Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: July 2012

10 - Carbon nanotube–cellular interactions: macrophages, epithelial and mesothelial cells

References

Adamson, I. Y. (1997). Early mesothelial cell proliferation after asbestos exposure: In vivo and in vitro studies. Environ Health Perspect 105(suppl. 5), 1205–1208.
Al-Jamal, K. T., Nerl, H., Muller, K. H., et al. (2011). Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3(6), 2627–2635.
Arvizo, R. R., Miranda, O. R., Thompson, M. A., et al. (2010). Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7), 2543–2548.
Asakura, M., Sasaki, T., Sugiyama, T., et al. (2010). Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health 52(3), 155–166.
Baktur, R., Patel, H., and Kwon, S. (2011). Effect of exposure conditions on SWCNT-induced inflammatory response in human alveolar epithelial cells. Toxicol In Vitro 25(5), 1153–1160.
Barlow, C. A., Barrett, T. F., Shukla, A., Mossman, B. T., and Lounsbury, K. M. (2007). Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. Am J Physiol Lung Cell Mol Physiol 292(6), L1361–L1369.
Boylan, A. M., Sanan, D. A., Sheppard, D., and Broaddus, V. C. (1995). Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5. J Clin Invest 96(4), 1987–2001.
Broaddus, V. C. and Jaurand, M. -C. (2002). Asbestos fibres and their interaction with mesothelial cells in vitro and in vivo. In Robinson, B. W. S. and Chahinian, A. P., eds., Mesothelioma (London: Taylor and Francis), pp. 273–294.
Broaddus, V. C., Yang, L., Scavo, L. M., Ernst, J. D., and Boylan, A. M. (1996). Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 98(9), 2050–2059.
Brown, D., Donaldson, K., and Stone, V. (2004). Effects of PM10 in human peripheral blood monocytes and J774 macrophages. Respir Res 5(1), 29.
Brown, D. M., Beswick, P. H., and Donaldson, K. (1999). Induction of nuclear translocation of NF-kappaB in epithelial cells by respirable mineral fibres. J Pathol 189(2), 258–264.
Brown, D. M., Dickson, C., Duncan, P., Al-Attili, F., and Stone, V. (2010). Interaction between nanoparticles and cytokine proteins: Impact on protein and particle functionality. Nanotechnology 21(21), 215104.
Brown, D. M., Kinloch, I. A., Bangert, U., et al. (2007). An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammation mediators and frustrated phagocytosis. Carbon 45, 1743–1756.
Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., and Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3), 191–199.
Casey, A., Herzog, E., Lyng, F. M., et al. (2008). Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179(2), 78–84.
Chanock, S. J., el Benna, J., Smith, R. M., and Babior, B. M. (1994). The respiratory burst oxidase. J Biol Chem 269(40), 24519–24522.
Chen, Q., Marsh, J., Ames, B., and Mossman, B. (1996). Detection of 8-oxo-2’-deoxyguanosine, a marker of oxidative DNA damage, in culture medium from human mesothelial cells exposed to crocidolite asbestos. Carcinogenesis 17(11), 2525–2527.
Chou, C. C., Hsiao, H. Y., Hong, Q. S., et al. (2008). Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8(2), 437–445.
Davoren, M., Herzog, E., Casey, A., et al. (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21(3), 438–448.
Donaldson, K., Brown, G. M., Brown, D. M., Bolton, R. E., and Davis, J. M. (1989). Inflammation generating potential of long and short fibre amosite asbestos samples. Br J Ind Med 46(4), 271–276.
Donaldson, K., Murphy, F., Schinwald, A., Duffin, R., and Poland, C. A. (2011). Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine (Lond) 6(1), 143–156.
Donaldson, K. and Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann 1st Super Sanita 39(3), 405–410.
Dorger, M. and Krombach, F. (2000). Interaction of alveolar macrophages with inhaled mineral particulates. J Aerosol Med 13(4), 369–380.
Faux, S. P., Houghton, C. E., Hubbard, A., and Patrick, G. (2000). Increased expression of epidermal growth factor receptor in rat pleural mesothelial cells correlates with carcinogenicity of mineral fibres. Carcinogenesis 21(12), 2275–2280.
Fenoglio, I., Tomatis, M., Lison, D., et al. (2006). Reactivity of carbon nanotubes: Free radical generation or scavenging activity?Free Radic Biol Med 40(7), 1227–1233.
