Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T14:09:58.919Z Has data issue: false hasContentIssue false

8 - What is the state of tropical montane cloud forest restoration?

from Part I - General perspectives

Published online by Cambridge University Press:  03 May 2011

T. M. Aide
Affiliation:
University of Puerto Rico, USA
M. C. Ruiz-Jaen
Affiliation:
University of Puerto Rico, USA
H. R. Grau
Affiliation:
Universidad Nacional de Tucuman, Argentina
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The conversion of tropical montane cloud forest (TMCF) to pastures and agricultural lands has been an important activity in this life zone for many years. Although forest clearing and grazing continues, in some areas, changing political, economic, and social drivers have led to the abandonment of marginal areas. These dynamics provide an excellent opportunity to study the rates of secondary succession and test different restoration strategies. The two major questions addressed in this review are: “What factors control rates of TMCF recovery once pastures or agricultural lands are abandoned?”, and “What restoration strategies can be used to overcome barriers to regeneration and accelerate forest recovery?” To answer these questions a literature review was carried out. Because few restoration projects have been conducted in TMCF as such, the conclusions are mainly based on studies in tropical montane forests at large. Competition with invasive grasses and ferns and poor seed dispersal appear to be the most important factors limiting natural forest recovery. To overcome these barriers, one of the most cost-effective ways to accelerate recovery is to promote the establishment of shrubs, which help to shade out invasive grasses and ferns and create more appropriate conditions for seedling growth. Although this strategy can reduce competition, planting will also be required to recover a species composition similar to intact forest because most forest species are rarely dispersed far from forest stands.

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 101 - 110
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aide, T. M., and Cavelier, J. (1994). Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology 2: 219–229.CrossRefGoogle Scholar
Aide, T. M., and Grau, H. R. (2004). Globalization, migration, and Latin American ecosystems. Science 305: 1915–1916.CrossRefGoogle ScholarPubMed
Aide, T. M., Zimmerman, J. K., Pascarella, J., Marcano-Vega, J., and Rivera, L. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology 8: 328–338.CrossRefGoogle Scholar
Alvarez-Aquino, C., Williams-Linera, G., and Newton, A. C. (2004). Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restoration Ecology 12: 412–418.CrossRefGoogle Scholar
Asbjornsen, H., and Wickel, A. J. (2009). Changing fire regimes in tropical montane cloud forests: a global synthesis. In Fire and Tropical Ecosystems, ed. Cochrane, M. A., pp. 607–622. New York: Springer-Verlag.Google Scholar
Asbjornsen, H., Gallardo-Hernández, C., Velázquez-Rosas, N., and García-Soriano, R. (2005). Deep ground fires cause massive above- and below-ground biomass losses in tropical montane cloud forests in Oaxaca, Mexico. Journal of Tropical Ecology 21: 427–434.CrossRefGoogle Scholar
Bedoya, E. (1997). Migración, falta de empleo y el impacto de la coca en los sistemas agrícolas tropicales y de montaña: un estudio de caso en el Perú. In Desarrollo sostenible de ecosistemas de montaña: Manejo de areas frágiles en los Andes, eds. Liberman, M. and Baied, C., pp. 83–91. La Paz, Bolivia: The United Nations University.Google Scholar
Berish, C. W., and Ewel, J. J. (1988). Root development in simple and complex tropical successional ecosystems. Plant and Soil 106: 73–84.CrossRefGoogle Scholar
