Skip to main content Accessibility help
×
Home
  • Print publication year: 2008
  • Online publication date: January 2010

13 - The strategy for applications of nucleic acid testing

from Section 2 - Selection and testing

Summary

Although blood transfusion is appropriately considered a lifesaving procedure it remains, as has been recognized for more than six decades, a procedure which carries risks of transmission of infection from donor to the recipient. These risks are best considered in terms of first, the administration of a (usually) small number of discreet whole blood units, and second, blood components, that is, the practice of blood transfusion, as compared with the replacement of a deficient plasma constituent by a blood product containing material from many, often thousands of donors, which has been purified from a starting plasma pool, that is, the use of a blood product. The essential mantra for transfusion safety remains first, ‘know your donor’ and second, ‘test your donor’. Both are essential for the safety of blood and blood components which remain difficult to subject to terminal product sterilization. For blood products, on the other hand, the operational side of manufacture has led to derogation of ‘know your donor’ in favour of ‘test your donor’ and paradoxically it is in this area that the application of nucleic acid testing (NAT) has had most impact. This is perhaps understandable given the non-biological ‘amplification’ of microbial transmission in blood product usage, whereby a single donor may effectively contaminate and render infectious all products from a pool containing plasma from thousands of otherwise acceptable donors. This is best exemplified by post-transfusion hepatitis in first-time recipients of native blood products.