Fiorito, S., Monthioux, M., Pierimarchi, P., et al. (2009). Evidence for electro-chemical interactions between multi-walled carbon nanotubes and human macrophages. Carbon 47, 2789–2804.
Fiorito, S., Serafine, A., Andreola, F., and Bernier, P. (2005). Effects of fullerenes and single-walled carbon nanotubes on murine and human macrophages. Carbon 44, 1100–1105.
Fung, H., Kow, Y. W., Van, H. B., and Mossman, B. T. (1997a). Patterns of 8-hydroxydeoxyguanosine formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis 18(4), 825–832.
Fung, H., Quinlan, T. R., Janssen, Y. M., et al. (1997b). Inhibition of protein kinase C prevents asbestos-induced c-fos and c-jun proto-oncogene expression in mesothelial cells. Cancer Res 57(15), 3101–3105.
Goldberg, J. L., Zanella, C. L., Janssen, Y. M., et al. (1997). Novel cell imaging techniques show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol 17(3), 265–271.
Gordon, S. and Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12), 953–964.
Grecco, A. C., Paula, R. F., Mizutani, E., et al. (2011). Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology 22(26), 265103.
Grimm, S., Hohn, A., and Grune, T. (2010). Oxidative protein damage and the proteasome. Amino Acids 42(1), 23–38.
Guo, L., Morris, D. G., Liu, X., et al. (2007). Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19(4), 3472–3478.
Han, S. G., Andrew, R., and Gairola, C. G. (2010). Acute pulmonary response of mice to multi-walled carbon nanotubes. Inhal Toxicol 22, 340–347.
Heintz, N. H., Janssen, Y. M., and Mossman, B. T. (1993). Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A 90(8), 3299–3303.
Heintz, N. H., Janssen-Heininger, Y. M., and Mossman, B. T. (2010). Asbestos, lung cancers, and mesotheliomas: From molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42(2), 133–139.
Herrick, S. E. and Mutsaers, S. E. (2004). Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol 36(4), 621–642.
Herzog, E., Byrne, H. J., Davoren, M., et al. (2009). Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236(3), 276–281.
Herzog, E., Casey, A., Lyng, F. M., et al. (2007). A new approach to the toxicity testing of carbon-based nanomaterials: The clonogenic assay. Toxicol Lett 174(1–3), 49–60.
Hillegass, J. M., Shukla, A., MacPherson, M. B., et al. (2010). Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells. Part Fibre Toxicol 7, 26.
Hirano, S., Fujitani, Y., Furuyama, A., and Kanno, S. (2010). Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol 249(1), 8–15.
Hirano, S., Kanno, S., and Furuyama, A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232(2), 244–251.
Janssen, Y. M., Heintz, N. H., Marsh, J. P., Borm, P. J., and Mossman, B. T. (1994). Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol 11(5), 522–530.
Janssen, Y. M., Heintz, N. H., and Mossman, B. T. (1995). Induction of c-fos and c-jun proto-oncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells. Cancer Res 55(10), 2085–2089.
Jia, G., Wang, H., Yan, L., et al. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5), 1378–1383.
Jimenez, L. A., Thompson, J., Brown, D. A., et al. (2000). Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of IkappaB degradation. Toxicol Appl Pharmacol 166(2), 101–110.
Jimenez, L. A., Zanella, C., Fung, H., et al. (1997). Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am J Physiol 273(5 Pt 1), L1029–L1035.
Johnson, G. L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600), 1911–1912.
Kagan, V. E., Tyurina, Y. Y., Tyurin, V. A., et al. (2006). Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 165(1), 88–100.
Kobayashi, N., Naya, M., Ema, M., et al. (2010). Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276(3), 143–153.
Kostarelos, K., Lacerda, L., Pastorin, G., et al. (2007). Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2), 108–113.
Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1), 126–134.
Levresse, V., Moritz, S., Renier, A., et al. (1998). Effect of simian virus large T antigen expression on cell cycle control and apoptosis in rat pleural mesothelial cells exposed to DNA damaging agents. Oncogene 16(8), 1041–1053.
Levresse, V., Renier, A., Fleury-Feith, J., et al. (1997). Analysis of cell cycle disruptions in cultures of rat pleural mesothelial cells exposed to asbestos fibers. Am J Respir Cell Mol Biol 17(6), 660–671.
