Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T03:19:31.409Z Has data issue: false hasContentIssue false

5 - Tick toxins: perspectives on paralysis and other forms of toxicoses caused by ticks

Published online by Cambridge University Press:  21 August 2009

B. J. Mans
Affiliation:
Old Main Building, Rm 35 Parasites, Vectors and Vector-Borne Diseases Onderstepoort Veterinary Institute Agricultural Research Council Onderstepoort 0110 South Africa
R. Gothe
Affiliation:
Department of Biochemistry University of Pretoria Pretoria 0002 South Africa
A. W. H. Neitz
Affiliation:
Department of Biochemistry University of Pretoria Pretoria 0002 South Africa
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Tick toxicosis has been a research focus for almost 80 years and during this time, several excellent reviews on this subject have been written that cover the history of toxicosis research as well as its aetiology and pathology (Gregson, 1943, 1973; Stampa, 1959; Neitz, 1962; Murnaghan & O'Rouke, 1978; Gothe, Kunze & Hoogstraal, 1979; Gothe, 1984, 1999; Wikel, 1984; Gothe & Neitz, 1991; Sonenshine, 1993; Masina & Broady, 1999). A comprehensive monograph on tick toxicoses of all forms has also been published (Gothe, 1999).

FUNCTIONAL SIGNIFICANCE OF TICK TOXINS

While arthropods such as spiders and scorpions are notoriously venomous organisms that utilize their toxins for protection as well as predation, the advantages for ticks being toxic is unclear. It has been suggested that tick paralysis may be a vestigial function conserved in ticks, when ticks evolved a parasitic lifestyle (Stone et al., 1989). Paralysis toxins have been attributed to functional significance during feeding of the tick, in that host mobility and grooming is impaired. This might be relevant, as tick paralysis sets in at the later stages of tick engorgement, when the tick is most liable to be killed by grooming practices. Paralysis would also affect the respiratory system leading to elevated breathing rates and an increase in carbon dioxide expiration. This together with pheromone secretion could attract ticks to the paralysed animal, which accelerates the finding and feeding of ticks.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 108 - 126
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, R., Gomes, A., Malavazi-Piza, K. C., et al. (2002). BniTI antigens induce a bovine protective immune response against Boophilus microplus tick. International Immunopharmacology 2, 557–563.CrossRefGoogle ScholarPubMed
Barker, S. C. & Murrell, A. (2004). Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129, S15–S36.CrossRefGoogle ScholarPubMed
Bezuidenhout, J. D. & Malherbe, A. (1981). Sweating sickness: a comparative study of virulent and avirulent strains of Hyalomma truncatum. In Tick Biology and Control, eds. Whitehead, G. B. & Gibson, J. D., pp. 7–12. Grahamstown, South Africa: Tick Research Unit, Rhodes University.Google Scholar
Brunk, U. T. & Terman, A. (2002). The mitochondrial– lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. European Journal of Biochemistry 269, 1996–2002.CrossRefGoogle ScholarPubMed
Burger, D. B., Crause, J. C., Spickett, A. M. & Neitz, A. W. H. (1991). A comparative study of proteins present in sweating-sickness-inducing and non-inducing strains of Hyalomma truncatum ticks. Experimental and Applied Acarology 13, 59–63.CrossRefGoogle Scholar
Campbell, F. E. & Atwell, R. B. (2002). Long QT syndrome in dogs with tick toxicity (Ixodes holocyclus). Australian Veterinary Journal 80, 611–616.CrossRefGoogle Scholar
Campbell, F., Atwell, R., Fenning, A., Hoey, A. & Brown, L. (2004). Cardiovascular effects of the toxin(s) of the Australian paralysis tick, Ixodes holocyclus, in the rat. Toxicon 43, 743–750.CrossRefGoogle ScholarPubMed
Campbell, F. E., Atwell, R. B. & Smart, L. (2003). Effects of the paralysis tick, Ixodes holocyclus, on the electrocardiogram of the Spectacled Flying Fox, Pteropus conspicillatus. Australian Veterinary Journal 81, 328–331.CrossRefGoogle ScholarPubMed
Chellappa, D. J. (1973). Note on spinose ear tick infestation in man and domestic animals in India and its control. Madras Agricultural Journal 60, 656–658.Google Scholar
Cooper, B. J. & Spence, I. (1976). Temperature-dependent inhibition of evoked acetylcholine release in tick paralysis. Nature 263, 693–695.CrossRefGoogle ScholarPubMed