Blaisdell, F. W. (1981). Engineering structures for erosion control. In Tropical Agricultural Hydrology, eds. Lal, R. and Russell, E. W., pp. 325–355. New York: John Wiley.Google Scholar
Bradshaw, A. D. (1997). The importance of soil ecology in the restoration science. In Restoration Ecology and Sustainable Development, eds. Urbanska, K. M., Webb, N. R., and Edwards, P. J., pp. 33–64. Cambridge, UK: Cambridge University Press.Google Scholar
Bruijnzeel, L. A., and Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
Calle, Z. (2003). Restauración de suelos y vegetación nativa: ideas para una ganadería Andina sostenible. Cali, Colombia: Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV).Google Scholar
Cavelier, J. (1995). Reforestation with the native tree Alnus acuminata: effects on phytodiversity and species richness in the upper montane rain forest area of Colombia. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N, pp. 125–137. New York: Springer-Verlag.CrossRefGoogle Scholar
Cavelier, J. and Etter, A. (1995). Deforestation of montane forest in Colombia as result of illegal plantations of opium (Papaver somniferum). In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, P., Baslev, H., Forero, E., and Luteyn, J. L, pp. 541–549. New York: New York Botanical Garden.Google Scholar
Cavelier, J. and Santos, C. (1999). Effect of abandoned exotic and native species plantations on the natural regeneration of a montane forest in Colombia. Revista de Biologia Tropical 47: 775–784.Google Scholar
Cavelier, J. and Tobler, A. (1998). The effect of abandoned plantations of Pinus patula and Cupressus lusitanica on soils and regeneration of a tropical montane rain forest in Colombia. Biodiversity and Conservation 7: 335–347.CrossRefGoogle Scholar
Cavelier, J., Aide, T. M., Santos, C., Eusse, A. M., and Dupuy, J. M. (1998). The savannization of moist forest in the Sierra Nevada de Santa Marta, Colombia. Journal of Biogeography 25: 901–912.CrossRefGoogle Scholar
Cavelier, J., Aide, T. M., Dupuy, J. M., Eusse, A. M., and Santos, C. (1999). Long-term effects of deforestation on soil properties and vegetation in a tropical lowland forest in Colombia. Ecotropicos 12: 57–68.Google Scholar
Chernick, M. (2000). Elusive peace: struggling against the logic of violence. North American Congress on Latin America Report on the Americas 34: 34–37.Google Scholar
Cubiñá, A., and Aide, T. M. (2001). The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33: 260–267.CrossRefGoogle Scholar
Dalling, J. W. and Tanner, E. V. J. (1995). An experimental study of regeneration on landslides in montane forests in Jamaica. Journal of Ecology 83: 55–64.CrossRefGoogle Scholar
D'Antonio, C. M. and Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63–87.CrossRefGoogle Scholar
Duncan, R. S. and Chapman, C. A. (2003a). Tree–shrub interactions during early forest succession in Uganda. Restoration Ecology 11: 198–207.CrossRefGoogle Scholar
Duncan, R. S. and Chapman, C. A. (2003b). Consequences of plantation harvest during tropical forest restoration in Uganda. Forest Ecology and Management 173: 235–250.CrossRefGoogle Scholar
Dunn, R. R. (2004). Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera. Forest Ecology and Management 191: 215–224.CrossRefGoogle Scholar
Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73–106.CrossRefGoogle Scholar
Garcia, R., Mejía, M., and Zanoni, T. (1994). Composición floristica y principales asociaciones vegetales en la Reserva Cientifica Ebano Verde, Cordillera Central, República Dominicana. Moscosoa 8: 86–130.Google Scholar
