Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T10:08:11.951Z Has data issue: false hasContentIssue false

2 - Titan's surface geology

Published online by Cambridge University Press:  05 January 2014

O. Aharonson
Affiliation:
California Institure of Technology
A. G. Hayes
Affiliation:
University of California
P. O. Hayne
Affiliation:
California Institute of Technology
R. M. Lopes
Affiliation:
California Institute of Technology
A. Lucas
Affiliation:
California Institute of Technology
J. T. Perron
Affiliation:
Massachusetts Institute of Technology
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

2.1 Overview

The presence of an atmosphere, initially suggested based on limb darkening by Sola (1904) and later by the presence of methane spectral lines by Kuiper (1944), has long given Titan a special place in the minds of planetary geologists. The first close-up images were obtained by Pioneer 11 in 1979 (Gehrels et al., 1980), confirming a substantial atmosphere. These early observations led to the diversion of the trajectory of the Voyager I spacecraft to a closer encounter with Titan in 1980. Although the visible cameras on Voyager also had difficulty seeing Titan's surface (Richardson et al., 2004), radio occultation experiments suggested a surface pressure of 1.5 bars and temperature near 95 K (Lindal et al., 1983). These results were exciting because, for a methane mixing ratio of a few percent at the surface (Hunten, 1978), they placed methane's partial pressure near its triple point. Thus, like water on Earth, solid, liquid, and gaseous methane could potentially exist in Titan's environment. Ethane, which is the main product of methane photolysis, can also be liquid under these conditions. The presence of condensable volatiles in Titan's thick atmosphere opens the door for active fluvial, lacustrine, and pluvial processes that can shape its landscape with similar morphologies to those we find on Earth.

Prompted by the exciting results of the Voyager mission and the nearly two decades of Earth-based imaging campaigns that followed, NASA/ESA launched the Cassini-Huygens mission to Saturn in 1997. To penetrate Titan's thick atmosphere, Cassini is equipped with a Ku-band radar capable of obtaining images of the surface at a scale of 300 meters.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 63 - 101
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Hayes, A. G., Lunine, J. I., Lorenz, R. D., et al. 2009. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geosciences, 2, 851–854. doi: 10.1038/ngeo698.Google Scholar
Artemieva, N., and Lunine, J. I. 2005. Impact cratering on Titan II. Global melt, escaping ejecta, and aqueous alteration of surface organics. Icarus, 175, 522–533. doi: 10.1016/j.icarus.2004.12.005.Google Scholar
Atreya, S. K., Adams, E. Y., Niemann, H. B., Demick-Montelara, J. E., et al. 2006. Titan's methane cycle. Planet. Space Sci., 54, 1177–1187. doi: 10.1016/j.pss.2006.05.028.Google Scholar
Barnes, J. W., Brown, R. H., Turtle, E. P., McEwen, A. S., et al. 2005. A 5-micron-bright spot on Titan: evidence for surface diversity. Science, 310, 92–95. doi: 10.1126/science.1117075.Google Scholar
Barnes, J. W., Brown, R. H., Radebaugh, J., Buratti, B. J., et al. 2006. Cassini observations of flow-like features in western Tui Regio, Titan. Geophys. Res. Lett., 33, 16204. doi: 10.1029/2006GL026843.Google Scholar
Barnes, J. W., Radebaugh, J., Brown, R. H., Wall, S., et al. 2007. Near-infrared spectral mapping of Titan's mountains and channels. J. Geophys. Res., 112(E11), 11006. doi: 10.1029/2007JE002932.Google Scholar
Barnes, J. W., Brown, R. H., Soderblom, L., Sotin, C., et al. 2008. Spectroscopy, morphometry, and photoclinometry of Titan's dunefields from Cassini/VIMS. Icarus, 195, 400–414. doi: 10.1016/j.icarus.2007.12.006.Google Scholar
Barnes, J. W., Brown, R. H., Soderblom, J. M., Soderblom, L. A., et al. 2009a. Shoreline features of Titan's Ontario Lacus from Cassini/VIMS observations. Icarus, 201, 217–225. doi: 10.1016/j.icarus.2008.12.028.Google Scholar
Barnes, J. W., Soderblom, J. M., Brown, R. H., Buratti, B. J., et al. 2009b. VIMS spectral mapping observations of Titan during the Cassini prime mission. Planet. Spac. Sci, 57, 1950–1962. doi: 10.1016/j.pss.2009.04.013.Google Scholar
Barnes, J. W., Bow, J., Schwartz, J., Brown, R. H., et al. 2011a. Organic sedimentary deposits in Titan's dry lakebeds: Probable evaporite. Icarus, 216, 136–140. doi: 10.1016/j.icarus.2011.08.022.Google Scholar
Barnes, J. W., Soderblom, J. M., Brown, R. H., Soderblom, L. A., et al. 2011b. Wave constraints for Titan's Jingpo Lacus and Kraken Mare from VIMS specular reflection lightcurves. Icarus, 211, 722–731. doi: 10.1016/j.icarus.2010.09.022.Google Scholar
Black, B. A., Perron, J. T., Drummond, S., and Burr, D. M. 2012. Estimating erosional exhumation on Titan from drainage network morphology. J. Geophys. Res., 117, E08006, doi: 10.1029/2012JE00405.Google Scholar
Black, G. J., Campbell, D. B., and Carter, L. M. 2011. Ground-based radar observations of Titan: 2000-2008. Icarus, 212, 300–320. doi: 10.1016/j.icarus.2010.10.025.Google Scholar
Black, Thomas A., and Montgomery, David R. 1991. Sediment transport by burrowing mammals, Marin County, California. Earth Surface Processes and Landforms, 16(2), 163–172.Google Scholar
Bourgeois, O., Lopez, T., Le Mouélic, S, Fleurant, C., et al. 2008. A surface dissolution/precipitation model for the development of lakes on Titan, based on an arid terrestrial analogue: the pans and calcretes of Etosha (Namibia). Page 1733 of Lunar and Planetary Institute Science Conference Abstracts.
