), Lecture Notes in Computer Science 960, Springer, Berlin, 1995, pp. 367-395.
[203] B., Khoussainov, A., Nies, and R., Shore, On recursive models of theories, Notre Dame Journal of Formal Logic, vol. 38 (1997), pp. 165-178.
[204] B., Khoussainov, P., Semukhin, and F., Stephan, Applications of Kolmogorov complexity to computable model theory, The Journal of Symbolic Logic, vol. 72 (2007), pp. 1041-1054.
[205] B., Khoussainov and R. A., Shore, Computable isomorphisms, degree spectra of relations and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153-193.
[206] B., Khoussainov, T., Slaman, and P., Semukhin, -presentations of algebras, Archive for Mathematical Logic, vol. 45 (2006), pp. 769-781.
[207] B., Khoussainov, F., Stephan, and Y., Yang, Computable categoricity and the Ershov hierarchy, Annals of Pure and Applied Logic, vol. 156 (2008), pp. 86-95.
[208] J., Knight, Nonarithmetical ℵ0-categorical theories with recursive models, The Journal of Symbolic Logic, vol. 59 (1994), pp. 106-112.
[209] J. F., Knight, Degrees coded in jumps of orderings, The Journal of Symbolic Logic, vol. 51 (1986), pp. 1034-1042.
[210] J. F., Knight and J., Millar, Computable structures of Scott rank, Journal of Mathematical Logic, vol. 10 (2010), pp. 31-43.
[211] J. F., Knight, S., Miller, and M., Vanden Boom, Turing computable embeddings, The Journal of Symbolic Logic, vol. 73 (2007), pp. 901-918.
[212] J. F., Knight and M., Stob, Computable Boolean algebras, The Journal of Symbolic Logic, vol. 65 (2000), pp. 1605-1623.
[213] G., Kreisel, Note on arithmetic models for consistent formulae of the predicate calculus, Fundamenta Mathematicae, vol. 37 (1950), pp. 265-285.
[214] K. Zh., Kudaibergenov, Constructivizable models of undecidable theories, Siberian Mathematical Journal, vol. 21 (1980), pp. 155-158, (Russian).
[215] K. Zh., Kudaibergenov, Effectively homogenous models, Siberian Mathematical Journal, vol. 27 (1986), pp. 180-182, (Russian).
[216] O., Kudinov, An autostable 1-decidable model without a computable Scott family of 3-formulas, Algebra and Logic, vol. 35 (1996), pp. 458-467.
[217] V. A., Kuzioheva, Inverse isomorphisms of rings of recursive endomorphisms, Moscow University Mathematics Bulletin, vol. 41 (1986), pp. 82-84, (English translation).
[218] A. V., Kuznetsov, On primitive recursive functions of large oscillation, Doklady Akademii Nauk SSSR, vol. 71 (1950), pp. 233-236, (Russian).
[219] A., Lange, The degree spectra of homogeneous models, The Journal of Symbolic Logic, vol. 73 (2008), pp. 1009-1028.
[220] A., Lange, A characterization of the 0-basis homogeneous bounding degrees, The Journal of Symbolic Logic, vol. 75 (2010), pp. 971-995.
[221] P., LaRoche, Recursively presented Boolean algebras, Notices of the American Mathematical Society, vol. 24 (1977), pp. A552-A553.
[222] C., Laskowski, Characterizing model completeness among mutually algebraic structures, The Journal of Symbolic Logic, vol. 78 (2013), pp. 185-194.
[223] S., Lempp, C., McCoy, R., Miller, and R., Solomon, Computable categoricity of trees of finite height, The Journal of Symbolic Logic, vol. 70 (2005), pp. 151-215.
[224] S., Lempp, C. F. D., McCoy, A. S., Morozov, and R., Solomon, Group theoretic properties of the group of computable automorphisms of a countable dense linear order, Order, vol. 19 (2002), pp. 343-364.
[225] M., Lerman and J., Sohmerl, Theories with recursive models, The Journal of Symbolic Logic, vol. 44 (1979), pp. 59-76.
[226] A. J., Maointyre and D., Marker, Degrees of recursively saturated models, Transactions of the American Mathematical Society, vol. 282 (1984), pp. 539-554.