Crause, J. C., Wyngaardt, S., Gothe, R. & Neitz, A. W. H. (1994). A shared epitope found in the major paralysis inducing tick species of Africa. Experimental and Applied Acarology 18, 51–59.CrossRefGoogle Scholar
Crause, J. C., Verschoor, J. A., Coetzee, J., et al. (1993). The localization of a paralysis toxin in granules and nuclei of prefed female Rhipicephalus evertsi evertsi tick salivary gland cells. Experimental and Applied Acarology 17, 357–363.CrossRefGoogle ScholarPubMed
Kock, G., Heerden, C. J., Toit, Du R. & Neitz, W. O. (1937). Bovine theileriosis in South Africa with special reference to Theileria mutans. Onderstepoort Journal of Veterinary Science and Animal Industry 8, 9–125.Google Scholar
Meillon, B. (1942). A toxin from the eggs of South African ticks. South African Journal of Medical Science 7, 226–235.Google Scholar
Dobson, S. J. & Barker, S. C. (1999). Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. Molecular Phylogenetics and Evolution 11, 288–295.CrossRefGoogle ScholarPubMed
Toit, Du R. & Theiler, G. (1964). Ticks and tick-borne diseases in South Africa. Scientific Bulletin of the Department of Agriculture and Technical Services of the Republic of South Africa 364.Google Scholar
Eads, R. B. & Campos, E. G. (1984). Human parasitism by Otobius megnini (Acari: Argasidae) in New Mexico, USA. Journal of Medical Entomology 21, 244.CrossRefGoogle Scholar
Emmons, P. & Mclennan, H. (1980). Some observations on tick paralysis in marmots. Journal of Experimental Biology 37, 355–362.Google Scholar
Escoubas, P., Diochot, S. & Corzo, G. (2000). Structure and pharmacology of spider venom neurotoxins. Biochimie 82, 893–907.CrossRefGoogle ScholarPubMed
Gothe, R. (1984). Tick paralyses: reasons for appearing during ixodid and argasid feeding. In Current Topics in Vector Research, ed. Harris, K. F., vol. 2, pp. 199–223. New York: Praeger.Google Scholar
Gothe, R. (1999). Zecken Toxikosen. Munich, Germany: Hieronymus.Google Scholar
Gothe, R. & Kunze, K. (1971). Stimulus conduction of efferent and afferent peripheral nerve fibers in fowl tick paralysis caused by Argas (Persicargas) persicus larvae. Zeitschrift für Tropenmedizin und Parasitologie 22, 292–296.Google ScholarPubMed
Gothe, R. & Kunze, K. (1982). Action potentials and conduction velocities of the tibial nerve in sheep paralysis caused by Rhipicephalus evertsi evertsi. Zentralblatt für Veterinaermedizin B29, 186–192.Google Scholar
Gothe, R. & Lämmler, M. (1982). Sensitivity of laboratory animals to Rhipicephalus evertsi evertsi paralysis. Zentralblatt für Veterinaermedizin B29, 249–252.Google Scholar
Gothe, R. & Neitz, A. W. H. (1991). Tick paralysis: pathogenesis and etiology. Advances in Disease and Vector Research 8, 177–204.CrossRefGoogle Scholar
Gothe, R., Hager, H., Jehn, E., Kunze, K. & Thoenes, W. (1971). Pathological–anatomical studies of peripheral nerves in fowl tick paralysis caused by Argas (Persicargas) persicus larvae. Zeitschrift für Tropenmedizin und Parasitologie 22, 285–291.Google ScholarPubMed
Gothe, R., Kunze, K. & Hoogstraal, H. (1979). The mechanisms of pathogenicity in tick paralyses. Journal of Medical Entomology 16, 357–369.CrossRefGoogle ScholarPubMed
Gregson, J. D. (1941). The discovery of an ixovotoxin in Dermacentor andersoni eggs. Proceedings of the Entomological Society of British Columbia 37, 9–10.Google Scholar
Gregson, J. D. (1943). The enigma of tick paralysis. Proceedings of the Entomological Society of British Columbia 40, 19–23.Google Scholar
Gregson, J. D. (1973). Tick Paralysis: An Appraisal of Natural and Experimental Data, Monograph No. 9. Canadian Department of Agriculture.Google Scholar
Hilger, C., Bessot, J. C., Hutt, N., et al. (2005). IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r1. Journal of Allergy and Clinical Immunology 115, 617–622.CrossRefGoogle Scholar
Hoeppli, R. & Feng, L. C. (1933). Experimental studies on ticks. Chinese Medical Journal 47, 29–43.Google Scholar
Holzer, H. & Heinrich, P. C. (1980). Control of proteolysis. Annual Review of Biochemistry 49, 63–91.CrossRefGoogle ScholarPubMed
Hoogstraal, H. (1956). African Ixodoidea. I. Ticks of the Sudan (with special reference to Equatoria Province and with preliminary reviews of the genera Boophilus, Margaropus and Hyalomma), Research Report NM 005050.29.07. Washington, DC: US Government Printing Office.