Brown, M. E., Schaller, E. L., Roe, H. G., Chen, C., et al. 2009. Discovery of lake-effect clouds on Titan. Geophy. Res. Lett., 36, L1103–L1108. doi: 10.1029/2008GL035964.Google Scholar
Brown, R. H., Baines, K. H., Bellucci, G., Bibring, J.-P., et al. 2004. The Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation. Spac. Sci. Rev., 115, 111–168. doi: 10.1007/s11214-004-1453-x.Google Scholar
Brown, R. H., Soderblom, L. A., Soderblom, J. M., Clark, R. N., et al. 2008. The identification of liquid ethane in Titan's Ontario Lacus. Nature, 454, 607–610. doi: 10.1038/nature07100.Google Scholar
Brown, R. H., Barnes, J. W., and Melosh, H. J. 2011. On Titan's Xanadu region. Icarus, 214, 556–560. doi: 10.1016/j.icarus.2011.03.018.Google Scholar
Buratti, B. J., Sotin, C., Lawrence, K., Brown, R. H., et al. 2012. A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features. Planet. Spac. Sci., 60, 18–25. doi: 10.1016/j.pss.2011.05.004.Google Scholar
Burr, D. J., Perron, J. T., Lamb, M. P., Irwin, R. P., et al. 2013. Fluvial features on Titan: Insights from morphology and modeling. GSA Bulletin, in press, doi: 10.1130/B30612.1.Google Scholar
Burr, D. M., Emery, J. P., Lorenz, R. D., Collins, G. C., et al. 2006. Sediment transport by liquid surficial flow: Application to Titan. Icarus, 181(1), 235–242.Google Scholar
Burr, D. M., Jacobsen, R. E, Roth, D. L, Phillips, C. B, et al. 2009. Fluvial network analysis on Titan: Evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu. Geophys. Res. Lett, 36(22), L22203-.Google Scholar
Campbell, D. B., Black, G. J., Carter, L. M., and Ostro, S. J. 2003. Radar evidence for liquid surfaces on Titan. Science, 302, 431–434. doi: 10.1126/science.1088969.Google Scholar
Choukroun, M., and Grasset, O. 2010. Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. J. Chem. Phys., 133(14), 144502. doi: 10.1063/1.3487520.Google Scholar
Clark, R. N., Curchin, J. M., Barnes, J. W., Jaumann, R., et al. 2010. Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res., 115(E14), E10005. doi: 10.1029/2009JE003369.Google Scholar
Collins, G. C. 2005. Relative rates of fluvial bedrock incision on Titan and Earth. Geophys. Res. Lett, 32(22), L22202.Google Scholar
Cordier, D., Mousis, O., Lunine, J. I., Lavvas, P., et al. 2009. An estimate of the chemical composition of Titan's lakes. Astrophys. J. Lett., 707, L128–L131. doi: 10.1088/0004-637X/707/2/L128.Google Scholar
Cornet, T., Le Mouelic, S., Bourgeois, O., Rodriguez, S., et al. 2010. Observation of Ontario Lacus on Titan with Cassini/VIMS at 17 months interval. Page 1370 of Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 41.Google Scholar
Cornet, T., Bourgeois, O., Le Mouélic, S., Rodriguez, S., et al. 2012. Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia). Icarus, 218(Apr.), 788–806. doi: 10.1016/j.icarus.2012.01.013.Google Scholar
Coustenis, A., Lellouch, E., Maillard, J. P., and McKay, C. P. 1995. Titan's surface: composition and variability from the near-infrared albedo. Icarus, 118, 87–104. doi: 10.1006/icar.1995.1179.Google Scholar
Coustenis, A., Negrão, A., Salama, A., Schulz, B., et al. 2006. Titan's 3-micron spectral region from ISO high-resolution spectroscopy. Icarus, 180, 176–185. doi: 10.1016/j.icarus.2005.08.007.Google Scholar
Crawford, G. D., and Stevenson, D. J. 1988. Gas-driven water volcanism in the resurfacing of Europa. Icarus, 73, 66–79. doi: 10.1016/0019-1035(88)90085-1.Google Scholar
Croft, S. K., Lunine, J. I., and Kargel, J. 1988. Equation of state of ammonia-water liquid – derivation and planetological applications. Icarus, 73, 279–293. doi: 10.1016/0019-1035(88)90098-X.Google Scholar
Deledalle, C.-A., Denis, L., and Tupin, F. 2009. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. Image Processing, IEEE Transactions on, 18(12), 2661–2672. doi: 10.1109/TIP.2009.2029593.Google Scholar
Dietrich, W. E, and Perron, J. T. 2006. The search for a topographic signature of life. Nature, 439(7075), 411–418.Google Scholar
Dietrich, W. E, Bellugi, D. G., Sklar, L. S., Stock, J. D., et al. 2003. Geomorphic transport laws for predicting landscape form and dynamics. Pages 103–132 of Wilcock, P. R., and Iverson, R. M. (eds), Prediction in Geomorphology. Washington, DC: American Geophysical Union.