[227] M., Makkai, An example concerning Scott heights, The Journal of Symbolic Logic, vol. 46 (1981), pp. 301-318.
[228] A. I., Mal'oev, Constructive algebras I, Russian Mathematical Surveys, vol. 16 (1961), pp. 77-129, (English translation).
[229] A. I., Mal'oev, On recursive Abelian groups, Doklady Akademii Nauk SSSR, vol. 3 (1962), pp. 1431-1434, (English translation).
[230] M., Manasse, Techniques and counterexamples in almost categorical recursive model theory, PhD dissertation, University of Wisconsin, Madison, 1982.
[231] A. B., Manaster and J. B., Remmel, Some recursion theoretic aspects of dense two-dimensional partial orderings, Aspects of effective algebra (J. N., Crossley, editor), U. D. A. Book Co., Steel's Creek, Australia, 1981, pp. 161-188.
[232] Yu. V., Matiyasevioh, The diophantineness of enumerable sets, Doklady Akademii Nauk SSSR, vol. 191 (1970), pp. 279-282, (Russian).
[233] Yu. V., Matiyasevioh, Hilbert's tenth problem, The MIT Press, Cambridge, Massachusetts, 1993, (English translation).
[234] C., McCoy and J., Wallbaum, Describing free groups, part II: -hardness and no basis, Transactions of the American Mathematical Society, vol. 364 (2012), pp. 5729-5734.
[235] C. F. D., McCoy, On -categoricity for linear orders and Boolean algebras, Algebra and Logic, vol. 41 (2002), pp. 295-305, (English translation).
[236] C. F. D., McCoy, -categoricity in Boolean algebras and linear orderings, Annals of Pure and Applied Logic, vol. 119(2003), pp. 85-120.
[237] Yu. T., Medvedev, Degrees of difficulty of the mass problem, Doklady Akademii Nauk SSSR, vol. 104 (1955), pp. 501-504, (Russian).
[238] A. G., Melnikov, Enumerations and completely decomposable torsion-free abelian groups, Theory of Computing Systems, vol. 45 (2009), pp. 897-916.
[239] G., Metakides and A., Nerode, Recursively enumerable vector spaces, Annals of Pure and Applied Logic, vol. 11 (1977), pp. 147-171.
[240] G., Metakides and A., Nerode, Effective content of field theory, Annals of Mathematical Logic, vol. 17 (1979), pp. 289-320.
[241] G., Metakides and A., Nerode, Recursion theory on fields and abstract dependence, Journal of Algebra, vol. 65 (1980), pp. 36-59.
[242] J., Millar and G. E., Sacks, Atomic models higher up, Annals of Pure and Applied Logic, vol. 155 (2008), pp. 225-241.
[243] T., Millar, Prime models and almost decidability, The Journal of Symbolic Logic, vol. 51 (1986), pp. 412-420.
[244] T., Millar, Recursive categoricity and persistence, The Journal of Symbolic Logic, vol. 51 (1986), pp. 430-434.
[245] T. S., Millar, Foundations of recursive model theory, Annals of Mathematical Logic, vol. 13 (1978), pp. 45-72.
[246] T. S., Millar, Homogeneous models and decidability, Pacific Journal of Mathematics, vol. 91 (1980), pp. 407-418.
[247] T. S., Millar, Type structure complexity and decidability, Transactions of the American Mathematical Society, vol. 271 (1982), pp. 73-81.
[248] A. W., Miller, On the Borel classification of the isomorphism class of a countable model, Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 22-34.
[249] D. E., Miller, The invariant separation principle, Transactions of the American Mathematical Society, vol. 242 (1978), pp. 185-204.
[250] R., Miller, The computable dimension of trees of infinite height, The Journal of Symbolic Logic, vol. 70 (2005), pp. 111-141.
[251] R., Miller, d-computable categoricity for algebraic fields, The Journal of Symbolic Logic, vol. 74 (2009), pp. 1325-1351.
[252] R., Miller and H., Schoutens, Computably categorical fields via Fermat's Last Theorem, Computability, vol. 2 (2013), pp. 51-65.