Hoogstraal, H. (1985). Argasid and nuttalliellid ticks as parasites and vectors. Advances in Parasitology 24, 135–238.CrossRefGoogle ScholarPubMed
Howell, C. J. (1966). Collection of salivary gland secretion from the argasid Ornithodoros savignyi Audouin (1827) by the use of a pharmacological stimulant. Journal of the South African Veterinary Medical Association 37, 236–239.Google Scholar
Howell, C. J., Neitz, A. W. H. & Potgieter, D. J. J. (1975). Some toxic and chemical properties of the oral secretion of the sand tampan, Ornithodoros savignyi Audouin (1825). Onderstepoort Journal of Veterinary Research 43, 99–102.Google Scholar
Kassis, I., Ioffe-Uspensky, I., Uspensky, I. & Mumcuoglu, K. Y. (1997). Human toxicosis caused by the tick Ixodes redikorzevi in Israel. Israel Journal of Medical Science 33, 760–761.Google ScholarPubMed
Keller, P. M., Waxman, L., Arnold, B. A., et al. (1993). Cloning of the cDNA and expression of moubatin, an inhibitor of platelet aggregation. Journal of Biological Chemistry 268, 5450–5456.Google ScholarPubMed
Kleine-Tebbe, J., Heinatz, A., Graser, I., et al. (2006). Bites of the European pigeon tick (Argas reflexus): risk of IgE-mediated sensitizations and anaphylactic reactions. Journal of Allergy and Clinical Immunology 117, 190–195.CrossRefGoogle ScholarPubMed
Klompen, J. S. H., Black, W. C. IV, Keirans, J. E. & Oliver, J. H. (1996). Evolution of ticks. Annual Reviews in Entomology 41, 141–161.CrossRefGoogle ScholarPubMed
Kone, K. (1948). Accidents mortels chez les zébus causés par des piqûres d'Ornithodoros. Bulletin des Services de l'Elevage et des Industries de A.O.F. 2, 25–26.Google Scholar
Lindquist, E. E. (1984). Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In Acarology VI, vol. 1, eds. Griffiths, D. A. & Bowman, C. E., pp. 28–62. New York: John Wiley.Google Scholar
Madigan, J. E., Valberg, S. J., Ragle, C. & Moody, J. L. (1995). Muscle spasms associated with ear tick (Otobius megnini) infestations in five horses. Journal of the American Veterinary Medical Association 207, 74–76.Google ScholarPubMed
Mans, B. J. (2005). Tick histamine-binding proteins and related lipocalins: potential as therapeutic agents. Current Opininion in Investigative Drugs 6, 1131–1135.Google ScholarPubMed
Mans, B. J., Gothe, R. & Neitz, A. W. (2004). Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology 129, S95–S111.CrossRefGoogle ScholarPubMed
Mans, B. J., Louw, A. I. & Neitz, A. W. H. (2003). The major tick salivary gland proteins and toxins from the soft tick, Ornithodoros savignyi, are part of the lipocalin family: implications for the origins of tick toxicoses. Molecular Biology and Evolution 20, 1158–1167.CrossRefGoogle ScholarPubMed
Mans, B. J., Steinmann, C. M., Venter, J. D., Louw, A. I. & Neitz, A. W. H. (2002). Pathogenic mechanisms of sand tampan toxicoses induced by the tick, Ornithodoros savignyi. Toxicon 40, 1007–1016.CrossRefGoogle ScholarPubMed
Mans, B. J., Venter, J. D., Vrey, P. J., Louw, A. I. & Neitz, A. W. H. (2001). Identification of putative proteins involved in granule biogenesis of tick salivary glands. Electrophoresis 22, 1739–1746.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Maritz, C., Louw, A. I., Gothe, R. & Neitz, A. W. (2000). Detection and micro-scale isolation of a low molecular mass paralysis toxin from the tick, Argas (Persicargas) walkerae. Experimental and Applied Acarology 24, 615–630.CrossRefGoogle ScholarPubMed
Maritz, C., Louw, A. I., Gothe, R. & Neitz, A. W. (2001). Neuropathogenic properties of Argas (Persicargas) walkerae larval homogenates. Comparative Biochemistry and Physiology A 128, 233–239.CrossRefGoogle ScholarPubMed