Donelan, M. A., and Pierson, W J. 1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 4971–5030. doi: 10.1029/JC092iC05p04971.Google Scholar
Donelan, M. A., and Plant, W. J. 2009. A threshold for wind-wave growth. J. Geophys. Res., 114(C13), 7012. doi: 10.1029/2008JC005238.Google Scholar
Dunne, T. 1980. Formation and controls of channel networks. Progress in Physical Geography, 4(2), 211.Google Scholar
Elachi, C., Im, E., Roth, L. E., and Werner, C. L. 1991. Cassini Titan Radar Mapper. Proceedings of the IEEE, 79(6), 867–880. doi: 10.1109/5.90164.Google Scholar
Elachi, C., Allison, M. D., Borgarelli, L., Encrenaz, P., et al. 2004. RADAR: The Cassini Titan Radar Mapper. Spac. Sci. Rev., 115, 71–110. doi: 10.1007/s11214-004-1438-9.Google Scholar
Elachi, C., Wall, S., Allison, M., Anderson, Y., et al. 2005. Cassini radar views the surface of Titan. Science, 308, 970–974. doi: 10.1126/science.1109919.Google Scholar
Elachi, C., Wall, S., Janssen, M., Stofan, E., et al. 2006. Titan Radar Mapper observations from Cassini's T3 fly-by. Nature, 441, 709–713. doi: 10.1038/nature04786.Google Scholar
Fagents, S. A. 2003. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. J. Geophys. Res., 108, 5139. doi: 10.1029/2003JE002128.Google Scholar
Fagents, S. A., Greeley, R., Sullivan, R. J., Pappalardo, R. T., et al. and the Galileo SSI Team. 2000. Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus, 144, 54–88. doi: 10.1006/icar.1999.6254.Google Scholar
Fortes, A. D., and Grindrod, P. M. 2006. Modelling of possible mud volcanism on Titan. Icarus, 182, 550–558. doi: 10.1016/j.icarus.2005.11.013.Google Scholar
Gabet, E. J, Reichman, O. J, and Seabloom, E. W. 2003. The effects of bioturbation on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci., 31(1), 249–273.Google Scholar
Gehrels, T., Baker, L. R., Beshore, E., Blenman, C., et al. 1980. Imaging photopolarimeter on Pioneer Saturn. Science, 207, 434–439. doi: 10.1126/science.207.4429.434.Google Scholar
Griffith, C. A., Owen, T., Geballe, T. R., Rayner, J., et al. 2003. Evidence for the exposure of water ice on Titan's surface. Science, 300, 628–630. doi: 10.1126/science.1081897.Google Scholar
Gulick, V C. 2001. Origin of the valley networks on Mars: a hydrological perspective. Geomorphology, 37(3-4), 241–268.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M., Kunde, V, et al. 1981. Infrared observations of the Saturnian system from Voyager 1. Science, 212, 192–200. doi: 10.1126/science.212.4491.192.Google Scholar
Hayes, A. G., Aharonson, O., Callahan, P., Elachi, C., et al. 2008. Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith. Geophys. Res. Lett., 35, 9204–9208. doi: 10.1029/2008GL033409.Google Scholar
Hayes, A. G., Wolf, A. S., Aharonson, O., Zebker, H., et al. 2010. Bathymetry and absorptivity of Titan's Ontario Lacus. J. Geophys. Res., 115(E09009). doi: 10.1029/2009JE003557.Google Scholar
Hayes, A. G., Aharonson, O., Lunine, J. I., Kirk, R. L., et al. and the Cassini RADAR Team. 2011a. Transient surface liquid in Titan's polar regions from Cassini. Icarus, 211. doi: 10.1016/j.icarus.2010.07.017.Google Scholar
Hayes, A. G., Lorenz, R. D., Donelan, M. A., Lamb, M. P., et al. and the Cassini RADAR Team. 2011b. Wind driven capillary-gravity waves on Titan's lakes: hard to detect or non-existent?Icarus, submitted.Google Scholar
Hayes, A. G., and Ewing, R. C. 2011. Reorientation timescales and pattern dynamics for titan's dunes: Does the tail wag the dog or the dragon? Pages P33F–01 of: AGU Fall Meeting Abstracts.Google Scholar
Head, J. W, Pappalardo, R. T., and Sullivan, R. 1999. Europa: Morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model. J. Geophys. Res, 104, 24223–24236. doi: 10.1029/1998JE001011.Google Scholar
Howard, A. D. 1988. Groundwater sapping experiments and modeling. Sapping features of the Colorado Plateau: a comparative planetary geology field guide, National Aeronautics and Space Administration, Washington, DC, SP-491, pp. 71–83.
Hueso, R, and Sánchez-Lavega, A. 2006. Methane storms on Saturn's moon Titan. Nature, 442(7101), 428–431.Google Scholar
Hunten, D. M. 1978. A Titan atmosphere with a surface temperature of 200K. Pages 127–140 of D. M., Hunten and D., Morrison (eds.), NASA Conference Publication. NASA Conference Publications, vol. 2068.
Iess, L., Rappaport, N. J., Jacobson, R. A., Racioppa, P., et al. 2010. Gravity field, shape, and moment of inertia of Titan. Science, 327, 1367–1369. doi: 10.1126/science.1182583.Google Scholar
Ivanov, B. A., Basilevsky, A. T., and Neukum, G. 1997. Atmospheric entry of large meteoroids: implication to Titan. Planet. Space Sci., 45(8), 993–1007. doi: 10.1016/S0032-0633(97)00044-5.Google Scholar
Janssen, M. A., Lorenz, R. D., West, R., Paganelli, F., et al. and the Cassini Radar Team. 2009. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results. Icarus, 200, 222–239. doi: 10.1016/j.icarus.2008.10.017.Google Scholar
Janssen, M. A., Le Gall, A. A., and Chaudhuri, S. 2010. Global mapping of Titan at 2-cm wavelength. AGU Fall Meeting Abstracts.Google Scholar
Janssen, M. A., Le Gall, A., and Wye, L. C. 2011. Anomalous radar backscatter from Titan's surface?Icarus, 212, 321–328. doi: 10.1016/j.icarus.2010.11.026.Google Scholar
Jaumann, R., Brown, R. H., Stephan, K., Barnes, J. W., et al. 2008. Fluvial erosion and post-erosional processes on Titan. Icarus, 197(2), 526–538.Google Scholar
Jaumann, R., Kirk, R. L., Lorenz, R. D., Lopes, R. M. C., et al. 2009a. Geology and surface processes on Titan. Pages 75–140 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi: 10.1007/978-1-4020-9215-2.5.