[253] R., Miller and A., Shlapentokh, Computable categoricity for algebraic fields with splitting algorithms, Transactions of the American Mathematical Society, (to appear).
[254] R. G., Miller, The -spectrum of a linear order, The Journal of Symbolic Logic, vol. 66 (2001), pp. 470-486.
[255] A., Montalbán, A computability theoretic equivalent to Vaught's conjecture, preprint.
[256] A., Montalbán, A fixed point for the jump operator on structures, preprint.
[257] A., Montalbán, On the equimorphism types of linear orderings, The Bulletin of Symbolic Logic, vol. 13 (2007), pp. 71-99.
[258] A., Montalbán, Notes on the jump of a structure, Mathematical theory and computational practice, CiE 2009 (K., Ambos-Spies, B., Löwe, and W., Merkle, editors), Lecture Notes in Computer Science, vol. 5635, Springer, 2009, pp. 372-378.
[259] M., Morley, Decidable models, Israel Journal of Mathematics, vol. 25 (1976), pp. 233-240.
[260] A. S., Morozov, On degrees of the recursive automorphism groups, Algebra, Logic, and Applications, in memoriam of A. I. Kokorin (Irkutsk University, 1994), pp. 79-85 (Russian).
[261] A. S., Morozov, Strong constructivizability of countable saturated Boolean algebras, Algebm and Logic, vol. 21 (1982), pp. 130-137, (English translation).
[262] A. S., Morozov, Groups of recursive automorphisms of constructive Boolean algebras, Algebra and Logic, vol. 22 (1983), pp. 95-112, (English translation).
[263] A. S., Morozov, Computable groups of automorphisms of models, Algebra and Logic, vol. 251 (1986), pp. 261-266, (English translation).
[264] A. S., Morozov, Permutations and implicit definability, Algebra and Logic, vol. 27 (1988), pp. 12-24, (English translation).
[265] A. S., Morozov, On theories of classes of groups of recursive permutations, Trudy Instituta Matematiki, vol. 12 (1989), pp. 91-104, (Russian). (English translation in Siberian Advances in Mathematics, vol. 1 (1991), pp. 138–153.).
[266] A. S., Morozov, Rigid constructive modules, Algebra and Logic, vol. 28 (1989), pp. 379-387, (English translation).
[267] A. S., Morozov, Functional trees and automorphisms of models, Algebra and Logic, vol. 32 (1993), pp. 28-38, (English translation).
[268] A. S., Morozov, Turing reducibility as algebraic embeddability, Siberian Mathematical Journal, vol. 38 (1997), pp. 312-313, (English translation).
[269] A. S., Morozov, Groups of computable automorphisms, Handbook of recursive mathematics, volume 1 (Yu. L., Ershov, S. S., Goncharov, A., Nerode, and J. B., Remmel, editors), Studies in Logic and the Foundations of Mathematics 139, North-Holland, Amsterdam, 1998, pp. 311-345.
[270] A. S., Morozov, Once again on the Higman question, Algebra and Logic, vol. 39 (2000), pp. 78-83, (English translation).
[271] A. S., Morozov, On the relation of Σ-reducibility between admissible sets, Siberian Mathematical Journal, vol. 45 (2004), pp. 634-652, (English translation).
[272] A. S., Morozov and A. N., Buzykaeva, On a hierarchy of groups of computable automorphisms, Siberian Mathematical Journal, vol. 43 (2002), pp. 124-127, (English translation).
[273] A. S., Morozov and J. K., Truss, On computable automorphisms of the rational numbers, The Journal of Symbolic Logic, vol. 66 (2001), pp. 1458-1470.
[274] A. S., Morozov and J. K., Truss, On the categoricity of the group of all computable automorphisms of the rational numbers, Algebra and Logic, vol. 46(2007), pp. 354-361, (English translation).
[275] M., Moses, Relations intrinsically recursive in linear orders, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 467-472.
[276] A., Mostowski, A formula with no recursively enumerable model, Fundamenta Mathematicae, vol. 42 (1955), pp. 125-140.
[277] A., Nies, A new spectrum of recursive models, Notre Dame Journal of Formal Logic, vol. 40 (1999), pp. 307-314.