Grau, H. R. and Aragon, M. R. (2000). Arboles invasores de la sierra de San Javier, Tucuman, Argentina. In Ecologia de arboles exóticos en las Yungas Argentinas, eds. Grau, H. R. and Aragon, M. R., pp. 5–20. Tucuman, Argentina: Laboratorio de Investigaciones Ecologicas de las Yungas.Google Scholar
Grau, H. R. and Veblen, T. T. (2000). Rainfall, fire, and vegetation dynamics in subtropical montane ecosystems in northwestern Argentina. Journal of Biogeography 27: 1107–1121.CrossRefGoogle Scholar
Grau, H. R., Aide, T. M., Zimmerman, J. K., et al. (2003). The ecological consequences of socioeconomic and land-use changes in post-agriculture Puerto Rico. BioScience 53: 1159–1168.CrossRefGoogle Scholar
Griscom, H. P., Griscom, B. W., and Ashton, M. S. (2008). Forest regeneration from pasture in the dry tropics of Panama: effects of cattle, exotic grasses, and forest riparia. Restoration Ecology 17: 117–126.CrossRefGoogle Scholar
Guariguata, M. R. and Ostertag, R. (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185–206.CrossRefGoogle Scholar
Günter, S., Weber, M., Erreis, R., and Aguirre, N. (2006). Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical montane rain forest of Southern Ecuador. European Journal of Forest Research, doi: 10.1007/s10342–006–0156–0.CrossRef
Günter, S., Gonzalez, P., Alvarez, G., et al. (2009). Determinants of successful regeneration of abandoned pastures in the Andes: soil conditions and vegetation cover. Forest Ecology and Management 258: 81–91.CrossRefGoogle Scholar
Hamilton, L. S., Juvik, J. O., and Scatena, F. N.. (1995). The Puerto Rico tropical cloud forest symposium: Introduction and workshop synthesis. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 1–23. New York: Springer-Verlag.CrossRefGoogle Scholar
Harden, C. (1996). Interrelationships between land abandonment and land degradation: a case from the Ecuadorian Andes. Mountain Research and Development 16: 274–280.CrossRefGoogle Scholar
Hartig, K. and Beck, E. (2003). The Bracken fern (Pteridium arachnoideum Kaulf.) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.Google Scholar
Harvey, C. (2000). Windbreaks enhance seed dispersal into agricultural landscapes in Monteverde, Costa Rica. Ecological Applications 10: 155–173.CrossRefGoogle Scholar
Hemp, A. (2005). Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11: 1013–1023.CrossRefGoogle Scholar
Hemp, A. and Beck, E. (2001). Erica excelsa as a fire-tolerating component of Mt. Kilimanjaro's forests. Phytocoenologia 31: 449–475.CrossRefGoogle Scholar
Hobbs, R. J. and Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93–110.CrossRefGoogle Scholar
Holl, K. D. (1999). Factors limiting tropical moist forest regeneration in agricultural land: soil, microclimate, vegetation, and seed rain. Biotropica 31: 229–242.CrossRefGoogle Scholar
Holl, K. D., and Lulow, M. E. (1997). Effects of species, habitat, and distance from edge on post-dispersal seed predation in a tropical rainforest. Biotropica 29: 459–468.CrossRefGoogle Scholar
Holl, K. D., Loik, M. E., Lin, E. H. V., and Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: obstacles and opportunities. Restoration Ecology 8: 339–349.CrossRefGoogle Scholar
Horn, S. P., Kennedy, L. M., and Orvis, K. H.. (2001). Vegetation recovery following a high elevation fire in the Dominican Republic. Biotropica 33: 701–708.CrossRefGoogle Scholar
Hudson, N. W. (1995). Soil Conservation. London: Batsford.Google Scholar
Kappelle, M. (2001). Costa Rica. In Bosques nublados del neotropico, eds. Kappelle, M. and Brown, A. D., pp. 301–370. Santo Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversidad.Google Scholar
Kessler, M. (2000). Observations on a human-induced fire event at humid timberline in the Bolivian Andes. Ecotropica 6: 89–93.Google Scholar