Jaumann, R., Clark, R. N., Nimmo, F., Hendrix, A. R., et al. 2009b. Icy satellites: Geological evolution and surface processes. Pages 637–682 of Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer. doi: 10.1007/978-1-4020-9217-6_20.
Kargel, J. S. 1995. Cryovolcanism on the icy satellites. Earth Moon and Planets, 67, 101–113.Google Scholar
Kargel, J. S., Croft, S. K., Lunine, J. I., and Lewis, J. S. 1991. Rheological properties of ammonia-water liquids and crystal-liquid slurries – planetological applications. Icarus, 89, 93–112. doi: 10.1016/0019-1035(91)90090-G.Google Scholar
Kirk, R. L., Howington-Kraus, E., Redding, B. L., Becker, T. L., et al. and the Cassini Radar Team. 2007. First stereoscopic radar images of Titan. Page 1427 of: Lunar and Planetary Institute Conference Abstracts. Lunar and Planetary Institute Conference Abstracts, vol. 38.
Kirk, R. L., Howington-Kraus, E., Barnes, J. W., Hayes, A. G., et al. 2010. La Sotra y las otras: Topographic evidence for (and against) cryovolcanism on Titan (Invited). AGU Fall Meeting Abstracts, A3.Google Scholar
Kirk, R. L., Howington-Kraus, E., Redding, B. L., Becker, T. L., et al. and the Cassini Radar Team. 2012. High resolution topographic models of Titan's surface derived by radar stereogrammetry with a rigorous sensor model. Icarus, in revision.Google Scholar
Kirk, R. L., Wood, C. A., Neish, C., Lucas, A., et al. 2011. Morphometry and morphology of fresh craters on Titan. Pages P32C–08 of AGU Fall Meeting Abstracts.Google Scholar
Korycansky, D. G., and Zahnle, K. J. 2005. Modeling crater populations on Venus and Titan. Planet. Space Sci., 53, 695–710. doi: 10.1016/j.pss.2005.03.002.Google Scholar
Kuiper, G. P. 1944. Titan: a satellite with an atmosphere. Astrophys. J., 100. doi: 10.1086/144679.Google Scholar
Lamb, M. P., Howard, A. D., Dietrich, W. E., and Perron, J. T. 2007. Formation of amphitheater-headed valleys by waterfall erosion after large-scale slumping on Hawai'i. Geological Society of America Bulletin, 119(7–8), 805–822.Google Scholar
Lamb, M. P., Howard, A. D., Johnson, J., Whipple, K. X., et al. 2006. Can springs cut canyons into rock?J. Geophys. Res., 111(E7), E07002.Google Scholar
Lamb, M. P., Dietrich, W. E., Aciego, S. M., De Paolo, D. J., et al. 2008. Formation of Box Canyon, Idaho, by megaflood: Implications for seepage erosion on Earth and Mars. Science, 320(5879), 1067.Google Scholar
Langhans, M. H., Jaumann, R., Stephan, K., Brown, R. H., et al. 2011. Titan's fluvial valleys: Morphology, distribution, and spectral properties. Planet. Spac. Sci.Google Scholar
Larsen, I. J., Montgomery, D. R., and Korup, O. 2010. Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), 247–251.Google Scholar
Le Corre, L., Le Mouélic, S., Sotin, C., Combe, J.-P., et al. 2009. Analysis of a cryolava flow-like feature on Titan. Planet. Space Sci., 57, 870–879. doi: 10.1016/j.pss.2009.03.005.Google Scholar
Le Gall, A., Janssen, M. A., Paillou, P., Lorenz, R. D., et al. 2010. Radar-bright channels on Titan. Icarus, 207(2), 948–958.Google Scholar
Le Gall, A., Janssen, M. A., Wye, L. C., Hayes, A. G., et al. and the Cassini Radar Team. 2011. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields. Icarus, 213, 608–624. doi: 10.1016/j.icarus.2011.03.026.Google Scholar
Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., et al. 1983. The atmosphere of Titan – an analysis of the Voyager 1 radio occultation measurements. Icarus, 53, 348–363. doi: 10.1016/0019-1035(83)90155-0.Google Scholar
Litwin, K. L., Polito, P., Zygielbaum, B., Sklar, L. S., et al. 2010. The influence of impurities in Titan ice bedrock on tensile strength and resistance to fluvial erosion: experimental results. Pages P31C–1554 of AGU Fall Meeting Abstracts.Google Scholar
Lopes, R. M. C., Mitchell, K. L., Stofan, E. R., Lunine, J. I., et al. 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus, 186, 395–412. doi: 10.1016/j.icarus.2006.09.006.Google Scholar
Lopes, R. M. C., Stofan, E. R., Peckyno, R., Radebaugh, J., etal. and the Cassini RADAR Team. 2010. Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus, 205, 540–558. doi: 10.1016/j.icarus.2009.08.010.Google Scholar
Lopes, R. M. C., Kirk, R., Mitchell, K. L., Le Gall, A., et al. 2011. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. Icarus, submitted.Google Scholar
Lopes, R. M. C., Fagents, S. A., Mitchell, K. L., and Gregg, T. K. P. 2012. Planetary volcanism. In: Fagents, S. A., Gregg, T. K. P., and Lopes, R. M. C. (eds.), Modelling Volcanic Processes. Cambridge University Press.