[278] A., Nies, Computability and randomness, Oxford University Press, 2009.
[279] P. S., Novikov, On the algorithmic unsolvability of the word problem in group theory, Proceedings of the Steklov Institute of Mathematics, vol. 44 (1955), pp. 1-143, (Russian).
[280] A. T., Nurtazin, Strong and weak constructivizations and computable families, Algebra and Logic, vol. 13 (1974), pp. 177-184, (English translation).
[281] S., Oates, Jump degrees of groups, PhD dissertation, University of Notre Dame, 1989.
[282] E. N., Pavlovskii, An estimate for the algorithmic complexity of classes of computable models, Siberian Mathematical Journal, vol. 49 (2008), pp. 512-523, (English translation).
[283] M. G., Peretyat'kin, Strongly constructive models and enumerations of the Boolean algebra of recursive sets, Algebra and Logic, vol. 10 (1971), pp. 535-557, (Russian); (1973) pp. 332–345, (English translation).
[284] M. G., Peretyat'kin, Criterion for strong constructivizability of a homogeneous model, Algebra and Logic, vol. 17(1978), pp. 290-301, (English translation).
[285] M. G., Peretyat'kin, Turing machine computations in finitely axiomatizable theories, Algebra and Logic, vol. 21 (1982), pp. 272-295, (English translation).
[286] V. G., Puzarenko, On a certain reducibility on admissible sets, Siberian Mathematical Journal, vol. 50 (2009), pp. 330-340, (English translation).
[287] V. G., Puzarenko, Fixed points for the jump operator, Algebra and Logic, vol. 50 (2011), pp. 418-438, (English translation).
[288] M. O., Rabin, Computable algebra, general theory and theory of computable fields, Transactions of the American Mathematical Society, vol. 95 (1960), pp. 341-360.
[289] J. B., Remmel, Combinatorial functors on co-r.e. structures, Annals of Mathematical Logic, vol. 10 (1976), pp. 261-287.
[290] J. B., Remmel, Maximal and cohesive vector spaces, The Journal of Symbolic Logic, vol. 42 (1977), pp. 400-418.
[291] J. B., Remmel, Recursively enumerable Boolean algebras, Annals of Mathematical Logic, vol. 15 (1978), pp. 75-107.
[292] J. B., Remmel, Recursive isomorphism types of recursive Boolean algebras, The Journal of Symbolic Logic, vol. 46 (1981), pp. 572-594.
[293] J. B., Remmel, Recursively categorical linear orderings, Proceedings of the American Mathematical Society, vol. 83 (1981), pp. 387-391.
[294] J. B., Remmel, Recursively rigid Boolean algebras, Annals of Pure Applied Logic, vol. 36 (1987), pp. 39-52.
[295] J.-P., Ressayre, Boolean models and infinitary first order languages, Annals of Mathematical Logic, vol. 6 (1973), pp. 41-92.
[296] L. J., Richter, Degrees of unsolvability of models, PhD dissertation, University of Illinois at Urbana-Champaign, 1977.
[297] L. J., Richter, Degrees of structures, The Journal of Symbolic Logic, vol. 46 (1981), pp. 723-731.
[298] H., Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967, 2nd edition: MIT Press, Cambridge, MA, 1987.
[299] J., Rosenstein, Linear orderings, Academic Press, New York, 1982.
[300] S., Rubin, Automata presenting structures: a survey of the finite string case, The Bulletin of Symbolic Logic, vol. 14 (2008), pp. 169-209.
[301] G. E., Sacks, Higher recursion theory, Springer, Berlin, 1990.
[302] S., Schwarz, Recursive automorphisms of recursive linear orderings, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 69-73.
[303] Z., Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publications Mathématiques. Institute de Hautes Études Scientifiques, vol. 93 (2001), pp. 31-105.
[304] Z., Sela, Diophantine geometry over groups II: Completions, closures, and formal solutions, Israel Journal of Mathematics, vol. 134 (2003), pp. 173-254.
[305] Z., Sela, Diophantine geometry over groups IV: An iterative procedure for validation of a sentence, Israel Journal of Mathematics, vol. 143 (2004), pp. 1-130.