Lamb, D. and Gilmour, D. (2004). Rehabilitation and Restoration of Degraded Forests. Gland, Switzerland: World Conservation Union, IUCN.Google Scholar
Lawton, R. O., Nair, U. S., Pielke, R. A., and Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294: 584–587.Google ScholarPubMed
Lichstein, J., Grau, H. R., and Aragon, M. R. (2004). Recruitment limitation in secondary forests dominated by an exotic tree. Journal of Vegetation Science 15: 721–728.CrossRefGoogle Scholar
Loik, M. E., and Holl, K. D. (1999). Photosynthetic responses to light for rainforest seedlings planted in abandoned pasture, Costa Rica. Restoration Ecology 7: 382–391.CrossRefGoogle Scholar
Lugo, A. E. (1992). Comparison of tropical tree plantations with secondary forest of similar age. Ecological Monographs 62: 1–41.CrossRefGoogle Scholar
Luna, I., Velazquez, A., and Velazquez, E. (2001). Mexico. In Bosques nublados del neotropico, eds. Kappelle, M. and Brown, A. D., pp. 183–229. Santo Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversidad.Google Scholar
Maginnis, S., and Jackson, W. (2005). Balancing restoration and development. ITTO Tropical Forest Update 15: 4–6.Google Scholar
Malizia, A., Chacoff, N., Grau, H. R., and Brown, A. D. (2004). Vegetation recovery on a gas-pipeline track along an altitudinal gradient in the Argentinean Yungas forest. Ecologia Austral 14: 165–178.Google Scholar
Malizia, L. R. and Greslebin, A. (2000). Reclutamiento de especies arboreas bajo arbustos exoticos en la sierra de San Javier, Tucuman, Argentina. In Ecologia de arboles exotícos en las Yungas Argentinas, eds. Grau, H. R. and Aragon, M. R., pp. 47–58. Tucuman, Argentina: Laboratorio de Investigaciones Ecologicas de las Yungas.Google Scholar
May, T. (1997). Fases tempranas de la sucesión en un bosque nublado de Magnolia pallescens después de un incendio (Loma de Casabalito, Reserva Científica Ebano Verde, Cordillera Central, República Dominicana). Moscosoa 9: 117–144.Google Scholar
May, T. (2000). Respuesta de la vegetación en un “calimetal”de Dicranopteris pectinata después de un fuego, en la parte oriental de la Coordillera Central, República Dominicana. Moscosoa 11: 113–132.Google Scholar
Medina, C. A., Escobar, F., and Kattan, G. H. (2002). Diversity and habitat use of dung beetles in a restored Andean landscape. Biotropica 34: 181–187.CrossRefGoogle Scholar
Meli, P. (2003). Restauración ecológica de bosques tropicales: viente años de investigación académica. Interciencia 29: 581–589.Google Scholar
Miller, R. M. and Jastrow, J. D. (1992). The application of VA mycorrhizae to ecosystem restoration and reclamation. In Mycorrhizal Functioning: An Integrative Plant Fungal Process, ed. Allen, M., pp. 438–467. New York: Chapman and Hall.Google Scholar
Mosandl, R., Günter, S., Stimm, B., and Weber, M. (2008). Ecuador suffers the highest deforestation rate in South America. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 37–40. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Murcia, C. (1997). Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. Forest Ecology and Management 99: 163–170.CrossRefGoogle Scholar
Murcia, C., Kattan, G., and Galindo, A. (2001). Recovery of Bess beetles key to long-term restoration of Andean forest (Colombia). Ecological Restoration 19: 254–255.Google Scholar
Olander, L. P., Scatena, F. N., and Silver, W. L. (1998). Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico. Forest Ecology and Management 109: 33–49.CrossRefGoogle Scholar
Oosterhoorn, M., and Kappelle, M. (2000). Vegetation structure and composition along an interior–edge–exterior gradient in a Costa Rican montane cloud forest. Forest Ecology and Management 126: 291–307.CrossRefGoogle Scholar