Liu, W., Ernst, J. D., and Broaddus, V. C. (2000). Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells. Am J Respir Cell Mol Biol 23(3), 371–378.
Loreto, C., Carnazza, M. L., Cardile, V., et al. (2009). Mineral fiber-mediated activation of phosphoinositide-specific phospholipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. Int J Oncol 34(2), 371–376.
Luster, M. I. and Simeonova, P. P. (1998). Asbestos induces inflammatory cytokines in the lung through redox sensitive transcription factors. Toxicol Lett 102–103, 271–275.
Miserocchi, G., Sancini, G., Mantegazza, F., and Chiappino, G. (2008). Translocation pathways for inhaled asbestos fibers. Environ Health 7, 4.
Mittal, S., Sharma, V., Vallabani, N. V., et al. (2011). Toxicity evaluation of carbon nanotubes in normal human bronchial epithelial cells. J Biomed Nanotechnol 7(1), 108–109.
Mongan, L. C., Jones, T., and Patrick, G. (2000). Cytokine and free radical responses of alveolar macrophages in vitro to asbestos fibres. Cytokine 12(8), 1243–1247.
Mossman, B. T. (1994). Carcinogenesis and related cell and tissue responses to asbestos: A review. Ann Occup Hyg 38(4), 617–624.
Muller, J., Decordier, I., Hoet, P. H., et al. (2008). Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29(2), 427–433.
Muller, J., Huaux, F., Moreau, N., et al. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3), 221–231.
Muller, L., Riediker, M., Wick, P., et al. (2010). Oxidative stress and inflammation response after nanoparticle exposure: Differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(suppl. 1), S27–S40.
Murphy, F. A., Poland, C. A., Duffin, R., et al. (2011). Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178(6), 2587–2600.
Mutsaers, S. E. (2004). The mesothelial cell. Int J Biochem Cell Biol 36(1), 9–16.
Nel, A., Xia, T., Madler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311(5761), 622–627.
Pache, J. C., Janssen, Y. M., Walsh, E. S., et al. (1998). Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol 152(2), 333–340.
Pacurari, M., Yin, X. J., Zhao, J., et al. (2008). Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9), 1211–1217.
Pande, P., Mosleh, T. A., and Aust, A. E. (2006). Role of alphavbeta5 integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells. Toxicol Appl Pharmacol 210(1–2), 70–77.
Panduri, V., Weitzman, S. A., Chandel, N. S., and Kamp, D. W. (2004). Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 286(6), L1220–L1227.
Peterson, M. W. and Kirschbaum, J. (1998). Asbestos-induced lung epithelial permeability: Potential role of nonoxidant pathways. Am J Physiol 275(2 Pt 1), L262–L268.
Poland, C. A., Duffin, R., Kinloch, I., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7), 423–428.
Porter, A. E., Gass, M., Muller, K., et al. (2007). Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2(11), 713–717.
Pulskamp, K., Diabate, S., and Krug, H. F. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1), 58–74.
Ravichandran, P., Baluchamy, S., Sadanandan, B., et al. (2010). Multiwalled carbon nanotubes activate NF-kappaB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis 15(12), 1507–1516.
Rosenthal, G. J., Germolec, D. R., Blazka, M. E., et al. (1994). Asbestos stimulates IL-8 production from human lung epithelial cells. J Immunol 153(7), 3237–3244.
Rothen-Rutishauser, B., Brown, D. M., Piallier-Boyles, M., et al. (2010). Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology 4, 331–342.
Rotoli, B. M., Bussolati, O., Barilli, A., et al. (2009). Airway barrier dysfunction induced by exposure to carbon nanotubes in vitro: Which role for fiber length?Hum Exp Toxicol 28(6–7), 361–368.
Rotoli, B. M., Bussolati, O., Bianchi, M. G., et al. (2008). Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178(2), 95–102.
Salvador-Morales, C., Townsend, P., Flahaut, E., et al. (2007). Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45, 607–617.
Sargent, L. M., Reynolds, S. H., and Castranova, V. (2010). Potential pulmonary effects of engineered carbon nanotubes: In vitro genotoxic effects. Nanotoxicology 4, 396–408.
Shalhoeb, J., Falck-Hansen, M. A., Davies, A. H., and Monaco, C. (2011). Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm 28, 8–25.