Masina, S. & Broady, K. W. (1999). Tick paralysis: development of a vaccine. International Journal for Parasitology 29, 535–541.CrossRefGoogle ScholarPubMed
Menez, A. (1998). Functional architectures of animal toxins: a clue to drug design?Toxicon 36, 1557–7152.CrossRefGoogle ScholarPubMed
Murnaghan, M. F. & O'Rouke, F. J. (1978). Tick paralysis. In Handbook of Experimental Pharmacology, vol. 48, Arthropod Venoms, eds. Bettini, S., pp. 419–464. Berlin: Springer-Verlag.Google Scholar
Neitz, W. O. (1954). Hyalomma transiens Schulze: a vector of sweating sickness. Journal of the South African Veterinary Medical Association 25, 19–20.Google Scholar
Neitz, W. O. (1956). Studies on the aetiology of sweating sickness. Onderstepoort Journal of Veterinary Research 27, 197–203.Google Scholar
Neitz, W. O. (1959). Sweating sickness: the present state of our knowledge. Onderstepoort Journal of Veterinary Research 28, 3–38.Google Scholar
Neitz, W. O. (1962). The different forms of tick toxicoses: a review. In 2nd Meeting of the FAO/OIE Expert Panel on Tick-Borne Diseases of Livestock, Cairo, U.A.R., 3–10 December.
Neitz, A. W. H. (1976). Biochemical investigation into the toxic salivary secretion of the tick Ornithodoros savignyi. Unpublished D.S. c (Agric) thesis, University of Pretoria, South Africa.
Neitz, A. W. & Gothe, R. (1986). Changes in the protein pattern in the salivary glands of paralysis inducing female Rhipicephalus evertsi evertsi during infestation. Journal of Veterinary Medicine B 33, 213–220.CrossRefGoogle ScholarPubMed
Neitz, A. W. H., Bezuidenhout, J. D., Vermeulen, N. M. J., Potgieter, D. J. J. & Howell, C. J. (1983). In search of the causal agents of tick toxicoses. Toxicon S3, 317–320.CrossRefGoogle Scholar
Neitz, A. W. H., Howell, C. J. & Potgieter, D. J. J. (1969). Purification of the toxic component in the oral secretion of the sand tampan Ornithodoros savignyi Audouin (1827). Journal of the South African Chemical Industry 22, 142–149.Google Scholar
Neitz, A. W. H., Prozesky, L., Bezuidenhout, J. D., Putterill, J. F. & Potgieter, D. J. (1981). An investigation into the toxic principle in eggs of the tick Amblyomma hebraeum. Onderstepoort Journal of Veterinary Research 48, 109–117.Google ScholarPubMed
Nunn, M. A., Sharma, A., Paesen, G. C., et al. (2005). Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. Journal of Immunology 174, 2084–2091.CrossRefGoogle ScholarPubMed
Oswald, B. (1938). A review of work published in Yugoslavia on the tick problem and research on toxins in the eggs of ticks. Annales de Parasitologie Humaine et Comparée 16, 548–559.CrossRefGoogle Scholar
Paesen, G. C., Adams, P. L., Harlos, K., Nuttall, P. A. & Stuart, D. I. (1999). Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Molecular Cell 3, 661–671.CrossRefGoogle ScholarPubMed
Paesen, G. C., Adams, P. L., Nuttall, P. A. & Stuart, D. L. (2000). Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochimica et Biophysica Acta 1482, 92–101.CrossRefGoogle ScholarPubMed
Peacock, P. B. (1958). Tick paralysis or poliomyelitis. South African Medical Journal 32, 201–202.Google ScholarPubMed
Quercia, O., Emiliani, F., Foschi, F. G. & Stefanini, G. F. (2005). Anaphylactic shock to Argas reflexus bite. Allergy and Immunology (Paris) 37, 66–8.Google ScholarPubMed
Rash, L. D. & Hodgson, W. C. (2002). Pharmacology and biochemistry of spider venoms. Toxicon 40, 225–254.CrossRefGoogle ScholarPubMed