Parrotta, J. A. (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems, and Environment 41: 115–133.CrossRefGoogle Scholar
Pedraza, R. A. and Williams-Linera, G. (2003). Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New Forests 26: 83–99.CrossRefGoogle Scholar
Posada, J. M., Aide, T. M., and Cavelier, J. (2000). Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restoration Ecology 8: 370–379.CrossRefGoogle Scholar
Pounds, J. A., and Puschendorf, R.. (2004). Clouded futures. Nature 427: 107–109.CrossRefGoogle ScholarPubMed
Pounds, J. A., Fodgen, M. P. L, and Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398: 611–615.CrossRefGoogle Scholar
Preston, D. (1996). People on the move: migrations past and present. In Latin America Development: Geographical Perspectives, ed. Preston, D., pp. 165–187. Harlow, UK: Addison Wesley.Google Scholar
Preston, D., Macklin, M., and Warburton, J. (1997). Fewer people, less erosion: the 20th century in southern Bolivia. Geographical Journal 163: 198–205.CrossRefGoogle Scholar
Ramirez-Marcial, N., Gonzalez-Espinosa, M., and Williams-Linera, G. (2001). Anthropogenic disturbance and tree diversity in montane rain forest in Chiapas, Mexico. Forest Ecology and Management 154: 311–326.CrossRefGoogle Scholar
Rhoades, C. C., Eckert, G. E., and Coleman, D. C. (1998). Effect of pastures trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restoration Ecology 6: 262–270.CrossRefGoogle Scholar
Rodriguez Zuñiga, J. M. (2003). Paying for forest environmental services: the Costa Rican experience. Unasylva 212: 31–33.Google Scholar
Rosales, J., Cuenca, G., Ramírez, N., and Andrade, Z. (1997). Native colonizing species and degraded land restoration in La Gran Sabana, Venezuela. Restoration Ecology 5: 147–155.CrossRefGoogle Scholar
Rudel, T. K. (2002). Paths of destruction and regeneration: globalization and forests in the tropics. Rural Sociology 67: 622–636.CrossRefGoogle Scholar
Rudel, T. K., Perez-Lugo, M., and Zichal, H. (2000). When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Professional Geographer 52: 386–397.CrossRefGoogle Scholar
Ruiz-Jaén, M. C., and Aide, T. M. (2005). Restoration success: how is it being measured?Restoration Ecology 13: 569–577.CrossRefGoogle Scholar
Sarmiento, F. O. (1997a). Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environmental Conservation 24: 14–23.CrossRefGoogle Scholar
Sarmiento, F. O. (1997b). Landscape regeneration by seeds and succcesional pathways to restore fragile tropandean slopelands. Mountain Research and Development 17: 239–252.CrossRefGoogle Scholar
Schulenberg, T. S., and Awbrey, K. (1997). A Rapid Assessment of the Humid Forest of South-Central Chuquisaca, Bolivia, RAP Working Papers No. 8. Washington, DC: Conservation International.Google Scholar
Scowcroft, P. G. and Jeffrey, J. (1999). Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. Forest Ecology and Management 114: 447–458.CrossRefGoogle Scholar
Scowcroft, P. G., Meinzer, F. C., Goldstein, G., Melcher, P. J., and Jeffrey, J. (2000). Moderating night radiative cooling reduces frost damage to Metrosideros polymorpha seedlings used for forest restoration in Hawaii. Restoration Ecology 8: 161–169.CrossRefGoogle Scholar
Shields, A. B., and Walker, R. F. (2003). Bird perches increase forest seeds on Puerto Rican landslides. Restoration Ecology 11: 457–465.CrossRefGoogle Scholar
Silver, W. L., Lugo, A. E., and Keller, M. (1999). Soil oxygen availability and biogeochemical cycling along elevation and topographic gradients in Puerto Rico. Biogeochemistry 44: 301–328.CrossRefGoogle Scholar
Silver, W. L., Marin-Spiotta, E., and Lugo, A. E.. (2001). El Caribe. In Bosques nublados del neotropico, eds. Kappelle, M. and Brown, A. D., pp. 155–181. Santo Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversidad.Google Scholar
