Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-07T22:27:07.512Z Has data issue: false hasContentIssue false

2 - Mechanism of thermal degradation of layered silicates modified with ammonium and other thermally stable salts

from Part I - Thermal stability

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

The development of polymer/clay nanocomposites as commercial materials faces the problem of limited miscibility of inorganic hydrophilic layered silicates and organic hydrophobic polymers. Intensive studies have led to various strategies, including the use of surface-active organic compounds, chemical modification of the polymer matrix, and application of macromolecular compatibilizers that produce a desired improvement of miscibility and therefore facilitate the formation of nanostructure. The application of organically modified clays provides certain properties to nanocomposite materials superior to those of systems containing sodium montmorillonite. However, ammonium salts, which are most frequently applied, suffer from thermal degradation during the fabrication and further processing of nanocomposites. This leads to changes in the surface properties of clays resulting in alteration of nanocomposite structure and related properties and facilitates the occurrence of some unwanted side reactions and the contamination of polymeric material with the products of thermal degradation of an organic modifier, which may be responsible for enhanced thermal degradation of the polymer matrix, accelerated aging, color formation, plasticization effects, and so forth. The need to improve the thermal stability of organoclays applied in the preparation of polymeric nanocomposites has motivated the search for an organic modifier combining high thermal stability with high efficiency in facilitating dispersion of a nanofiller in a polymer matrix.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kar, S.Maji, P. K.Bhowmick, A. K.Chlorinated polyethylene nanocomposites: Thermal and mechanical behaviorJournal of Materials Science 45 2010 64CrossRefGoogle Scholar
Carastan, D.Demarquette, N.Microstructure of nanocomposites of styrenic polymersMacromolecular Symposia 233 2006 152CrossRefGoogle Scholar
Liu, G.Zhang, L.Zhao, D.Qu, X.Bulk polymerization of styrene in the presence of organomodified montmorilloniteJournal of Applied Polymer Science 96 2005 1146CrossRefGoogle Scholar
Dharaiya, D.Jana, S. C.Thermal decomposition of alkyl ammonium ions and its effects on surface polarity of organically treated nanoclayPolymer 46 2005 10139CrossRefGoogle Scholar
Yoon, P. J.Hunter, D. L.Paul, D. R.Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and propertiesPolymer 44 2003 5323CrossRefGoogle Scholar
Monticelli, O.Musina, Z.Frache, A.Bellucci, F.Camino, G.Russo, S.Influence of compatibilizer degradation on formation and properties of PA6/organoclay nanocompositesPolymer Degradation and Stability 92 2007 370CrossRefGoogle Scholar
Yoon, P. J.Hunter, D. L.Paul, D. R.Polycarbonate nanocomposites. Part 2. Degradation and color formationPolymer 44 2003 5341CrossRefGoogle Scholar
Fornes, T. D.Yoon, P. J.Paul, D. R.Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocompositesPolymer 44 2003 7545CrossRefGoogle Scholar
Park, J. H.Jana, S. C.Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy–clay systemsPolymer 45 2004 7673CrossRefGoogle Scholar
Le Pluart, L.Duchet, J.Sautereau, H.Gerard, J.Surface modifications of montmorillonite for tailored interfaces in nanocompositesJournal of Adhesion 78 2002 645CrossRefGoogle Scholar