Lorenz, R. D. 1996. Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planet. Spac. Sci., 44, 1021–1028. doi: 10.1016/0032-0633(95)00139-5.Google Scholar
Lorenz, R. D., and Lunine, J. I. 1996. Erosion on Titan: past and present. Icarus, 122, 79–91. doi: 10.1006/icar.1996.0110.Google Scholar
Lorenz, R. D., and Radebaugh, J. 2009. Global pattern of Titan's dunes: Radar survey from the Cassini prime mission. Geophys. Res. Lett., 360, L03202. doi: 10.1029/2008GL036850.Google Scholar
Lorenz, R. D., Wall, S., Radebaugh, J., Boubin, G., et al. 2006a. The sand seas of Titan: Cassini RADAR Observations of longitudinal dunes. Science, 312, 724–727. doi: 10.1126/science.1123257.Google Scholar
Lorenz, R. D., Niemann, H. B., Harpold, D. N., Way, S. H., et al. 2006b. Titan's damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteoritics and Planetary Science, 41, 1705–1714.Google Scholar
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., Hayes, A. G., et al. 2008a. Titan's inventory of organic surface materials. Geophys. Res. Lett., 35, 2206. doi: 10.1029/2007GL032118.Google Scholar
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., Hayes, A. G. et al., 2008b. Titan's inventory of organic surface materials. Geophysical Research Letters, 35, L2206:1–6. doi: 10.1029/2007GL032118.Google Scholar
Lorenz, R. D., Newman, C., and Lunine, J. I. 2010. Threshold of wave generation on Titan's lakes and seas: Effect of viscosity and implications for Cassini observations. Icarus, 207, 932–937. doi: 10.1016/j.icarus.2009.12.004.Google Scholar
Lorenz, R. D., Tokano, T., and Newman, C. E. in press. Wind and tides of Ligeia Mare: Application to the drift of the Titan Mare Explorer (TiME) mission. Planet. Space Sci.
Lorenz, R. D., and Lunine, J. I. 1996. Erosion on Titan: Past and present. Icarus, 122(1), 79–91.Google Scholar
Lorenz, R. D., Lopes, R. M., Paganelli, F., Lunine, J. I., et al. 2008. Fluvial channels on Titan: initial Cassini RADAR observations. Planet. Space Sci., 56(8), 1132–1144.Google Scholar
Lucas, A., Aharonson, O., Hayes, A. G., Deledalle, C. A., et al. 2011. Enhanced processing and analysis of Cassini SAR images of Titan. AGU Fall Meeting Suppl., P33E–1795.Google Scholar
Lunine, J. I., Stevenson, D. J., and Yung, Y. L. 1983. Ethane ocean on Titan. Science, 222, 1229—+. doi: 10.1126/science.222.4629.1229.Google Scholar
Lunine, J. I., Elachi, C, Wall, S. D., Janssen, M. A., et al. 2008. Titan's diverse landscapes as evidenced by Cassini RADAR's third and fourth looks at Titan. Icarus, 195(1), 415–433.Google Scholar
Malaska, M., Radebaugh, J., Lorenz, R., Mitchell, K., et al. 2010. Identification of Karst-like terrain on Titan from valley analysis. Page 1544 of: Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 41.Google Scholar
Malin, M. C., and Carr, M. H. 1999. Groundwater formation of martian valleys. Nature, 397(6720), 589–591.Google Scholar
Manga, M., and Wang, C.-Y. 2007. Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett., 34, 7202. doi: 10.1029/2007GL029297.Google Scholar
McCord, T. B., Hansen, G. B., Buratti, B. J., Clark, R. N., et al. and the Cassini VIMS Team. 2006. Composition of Titan's surface from Cassini VIMS. Planet. Spac. Sci., 54, 1524–1539. doi: 10.1016/j.pss.2006.06.007.Google Scholar
McCord, T. B., Hayne, P., Combe, J.-P., Hansen, G. B., et al. and the Cassini VIMS Team. 2008. Titan's surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus, 194, 212–242. doi: 10.1016/j.icarus.2007.08.039.Google Scholar
Mitchell, J. L. 2008. The drying of Titan's dunes: Titan's methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. Planets, 113(E12), E8015:1–22. doi: 10.1029/2007JE003017.Google Scholar
Mitchell, K. L., Kargel, J. S., Wood, C. A., Radebaugh, J. et al. and Cassini Radar Team. 2007. Titan's crater lakes: Caldera vs. Karst. Page 2064 of Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 38.Google Scholar
Mitchell, K. L., Stiles, B., Zebker, H. A., Kirk, R. L., et al. and Cassini Radar Team. 2009. A global subsurface alkanofer system on Titan? Page 1966 of Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 40.Google Scholar
Mitri, G., and Showman, A. P. 2008. Thermal convection in ice-I shells of Titan and Enceladus. Icarus, 193, 387–396. doi: 10.1016/j.icarus.2007.07.016.Google Scholar
Mitri, G., Showman, A. P., Lunine, J. I., and Lorenz, R. D. 2007. Hydrocarbon lakes on Titan. Icarus, 186, 385–394. doi: 10.1016/j.icarus.2006.09.004.Google Scholar
Mitri, G., Showman, A. P., Lunine, J. I., and Lopes, R. M. C. 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus, 196, 216–224. doi: 10.1016/j.icarus.2008.02.024.Google Scholar
Mitri, G., Bland, M. T., Showman, A. P., Radebaugh, J., et al. 2010. Mountains on Titan: Modeling and observations. J. Geophys. Res., 115(E14), E10002. doi: 10.1029/2010JE003592.Google Scholar