[306] Z., Sela, Diophantine geometry over groups III: Rigid and solid solutions, Israel Journal of Mathematics, vol. 147 (2005), pp. 1-73.
[307] Z., Sela, Diophantine geometry over groups V1: Quantifier elimination I, Israel Journal of Mathematics, vol. 150 (2005), pp. 1-197.
[308] Z., Sela, Diophantine geometry over groups V2: Quantifier elimination II, Geometric and Functional Analysis, vol. 16 (2006), pp. 537-706.
[309] Z., Sela, Diophantine geometry over groups VI: The elementary theory of a free group, Geometric and Functional Analysis, vol. 16 (2006), pp. 707-730.
[310] V. L., Selivanov, Enumerations of families of general recursive functions, Algebm and Logic, vol. 15 (1976), pp. 128-141, (English translation).
[311] A., Selman, Arithmetical deducibilities I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp. 335-370.
[312] I. P., Shestakov and U. U., Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, Journal of the American Mathematical Society, vol. 17 (2004), pp. 197-227.
[313] R. A., Shore, Controlling the dependence degree of a recursively enumerable vector space, The Journal of Symbolic Logic, vol. 43 (1978), pp. 13-22.
[314] A. S., Sikora, Topology on the spaces of orderings of groups, Bulletin of the London Mathematical Society, vol. 36 (2004), pp. 519-526.
[315] T., Slaman, Relative to any nonrecursive set, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2117-2122.
[316] R. L., Smith, Two theorems on autostability in p-groups, Logic Year 1979–80, University of Connecticut, Storrs, Lecture Notes in Mathematics 859, Springer, Berlin, 1981, pp. 302-311.
[317] R. I., Soare, Recursively enumerable sets and degrees, Springer, Berlin, 1987.
[318] D. R., Solomon, Reverse mathematics and ordered groups, PhD dissertation, Cornell University, 1998.
[319] R., Solomon, classes and orderable groups, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 279-302.
[320] I. N., Soskov, Intrinsically hyperarithmetical sets, Mathematical Logic Quarterly, vol. 42 (1996), pp. 469-480.
[321] I. N., Soskov, Intrinsically relations, Mathematical Logic Quarterly, vol. 42 (1996), pp. 109-126.
[322] I. N., Soskov, Degree spectra and co-spectra of structures, Annuaire de l'Université de Sofia “St. Kliment Ohridski,” Faculté de Mathématiques et Informatique, vol. 96 (2004), pp. 45-68.
[323] A. A., Soskova and I. N., Soskov, A jump inversion theorem for the degree spectra, Journal of Logic and Computation, vol. 19 (2009), pp. 199-215.
[324] A. I., Stukaohev, Degrees of presentability of structures. I, Algebm and Logic, vol. 46 (2007), pp. 419-432, (English translation).
[325] A. I., Stukaohev, Degrees of presentability of structures. II, Algebra and Logic, vol. 47 (2008), pp. 65-74, (English translation).
[326] A. I., Stukaohev, A jump inversion theorem for the semilattices of Σ-degrees, Sibirskie Élektronnye Matematicheskie Izvestiya, vol. 6(2009), pp. 182-190, (Russian). (English translationin Siberian Advances in Mathematics, vol. 20 (2010), pp. 68–74.).
[327] S. V., Sudoplatov, Complete theories with finitely many countable models. I, Algebra and Logic, vol. 43 (3004), pp. 62-69, (English translation).
[328] J. J., THurber, Every low2 Boolean algebra has a recursive copy, Proceedings of the American Mathematical Society, vol. 123 (1995), pp. 3859-3866.
[329] B. L., van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Polynomen, Mathematische Annalen, vol. 102 (1930), pp. 738-739.
[330] R. L., Vaught, Sentences true in all constructive models, The Journal of Symbolic Logic, vol. 25 (1960), pp. 39-58.
[331] R. L., Vaught, Denumerable models of complete theories, Proceedings of Symposium on Foundations of Mathematics: Infinitistic Methods, Pergamon Press, London, 1961, pp. 301-321.
[332] S., WEhner, Enumerations, countable structures and Turing degrees, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2131-2139.
[333] W., White, Characterization for computable structures, PhD dissertation, Cornell University, 2000.