REFERENCES
al-Soud, Abu W. and Radstrom, P. (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol, 39, 85–93.
Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA, 88, 189–93.
Beld, M., Habibuw, M. R., Rebers, S. P., et al. (2000) Evaluation of automated RNA-extraction technology and a qualitative HCV assay for sensitivity and detection of HCV RNA in pool-screening systems. Transfusion, 40, 575–9.
Boom, R., Sol, C. J., Salimans, M. M., et al. (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol, 28, 495–503.
Busch, M. P., Stramer, S. L., Strong, D. M., et al. (2005) International Forum: 2. Vox Sang, 88, 298–301.
Buul, C., Cuypers, H., Lelie, P., et al. (1998) The NucliSens (TM) Extractor for automated nucleic acid isolation. Infusionstherapie und Transfusionsmedizin, 25, 147–51.
Compton, J. (1991) Nucleic acid sequence-based amplification. Nature, 350, 91–2.
Custer, B., Tomasulo, P. A., Murphy, E. L., et al. (2004) Triggers for switching from minipool testing by nucleic acid technology to individual-donation nucleic acid testing for West Nile virus: analysis of 2003 data to inform 2004 decision making. Transfusion, 44, 1547–54.
Davis, C., Heath, A., Best, S., et al. (2003) Calibration of HIV-1 working reagents for nucleic acid amplification techniques against the 1st international standard for HIV-1 RNA. J Virol Methods, 107, 37–44.
Deiman, B., Aarle, P. and Sillekens, P. (2002) Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol, 20, 163–79.
Delwart, E. L., Kalmin, N. D., Jones, T. S., et al. (2004) First report of human immunodeficiency virus transmission via an RNA-screened blood donation. Vox Sang, 86, 171–7.
Forster, T. (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals of Physics, 2, 55–75.
Garson, J. A., Tedder, R. S., Briggs, M., et al. (1990) Detection of hepatitis C viral sequences in blood donations by ‘nested’ polymerase chain reaction and prediction of infectivity. Lancet, 335, 1419–22.
Gerken, G., Gomes, J., Lampertico, P., et al. (1998) Clinical evaluation and applications of the Amplicor HBV Monitor test, a quantitative HBV DNA PCR assay. J Virol Methods, 74, 155–65.
Giachetti, C., Linnen, J. M., Kolk, D. P., et al. (2002) Highly sensitive multiplex assay for detection of human immunodeficiency virus type 1 and hepatitis C virus RNA. Journal of Clinical Microbiology, 40, 2408–19.
Grant, P. R., Sims, C. M., Krieg-Schneider, F., et al. (2002) Automated screening of blood donations for hepatitis C virus RNA using the Qiagen BioRobot 9604 and the Roche COBAS HCV Amplicor assay. Vox Sang, 82, 169–76.
Higuchi, R., Fockler, C., Dollinger, G., et al. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY), 11, 1026–30.
Holland, P. M., Abramson, R. D., Watson, R., et al. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA, 88, 7276–80.
Holmes, H., Davis, C., Heath, A., et al. (2001) An international collaborative study to establish the first international standard for HIV-1 RNA for use in nucleic acid-based techniques. J Virol Methods, 92, 141–50.
Jarvis, L., Cleland, A., Simmonds, P., et al. (2000) Screening blood donations for hepatitis C virus by polymerase chain reaction (letter). Vox Sang, 78, 57–8.
Kaneko, S., Miller, R. H., Feinstone, S. M., et al. (1989) Detection of serum hepatitis B virus DNA in patients with chronic hepatitis using the polymerase chain reaction assay. Proc Natl Acad Sci USA, 86, 312–6.
Kawasaki, E. S., Clark, S. S., Coyne, M. Y., et al. (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA, 85, 5698–702.
Kievits, T., Gemen, B., Strijp, D., et al. (1991) NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods, 35, 273–86.
Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature, 339, 237–8.
Larzul, D., Guigue, F., Sninsky, J. J., et al. (1988) Detection of hepatitis B virus sequences in serum by using in vitro enzymatic amplification. J Virol Methods, 20, 227–37.
Lee, L. G., Connell, C. R. and Bloch, W. (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res, 21, 3761–6.
Long, C. M., Drew, L., Miner, R., et al. (1998) Detection of cytomegalovirus in plasma and cerebrospinal fluid specimens from human immunodeficiency virus-infected patients by the AMPLICOR CMV test. J Clin Microbiol, 36, 2434–8.
Longo, M. C., Berninger, M. S. and Hartley, J. L. (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93, 125–8.
Macedo, D. O., Beecham, B. D., Montgomery, S. P., et al. (2004) West Nile virus blood transfusion-related infection despite nucleic acid testing. Transfusion, 44, 1695–9.
McDonough, S. H., Giachetti, C., Yang, Y., et al. (1998) High throughput assay for the simultaneous or separate detection of human immunodeficiency virus (HIV) and hepatitis type C virus (HCV). Infusionstherapie und Transfusionsmedizin, 25, 164–9.
Meng, Q., Wong, C., Rangachari, A., et al. (2001) Automated multiplex assay system for simultaneous detection of hepatitis B virus DNA, hepatitis C virus RNA, and human immunodeficiency virus type 1 RNA. J Clin Microbiol, 39, 2937–45.
Mine, H., Emura, H., Miyamoto, M., et al. (2003) High throughput screening of 16 million serologically negative blood donors for hepatitis B virus, hepatitis C virus and human immunodeficiency virus type-1 by nucleic acid amplification testing with specific and sensitive multiplex reagent in Japan. J Virol Methods, 112, 145–51.
Mortimer, J. (1997) Intersecting pools and their potential application in testing donated blood for viral genomes. Vox Sanguinis, 73, 93–6.
Mullis, K., Faloona, F., Scharf, S., et al. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 51 Pt 1, 263–73.
Mullis, K. B. and Faloona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 155, 335–50.
Murakawa, G. J., Zaia, J. A., Spallone, P. A., et al. (1988) Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA, 7, 287–95.
Najioullah, F., Barlet, V., Renaudier, P., et al. (2004) Failure and success of HIV tests for the prevention of HIV-1 transmission by blood and tissue donations. J Med Virol, 73, 347–9.
Ou, C. Y., Kwok, S., Mitchell, S. W., et al. (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science, 239, 295–7.
Prince, A. M. and Andrus, L. (1992) PCR: how to kill unwanted DNA. Biotechniques, 12, 358–60.
Roth, W. K., Weber, M. and Seifried, E. (1999) Feasibility and efficacy of routine PCR screening of blood donations for hepatitis C virus, hepatitis B virus, and HIV-1 in a blood-bank setting. Lancet, 353, 359–63.
Saiki, R. K., Gelfand, D. H., Stoffel, S., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–91.
Saiki, R. K., Scharf, S., Faloona, F., et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–4.
Saldanha, J., Gerlich, W., Lelie, N., et al. (2001) An international collaborative study to establish a World Health Organization international standard for hepatitis B virus DNA nucleic acid amplification techniques. Vox Sang, 80, 63–71.
Saldanha, J., Heath, A., Lelie, N., et al. (2000) Calibration of HCV working reagents for NAT assays against the HCV international standard. The Collaborative Study Group. Vox Sang, 78, 217–24.
Saldanha, J., Heath, A., Lelie, N., et al. (2005) A World Health Organization international standard for hepatitis A virus RNA nucleic acid amplification technology assays. Vox Sang, 89, 52–8.
Saldanha, J., Lelie, N. and Heath, A. (1999) Establishment of the first international standard for nucleic acid amplification technology (NAT) assays for HCV RNA. WHO Collaborative Study Group. Vox Sang, 76, 149–58.
Saldanha, J., Lelie, N., Yu, M. W., et al. (2002) Establishment of the first World Health Organization international standard for human parvovirus B19 DNA nucleic acid amplification techniques. Vox Sang, 82, 24–31.
Sarkar, G. and Sommer, S. S. (1990) Shedding light on PCR contamination. Nature, 343, 27.
Schuttler, C. G., Caspari, G., Jursch, C. A., et al. (2000) Hepatitis C virus transmission by a blood donation negative in nucleic acid amplification tests for viral RNA (letter). Lancet, 355, 41–2.
Sun, R., Ku, J., Jayakar, H., et al. (1998) Ultrasensitive reverse transcription-PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol, 36, 2964–9.
Sun, R., Schilling, W., Jayakar, H., et al. (1999) Simultaneous extraction of hepatitis C virus (HCV), hepatitis B virus, and HIV-1 from plasma and detection of HCV RNA by a reverse transcriptase-polymerase chain reaction assay designed for screening pooled units of donated blood. Transfusion, 39, 1111–9.
Urdea, M. S. (1997) Synthesis and characterization of branched DNA (bDNA) for the direct and quantitative detection of CMV, HBV, HCV, and HIV. Clin Chem, 39, 725–6.
Vrielink, H., Zaaijer, H. L., Cuypers, H. T., et al. (1997) Evaluation of a new HTLV-I/II polymerase chain reaction. Vox Sang, 72, 144–7.
Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR) – amplification of specific DNA sequences using sequential rounds of template–dependent ligation. Genomics, 4, 560–9.
Young, K. K., Resnick, R. M. and Myers, T. W. (1993) Detection of hepatitis C virus RNA by a combined reverse transcription-polymerase chain reaction assay. J Clin Microbiol, 31, 882–6.