Montgomery, D. R., and Brandon, M. T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3-4), 481–489.Google Scholar
Moore, J. M., and Howard, A. D. 2010. Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?Geophys. Res. Lett., 37, 22205. doi: 10.1029/2010GL045234.Google Scholar
Moore, J. M., and Pappalardo, R. T. 2011. Titan: An exogenic world?Icarus, 212, 790–806. doi: 10.1016/j.icarus.2011.01.019.Google Scholar
Neish, C. D., and Lorenz, R. D. 2012. Titan's global crater population: A new assessment. Planet. Space Sci., 60(Jan.), 26–33. doi: 10.1016/j.pss.2011.02.016.Google Scholar
Neish, C. D., Lorenz, R. D., Kirk, R. L., and Wye, L. C. 2010. Radarclinometry of the sand seas of Africa's Namibia and Saturn's moon Titan. Icarus, 208, 385–394. doi: 10.1016/j.icarus.2010.01.023.Google Scholar
Nelson, R. M., Kamp, L. W., Lopes, R. M. C., Matson, D. L., et al. 2009a. Photometric changes on Saturn's Titan: Evidence for active cryovolcanism. Geophys. Res. Lett., 36, 4202. doi: 10.1029/2008GL036206.Google Scholar
Nelson, R. M., Kamp, L. W., Matson, D. L., Irwin, P. G. J., et al. 2009b. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus, 199, 429–441. doi: 10.1016/j.icarus.2008.08.013.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J., Biemann, K., et al. 2002. The Gas Chromatograph Mass Spectrometer for the Huygens Probe. Space. Sci. Rev., 104, 553–591. doi: 10.1023/A:1023680305259.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D. et al. 2010. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res., 115(E14), 12006. doi: 10.1029/2010JE003659.Google Scholar
Notarnicola, C., Ventura, B., Casarano, D., and Posa, F. 2009. Cassini radar data: Estimation of Titan's lake features by means of a Bayesian inversion algorithm. Geoscience and Remote Sensing, IEEE Transactionson, 47(5), 1503–1511. doi: 10.1109/TGRS.2008.2005906.Google Scholar
Paganelli, F., Janssen, M. A., Stiles, B., West, R., et al. and the Radar Team. 2007. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys. Icarus, 191, 211–222. doi: 10.1016/j.icarus.2007.04.032.Google Scholar
Paillou, P., Mitchell, K., Wall, S., Ruffie, G., et al. 2008a. Microwave dielectric constant of liquid hydrocarbons: Application to the depth estimation of Titan's lakes. Geophysical Research Letters, 35, L05202:1–5. doi: 10.1029/2007GL032515.Google Scholar
Paillou, P., Lunine, J., Ruffie, G., Encrenaz, P., et al. 2008b. Microwave dielectric constant of Titan-relevant materials. Geophys. Res. Lett., 35, 18202. doi: 10.1029/2008GL035216.Google Scholar
Parker, G. 2005. Comparative Application of Dimensionless bankfull hydraulic relations for Earth and Titan. Pages H31G-06 of AGU Fall Meeting Abstracts.Google Scholar
Parker, Gary. 1975. Meandering of supraglacial melt streams. Water Resour. Res, 11(4), 551–552.Google Scholar
Perron, J. T., and de Pater, I. 2004. Dynamics of an ice continent on Titan. Geophys. Res. Lett, 31(17), L17S04-. doi: 10.1029/2004GL019802.Google Scholar
Perron, J. T., and Fagherazzi, S. 2012. The legacy of initial conditions in landscape evolution. Earth Surface Processes and Landforms, 37(1), 52–63.Google Scholar
Perron, J. T., and Hamon, J. L. 2012. Equilibrium form of horizontally retreating, soil-mantled hillslopes: Model development and application to a groundwater sapping landscape. J. Geophys. Res. (Earth Surface), 117(F16), 1027. doi: 10.1029/2011JF002139.Google Scholar
Perron, J. T., Dietrich, W. E., Howard, A. D., McKean, J. A. et al. 2003. Ice-driven creep on Martian debris slopes. Geophys. Res. Lett., 30(14), 1747. doi: 10.1029/2003GL017603.Google Scholar
Perron, J. T., Lamb, M. P., Koven, C. D., Fung, I. Y., et al. 2006. Valley formation and methane precipitation rates on Titan. J Geophys Res, 111, E11001. doi: 10.1029/2005JE002602.Google Scholar
Plant, W. J. 1982. A relationship between wind stress and wave slope. J. Geophys. Res, 87, 1961–1967. doi: 10.1029/JC087iC03p01961.Google Scholar
Polito, P. J., Zygielbaum, B. R., Sklar, L. S., and Collins, G. 2008. Experimental investigation of fluvial incision on Titan by low-velocity sediment impacts. Pages P21A–1316 of AGU Fall Meeting Abstracts.Google Scholar
Porco, C. C., West, R. A., Squyres, S., McEwen, A., et al. 2004. Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Spac. Sci. Rev., 115, 363–497. doi: 10.1007/s11214-004-1456-7.Google Scholar
Porco, C. C., Baker, E., Barbara, J., Beurle, K., et al. 2005. Imaging of Titan from the Cassini spacecraft. Nature, 434, 159–168. doi: 10.1038/nature03436.Google Scholar
Radebaugh, J., Lorenz, R. D., Kirk, R. L., Lunine, J. I., et al. and the Cassini RADAR Team. 2007. Mountains on Titan observed by Cassini Radar. Icarus, 192, 77–91. doi: 10.1016/j.icarus.2007.06.020.Google Scholar