Regendanz, P. & Reichenow, E. (1931). Über Zeckengift und Zeckenparalyse. Archiv für Schiffs- und Tropen-Hygiene 35, 255–273.Google Scholar
Rich, G. B. (1957). The ear tick, Otobius megnini (Dugès) (Acarina: Argasidae), and its record in British Columbia. Candian Journal of Comparative Medicine 21, 415–418.Google Scholar
Riek, R. F. (1957). Studies on the reactions of animals to infestation with ticks. Australian Journal of Agricultural Research 8, 215–223.CrossRefGoogle Scholar
Riek, R. F. (1958). Studies on the reactions of animals to infestation with ticks. Australian Journal of Agricultural Research 9, 830–841.CrossRefGoogle Scholar
Riek, R. F. (1959). Studies on the reactions of animals to infestation with ticks. Australian Journal of Agricultural Research 10, 604–613.CrossRefGoogle Scholar
Rolla, G., Nebiolo, F., Marsico, P., et al. (2004). Allergy to pigeon tick (Argas reflexus): demonstration of specific IgE-binding components. International Archives for Allergy and Immunology 135, 293–295.CrossRefGoogle ScholarPubMed
Rousselot, R. (1956). Meeting report No. 1956/18, Report of the Joint FAO/OIE Meeting on the Control of Tick-Borne Diseases of livestock. Rome: Food and Agriculture Organization.
Shultz, J. W. (1990). Evolutionary morphology and phylogeny of Arachnida. Cladistics 6, 1–38.CrossRefGoogle Scholar
Sirianni, M. C., Mattiacci, G., Barbone, B., et al. (2000). Anaphylaxis after Argas reflexus bite. Allergy 55, 303.CrossRefGoogle ScholarPubMed
Sonenshine, D. E. (1993). Biology of Ticks, vol. 2. Oxford, UK: Oxford University Press.Google Scholar
Spickett, A. M., Burger, D. B., Crause, J. C., Roux, E. M. & Neitz, A. W. H. (1991). Sweating sickness: relative curative effect of hyperimmune serum and precipitated immunoglobin suspension and immunoblot identification of proposed immunodominant tick salivary gland proteins. Onderstepoort Journal of Veterinary Research 58, 223–226.Google Scholar
Spiewak, R., Lundberg, M., Johansson, G. & Buczek, A. (2006). Allergy to pigeon tick (Argas reflexus) in Upper Silesia, Poland. Annals of Agricultural and Environmental Medicine 13, 107–112.Google Scholar
Stampa, S. (1959). Tick paralysis in the Karoo areas of South Africa. Onderstepoort Journal of Veterinary Research 28, 169–227.Google Scholar
Standbury, J. B. & Huyck, J. H. (1945). Tick paralysis: a critical review. Medicine (Baltimore) 24, 219–242.CrossRefGoogle Scholar
Steinhaus, E. A. (1942). Note on a toxic principle in eggs of the tick, Dermacentor andersoni Stiles. United States Public Health Report 57, 1310–1312.CrossRefGoogle Scholar
Stone, B. F. & Binnington, K. C. (1986). The paralyzing toxin and other immunogens of the tick I. holocyclus and the role of the salivary glands in their biosyntheses. In Morphology, Physiology and Behavioral Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 75–99. Chichester, UK: Ellis Horwood.Google Scholar
Stone, B. F., Binnington, K. C., Gauci, M. & Aylward, J. H. (1989). Tick/host interactions for Ixodes holocyclus: role, effects, biosynthesis and nature of its toxic and allergenic oral secretions. Experimental and Applied Acarology 7, 59–69.CrossRefGoogle ScholarPubMed
Stone, B. F., Doube, B. F. & Binnington, K. C. (1979). Toxins of the Australian paralysis tick Ixodes holocyclus. Recent Advances in Acarology 1, 347–356.CrossRefGoogle Scholar
Tanaka, A. S., Andreotti, R., Gomes, A., et al. (1999). A double-headed serine proteinase inhibitor–human plasma kallikrein and elastase inhibitor from Boophilus microplus larvae. Immunopharmacology 45, 171–177.CrossRefGoogle ScholarPubMed