Sharma, C. S., Sarkar, S., Periyakaruppan, A., et al. (2007). Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7(7), 2466–2472.
Shukla, A., Jung, M., Stern, M., et al. (2003a). Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. Am J Physiol Lung Cell Mol Physiol 285(5), L1018–L1025.
Shukla, A., Ramos-Nino, M., and Mossman, B. (2003b). Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int J Biochem Cell Biol 35(8), 1198–1209.
Shvedova, A. A., Fabisiak, J. P., Kisin, E. R., et al. (2008a). Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38(5), 579–590.
Shvedova, A. A., Kisin, E., Murray, A. R., et al. (2008b). Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4), L552–L565.
Shvedova, A. A., Kisin, E. R., Mercer, R., et al. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5), L698–L708.
Shvedova, A. A., Kisin, E. R., Murray, A. R., et al. (2007). Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol 221(3), 339–348.
Simon-Deckers, A., Gouget, B., Mayne-L’hermite, M., et al. (2008). In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3), 137–146.
Srivastava, R. K., Lohani, M., Pant, A. B., and Rahman, Q. (2010). Cyto-genotoxicity of amphibole asbestos fibers in cultured human lung epithelial cell line: Role of surface iron. Toxicol Ind Health 26(9), 575–582.
Srivastava, R. K., Pant, A. B., Kashyap, M. P., et al. (2011). Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology 5, 195–207.
Stone, V. and Kinloch, I. A. (2007). Nanoparticle interactions with biological systems and subsequent activation of intracellular signaling mechanisms. In Monteiro-Riviere, N. A. and Tran, C. L., eds., Nanotoxicology (Boca Raton FL: CRC Press), pp. 345–362.
Swain, W. A., O’Byrne, K. J., and Faux, S. P. (2004). Activation of p38 MAP kinase by asbestos in rat mesothelial cells is mediated by oxidative stress. Am J Physiol Lung Cell Mol Physiol 286(4), L859–L865.
Tabet, L., Bussy, C., Amara, N., et al. (2009). Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A 72(2), 60–73.
Takahashi, N., Kozai, D., Kobayashi, R., Ebert, M., and Mori, Y. (2011). Roles of TRPM2 in oxidative stress. Cell Calcium 50(3), 279–287.
Thurnherr, T., Brandenberger, C., Fischer, K., et al. (2011). A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200(3), 176–186.
Timblin, C. R., Guthrie, G. D., Janssen, Y. W., et al. (1998). Patterns of c-fos and c-jun proto-oncogene expression, apoptosis, and proliferation in rat pleural mesothelial cells exposed to erionite or asbestos fibers. Toxicol Appl Pharmacol 151(1), 88–97.
Tomatis, M., Turci, F., Ceschino, R., et al. (2010). High aspect ratio materials: Role of surface chemistry vs. length in the historical ‘long and short amosite asbestos fibers’. Inhal Toxicol 22(12), 984–998.
Valko, M., Leibfritz, D., Moncol, J., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1), 44–84.
Wang, H., Gillis, A., Zhao, C., et al. (2011). Crocidolite asbestos-induced signal pathway dysregulation in mesothelial cells. Mutat Res 723(2), 171–176.
Wang, L., Castranova, V., Mishra, A., et al. (2010). Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7, 31.
Wang, X., Samet, J. M., and Ghio, A. J. (2006). Asbestos-induced activation of cell signaling pathways in human bronchial epithelial cells. Exp Lung Res 32(6), 229–243.
Wick, P., Manser, P., Limbach, L. K., et al. (2007). The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2), 121–131.
Wu, S. and Sun, J. (2011). Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med 11(59), 325–335.
Yang, H., Bocchetta, M., Kroczynska, B., et al. (2006). TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A 103(27), 10397–10402.
Ye, J., Shi, X., Jones, W., et al. (1999). Critical role of glass fiber length in TNF-alpha production and transcription factor activation in macrophages. Am J Physiol 276(3 Pt 1), L426–L434.
Zanella, C. L., Posada, J., Tritton, T. R., and Mossman, B. T. (1996). Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res 56(23), 5334–5338.
Zanella, C. L., Timblin, C. R., Cummins, A., et al. (1999). Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis. Am J Physiol 277(4 Pt 1), L684–L693.