Radebaugh, J., Lorenz, R. D., Lunine, J. I., Wall, S. D., et al. and the Cassini Radar Team. 2008. Dunes on Titan observed by Cassini Radar. Icarus, 194, 690–703. doi: 10.1016/j.icarus.2007.10.015.Google Scholar
Radebaugh, J., Baker, V, Lorenz, R. D., Farr, T. G., et al. and the Cassini RADAR Team. 2009. Fluvial erosion on Titan: Scales and landform modification. Page 36.07 of: AAS/Division for Planetary Sciences Meeting Abstracts #41. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 41.Google Scholar
Radebaugh, J., Lorenz, R., Farr, T., Paillou, P., et al. 2010. Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 121, 122–132. doi: 10.1016/j.geomorph.2009.02.022.Google Scholar
Radebaugh, J., Lorenz, R. D., Wall, S. D., Kirk, R. L., et al. and the Cassini Radar Team. 2011. Regional geomorphology and history of Titan's Xanadu province. Icarus, 211, 672–685. doi: 10.1016/j.icarus.2010.07.022.Google Scholar
Radebaugh, J., Lorenz, R. D., Kirk, R. L., Lunine, J. I., et al. 2007. Mountains on Titan observed by Cassini Radar. Icarus, 192(1), 77–91.Google Scholar
Richardson, J., Lorenz, R. D., and McEwen, A. 2004. Titan's surface and rotation: new results from Voyager 1 images. Icarus, 170(1), 113–124. doi: 10.1016/j.icarus.2004.03.010.Google Scholar
Rubin, D. M., and Hesp, P. A. 2009. Multiple origins of linear dunes on Earth and Titan. Nature Geoscience, 2, 653–658. doi: 10.1038/ngeo610.Google Scholar
Sagan, C., and Dermott, S. F. 1982. The tide in the seas of Titan. Nature, 300, 731–733. doi: 10.1038/300731a0.Google Scholar
Schaller, E. L., Roe, H. G., Schneider, T., and Brown, M. E. 2009. Storms in the tropics of Titan. Nature, 460, 873–875. doi: 10.1038/nature08193.Google Scholar
Schmidt, K. M., and Montgomery, D. R. 1995. Limits to relief. Science, 270(5236), 617–620.Google Scholar
Schneider, T., Graves, S. D. B., Schaller, E. L., and Brown, M. E. 2012. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature, 481, 58–61. doi: 10.1038/nature10666.Google Scholar
Schumm, S. A., Boyd, K. F., Wolff, C. G., and Spitz, W. J. 1995. A ground-water sapping landscape in the Florida Panhandle. Geomorphology, 12(4), 281–297.Google Scholar
Sen, A. D., Anicich, V G., and Arakelian, T. 1992. Dielectric constant of liquid alkanes and hydrocarbon mixtures. J. Appl., Physics, 25, 512–521.Google Scholar
Showman, A. P., Mosqueira, I., and Head, J. W. 2004. On the resurfacing of Ganymede by liquid water volcanism. Icarus, 172, 625–640. doi: 10.1016/j.icarus.2004.07.011.Google Scholar
Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., et al. 1996. Titan's surface, revealed by HST Imaging. Icarus, 119, 336–349. doi: 10.1006/icar.1996.0023.Google Scholar
Soderblom, J. M., Brown, R. H., Soderblom, L. A., Barnes, J. W., et al. 2010. Geology of the Selk crater region on Titan from Cassini VIMS observations. Icarus, 208, 905–912. doi: 10.1016/j.icarus.2010.03.001.Google Scholar
Soderblom, L., Brown, R. H., Soderblom, J. M., Barnes, J. W., et al. 2012. Composition and comparison of Titan's north and south polar lakes from Cassini visual and infrared mapping spectrometer observations. Icarus, submitted.Google Scholar
Soderblom, L. A., Kirk, R. L., Lunine, J. I., Anderson, J. A., et al. 2007. Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface compositionand the character of the Huygens Probe Landing Site. Planet. Space Sci., 55, 2025–2036. doi: 10.1016/j.pss.2007.04.014.Google Scholar
Soderblom, L. A., Brown, R. H., Soderblom, J. M., Barnes, J. W., et al. 2009. The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus, 204, 610–618. doi: 10.1016/j.icarus.2009.07.033.Google Scholar
Soderblom, L. A., Tomasko, M. G., Archinal, B. A., Becker, T. L., et al. 2007. Topography and geomorphology of the Huygens landing site on Titan. Planet. Space Sci., 55(13), 2015–2024.Google Scholar
Sola, J. C. 1904. La sincérité scientifique. Annals of the Observatory of Lucien Libert, 18, 51–53.Google Scholar
Sotin, C., Jaumann, R., Buratti, B. J., Brown, R. H., et al. 2005. Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 435, 786–789. doi: 10.1038/nature03596.Google Scholar
Sotin, C., Lawrence, K. J., Reinhardt, B., Barnes, J. W., et al. 2011. Observations of Titan's northern lakes at 5 microns: Implications for the organic cycle and geology. Icarus, submitted.Google Scholar
Stephan, K., Jaumann, R., Brown, R. H., Soderblom, J. M., et al. 2010. Specular reflection on Titan: Liquids in Kraken Mare. Geophys. Res. Lett., 37, L07104. doi: 10.1029/2009GL042312.Google Scholar
Stiles, B. W., Hensley, S., Gim, Y., Bates, D. M., et al. and the Cassini RADAR Team. 2009. Determining Titan surface topography from Cassini SAR data. Icarus, 202, 584–598. doi: 10.1016/j.icarus.2009.03.032.Google Scholar
Stofan, E. R., Lunine, J. I., Lopes, R., Paganelli, F., et al. 2006. Mapping of Titan: Results from the first Titan radar passes. Icarus, 185, 443–456. doi: 10.1016/j.icarus.2006.07.015.Google Scholar