Thomas, A. D. & Neitz, W. O. (1958). Rhipicephaline tick toxicosis in cattle: its possible aggravating effects on certain diseases. Journal of the South African Veterinary Medical Association 29, 29–50.Google Scholar
Thurn, M. J., Gooley, A. & Broady, K. W. (1992). Identification of the neurotoxin from the paralysis tick, Ixodes holocyclus. In Recent Advances in Toxicology Research, vol. 2, eds. Gopalakrishnakone, P. & Tan, C. K., pp. 243–256. Singapore: Venom and Toxin Research Group, National University of Singapore.Google Scholar
Tomalski, M. D. & Miller, L. K. (1991). Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature 352, 72–75.CrossRefGoogle ScholarPubMed
Tomalski, M. D., Hutchinson, K., Todd, J. & Miller, L. K. (1993). Identification and characterization of tox21A: a mite cDNA encoding a paralytic neurotoxin related to TxP-I. Toxicon 31, 319–326.CrossRefGoogle ScholarPubMed
Vermeulen, N. M. J. & Neitz, A. W. H. (1987). Biochemical studies on the eggs of Amblyomma hebrauem. Onderstepoort Journal of Veterinary Research 54, 451–459.Google Scholar
Vermeulen, N. M. J., Neitz, A. W. H., Potgieter, D. J. J. & Bezuidenhout, J. D. (1984). Anti-protease from Amblyomma hebraeum. Insect Biochemistry 14, 705–711.CrossRefGoogle Scholar
Vermeulen, N. M. J., Viljoen, G. J., Bezuidenhout, J. D., Visser, L. & Neitz, A. W. H. (1988). Kinetic properties of toxic protease inhibitors isolated from tick eggs. International Journal of Biochemistry 20, 621–631.CrossRefGoogle ScholarPubMed
Viljoen, G. J., Bezuidenhout, J. D., Oberem, P. T., et al. (1986). Isolation of a neurotoxin from the salivary glands of female Rhipicephalus evertsi evertsi. Journal of Parasitology 72, 865–874.CrossRefGoogle ScholarPubMed
Viljoen, G. J., Neitz, A. W. H., Prozesky, L., Bezuidenhout, J. D. & Vermeulen, N. M. J. (1985). Purification and properties of tick egg toxic proteins. Insect Biochemistry 15, 475–482.CrossRefGoogle Scholar
Viljoen, G. J., Wyngaardt, S., Gothe, R., et al. (1990). The detection and isolation of a paralysis toxin present in Argas (Persicargas) walkerae. Onderstepoort Journal of Veterinary Research 57, 163–168.Google ScholarPubMed
Walter, D. E. & Proctor, H. C. (1998). Feeding behaviour and phylogeny: observations on early derivative Acari. Experimental and Applied Acarology 22, 39–50.CrossRefGoogle Scholar
Wang, H. & Nuttall, P. A. (1994). Excretion of host immunoglobulin in tick saliva and detection of IgG-binding proteins in tick haemolymph and salivary glands. Parasitology 109, 525–30.CrossRefGoogle ScholarPubMed
Waxman, L. & Connolly, T. M. (1993). Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata. Journal of Biological Chemistry 268, 5445–5449.Google ScholarPubMed
Wikel, S. K. (1984). Tick and mite toxicoses and allergy. In Handbook of Natural Toxins, vol. 2, Insect Poisons, Allergens and Other Invertebrate Venoms, ed. Tu, A. T., pp. 371–396. New York: Marcel Dekker.Google Scholar
Willadsen, P. & McKenna, R. V. (1983). Trypsin– chymotrypsin inhibitors from the tick, Boophilus microplus. Australian Journal of Experimental Biology and Medical Science 61, 231–238.CrossRefGoogle ScholarPubMed
Willadsen, P. & Riding, G. A. (1979). Characterization of a proteolytic-enzyme inhibitor with allergenic activity: multiple functions of a parasite-derived protein. Biochemical Journal 177, 41–47.CrossRefGoogle ScholarPubMed
Willadsen, P. & Riding, G. (1980). On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochemical Journal 189, 295–303.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×