Slocum, M. G., and Horvitz, C. C. (2000). Seed arrival under different genera of trees in a neotropical pasture. Plant Ecology 149: 51–62.CrossRefGoogle Scholar
Slocum, M., Aide, T. M., Zimmerman, J. K., and Navarro, L. (2000). La vegetación leñosa en helechales y bosques de ribera en la Reserva Cientifica Ebano Verde, Republica Dominicana. Moscosoa 11: 38–56.Google Scholar
Slocum, M., Aide, T. M., Zimmerman, J. K., and Navarro, L. (2004). Natural regeneration of subtropical montane forest after clearing fern thickets in the Dominican Republic. Journal of Tropical Ecology 20: 483–486.CrossRefGoogle Scholar
Southworth, J., and Tucker, C. (2001). The influence of accessibility, local institutions, and socioeconomic factors on forest cover change in the mountains of western Honduras. Mountain Research and Development 21: 276–283.CrossRefGoogle Scholar
Stewart, C. G. (2000). A test of nutrient limitation in two tropical montane forest using root ingrowth cores. Biotropica 32: 369–373.CrossRefGoogle Scholar
Suding, K. N., Gross, L. G., and Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46–53.CrossRefGoogle ScholarPubMed
Tanner, E. V. J., Vitousek, P. M., and Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10–22.CrossRefGoogle Scholar
Tecco, P. A., and Rouges, M. (2000). El naranjo agrio (Citrus aurantium), exotica invasora de bosques maduros. In Ecologia de arboles exotícos en las Yungas Argentinas, eds. Grau, H. R. and Aragon, M. R., pp. 37–45. Tucuman, Argentina: Laboratorio de Investigaciones Ecologicas de las Yungas.Google Scholar
Vanacker, V., Blanckenburg, F., Govers, G., et al. (2007). Restoring dense vegetation can slow mountain erosion to near benchmark levels. Geology 35: 303–306.CrossRefGoogle Scholar
Weaver, P. L. (2000). Elfin woodland recovery 30 years after a plane wreck in Puerto Rico's Luquillo Mountains. Caribbean Journal of Science 36: 1–9.Google Scholar
Weber, M., Günter, S., Aguirre, N., Stimm, B., and Mosandl, R. (2008). Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 447–458. Berlin: Springer-Verlag.Google Scholar
Werner, W. L., and Santisuk, T. (1993). Conservation and restoration of montane forest communities in Thailand. In Restoration of Tropical Forest Ecosystems, eds. Lieth, H. and Lohmann, M., pp. 193–202. Dordrecht, the Netherlands: Kluwer.CrossRefGoogle Scholar
Wiersum, K. F. (1984). Surface erosion under various tropical agroforestry systems. In Proceedings of the Symposium on Effects of Forest Land Use on Erosion and Slope Stability, eds. O'Loughlin, C. L. and Pearce, A. J., pp. 231–239. Vienna: IUFRO, and Honolulu, HI: East–West Center.Google Scholar
Young, K. (1994). Roads and the environmental degradation of tropical montane forests. Conservation Biology 8: 972–976.CrossRefGoogle Scholar
Zahawi, R. A., and Augspurger, C. K. (1999). Early plant succession in abandoned pastures in Ecuador. Biotropica 31: 540–552.CrossRefGoogle Scholar
Zanne, A. and Chapman, C. A. (2001). Expediting reforestation in tropical grasslands: distance and isolation from seed sources in plantations. Ecological Applications 11: 1610–1621.CrossRefGoogle Scholar
Zimmerman, J. K., Pascarella, J., and Aide, T. M. (2000). Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology 8: 350–360.CrossRefGoogle Scholar
Zimmermann, B., and Elsenberger, H. (2008). Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance. Journal of Hydrology 361: 78–95.CrossRefGoogle Scholar
Zweifler, M. O., Gold, M. A., and Thomas, R. N. (1994). Land-use evolution in hill regions of the Dominican Republic. Professional Geographer 46: 39–53.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×