Stofan, E. R., Elachi, C., Lunine, J. I., Lorenz, R. D., et al. 2007. The lakes of Titan. Nature, 445, 61–64. doi: 10.1038/nature05438.Google Scholar
Stofan, E. R., Elachi, C., Lunine, J. I., Lorenz, R. D., et al. and the Cassini Radar Team. 2008. Varied geologic terrains at Titan's south pole: First results from T39. Page 1491 of Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 39.Google Scholar
Tobie, G., Čadek, O., and Sotin, C. 2008. Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus, 196, 642–652. doi: 10.1016/j.icarus.2008.03.008.Google Scholar
Tokano, T. 2008. Dune-forming winds on Titan and the influence of topography. Icarus, 194, 243–262. doi: 10.1016/j.icarus.2007.10.007.Google Scholar
Tokano, T. 2010. Relevance of fast westerlies at equinox for the eastward elongation of Titan's dunes. Aeolian Research, 2, 113–127.Google Scholar
Tomasko, M. G., Buchhauser, D., Bushroe, M., Dafoe, L. E., et al. 2002. The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan. Spac. Sci. Rev., 104, 469–551. doi: 10.1023/A:1023632422098.Google Scholar
Tomasko, M. G., Archinal, B., Becker, T., Bezard, B., et al. 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438(7069), 765–778.Google Scholar
Turtle, E. P., Perry, J. E., McEwen, A. S., DelGenio, A. D., et al. 2009. Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett., 36, L2204:1–6. doi: 10.1029/2008GL036186.Google Scholar
Turtle, E. P., Perry, J. E., Hayes, A. G., Lorenz, R. D., et al. 2011a. Rapid and extensive surface changes near Titan's equator: Evidence of April showers. Science, 331, 1414-. doi: 10.1126/science.1201063.Google Scholar
Turtle, E. P., Perry, J. E., Hayes, A. G., and McEwen, A. S. 2011b. Shoreline retreat at Titan's Ontario Lacus and Arrakis Planitia from Cassini Imaging Science Subsystem observations. Icarus, 212, 957–959. doi: 10.1016/j.icarus.2011.02.005.Google Scholar
Wall, S., Hayes, A., Bristow, C., Lorenz, R., et al. 2010. Active shoreline of Ontario Lacus, Titan: A morphological study of the lake and its surroundings. Geophys. Res. Lett., 37, L5202:1–5. doi: 10.1029/2009GL041821.Google Scholar
Wall, S. D., Lopes, R. M., Stofan, E. R., Wood, C. A. et.al.2009. Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Geophys. Res. Lett., 36, 4203. doi: 10.1029/2008GL036415.Google Scholar
Warren, S. G., and Brandt, R. E. 2008. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220. doi: 10.1029/2007JD009744.Google Scholar
Werner, B. T., and Kocurek, G. 1997. Bed-form dynamics: Does the tail wag the dog?Geology, 25, 771. doi: 10.1130/0091-7613(1997)025!0771: BFDDTT¿2.3.CO;2.Google Scholar
West, R. A., and Smith, P. H. 1991. Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330–333. doi: 10.1016/0019-1035(91)90113-8.Google Scholar
Wiscombe, W. J., and Warren, S. G. 1980. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37(12), 2712–2733.Google Scholar
Wood, C. A., Mitchell, K. L., Lopes, R. M. C., Radebaugh, J., et al. 2007. Volcanic calderas in the north polar region of Titan. Pages 1454—+ of: Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 38.Google Scholar
Wood, C. A., Lorenz, R., Kirk, R., Lopes, R., et al. 2010. Impact craters on Titan. Icarus, 206(1), 334–344. doi: 10.1016/j.icarus.2009.08.021.Google Scholar
Wye, L., Zebker, H. A., Hayes, A. G., and Lorenz, R. D. 2010. A depth profile of titan's Ontario Lacus and further constraints on wave heights from Cassini RADAR data. Page 1076 of: AAS/Division for Planetary Sciences Meeting Abstracts #42, vol. 42.Google Scholar
Wye, L. C., Zebker, H. A., Ostro, S. J., West, R. D., et al. and the Cassini Radar Team. 2007. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 188, 367–385. doi: 10.1016/j.icarus.2006.12.008.Google Scholar
Wye, L. C., Zebker, H. A., and Lorenz, R. D. 2009. Smoothness of Titan's Ontario Lacus: Constraints from Cassini RADAR specular reflection data. Geophys. Res. Lett., 36, L16201:1–5. doi: 10.1029/2009GL039588.Google Scholar
Yung, Y. L., Allen, M., and Pinto, J. P. 1984. Photochemistry of the atmosphere of Titan – Comparison between model and observations. Astrophys. J., 55, 465–506. doi: 10.1086/190963.Google Scholar
Zarnecki, J. C., Leese, M. R., Hathi, B., et al. 2005. A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature, 438, 792–795. doi: 10.1038/nature04211.Google Scholar
Zebker, H. A., Stiles, B., Hensley, S., Lorenz, R., et al. 2009. Size and shape of Saturn's Moon titan. Science, 324, 921–923. doi: 10.1126/science.1168905.Google Scholar
Zebker, Howard A., Wye, Lauren C., Janssen, Michael A., and Team, Cassini Radar. 2008. Titan's surface from reconciled Cassini microwave reflectivity and emissivity observations. Icarus, 194(2), 704–710. doi: 10.1016/j.icarus.2007.10.019.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×