Gao, Z.Xie, W.Hwu, J. M.Wells, L.Pan, W.-P.The characterization of organic modified montmorillonite and its filled PMMA nanocompositeJournal of Thermal Analysis and Calorimetry 64 2001 467CrossRefGoogle Scholar
Edwards, G.Halley, P.Kerven, G.Martin, D.Thermal stability analysis of organo-silicates, using solid phase microextraction techniquesThermochimica Acta 429 2005 13CrossRefGoogle Scholar
Ni, R.Huang, Y.Yao, C.Thermogravimetric analysis of organoclays intercalated with the gemini surfactantsJournal of Thermal Analysis and Calorimetry 96 2009 943CrossRefGoogle Scholar
Morrison, R. T.Boyd, R. N.Organic ChemistryLondonPrentice-Hall International 1992Google Scholar
Xie, W.Gao, Z.Pan, W. P.Hunter, D.Singh, A.Vaia, R.Thermal degradation chemistry of alkyl quaternary ammonium montmorilloniteChemistry of Materials 13 2001 2979CrossRefGoogle Scholar
Cui, L.Khramov, D. M.Bielawski, C. W.Hunter, D. L.Yoon, P. J.Paul, D. R.Effect of organoclay purity and degradation on nanocomposite performance. Part 1. Surfactant degradationPolymer 49 2008 3751CrossRefGoogle Scholar
Cervantes-Uc, J. M.Cauich-Rodríguez, J. V.Vázquez-Torres, H.Garfias-Mesías, L. F.Paul, D. R.Thermal degradation of commercially available organoclays studied by TGA-FTIRThermochimica Acta 457 2007 92CrossRefGoogle Scholar
Xie, W.Gao, Z.Liu, K.Pan, W. P.Vaia, R.Hunter, D.Singh, A.Thermal characterization of organically modified montmorilloniteThermochimica Acta 2001 339CrossRefGoogle Scholar
Vazquez, A.López, M.Kortaberria, G.Martín, L.Mondragon, I.Modification of montmorillonite with cationic surfactants: Thermal and chemical analysis including CEC determinationApplied Clay Science 41 2008 24CrossRefGoogle Scholar
Zhu, J.He, H.Guo, J.Yang, D.Xie, X.Arrangement models of alkylammonium cations in the interlayer of HDTMA pillared montmorillonitesChinese Science Bulletin 48 2003 368Google Scholar
Gillman, G. P.Sumpter, E. A.Modification to the compulsive exchange method for measuring exchange characteristics of soilsAustralian Journal of Soil Research 24 1986 61CrossRefGoogle Scholar
Gelfer, M.Burger, C.Fadeev, A.Sics, I.Chu, B.Hsiao, B. S.Heintz, A.Kojo, K.Hsu, S. L.Si, M.Rafailovich, A.Thermally induced phase transitions and morphological changes in organoclaysLangmuir 20 2004 3746CrossRefGoogle ScholarPubMed
Kooli, F.Magusin, P. C. M. M.Adsorption of cetyltrimethyl ammonium ions on an acid-activated smectite and their thermal stabilityClay Minerals 40 2005 233CrossRefGoogle Scholar
Dyer, J. R.Applications of Absorption Spectroscopy of Organic CompoundsUpper Saddle River, NJPrentice Hall 1965Google Scholar
He, H. P.Ding, Z.Zhu, J. X.Yuan, P.Xi, Y. F.Yang, D.Frost, R. L.Thermal characterization of surfactant-modified montmorillonitesClays and Clay Minerals 53 2005 287CrossRefGoogle Scholar
Bertini, F.Canetti, M.Leone, G.Tritto, I.Thermal behavior and pyrolysis products of modified organo-layered silicates as intermediates for in situ polymerizationJournal of Analytical and Applied Pyrolysis 86 2009 74CrossRefGoogle Scholar
Stoeffler, K.Lafleur, P. G.Denault, J.Thermal decomposition of various alkyl onium organoclays: Effect on polyethylene terephthalate nanocomposites’ propertiesPolymer Degradation and Stability 93 2008 1332CrossRefGoogle Scholar
Dintcheva, N. T.Al-Malaika, S.La Mantia, F. P.Effect of extrusion and photo-oxidation on polyethylene/clay nanocompositesPolymer Degradation and Stability 94 2009 1571CrossRefGoogle Scholar
Alencar, J. W.Alves, P. B.Craveiro, A. A.Pyrolysis of tropical vegetable oilsJournal of Agricultural and Food Chemistry 31 1983 1268CrossRefGoogle Scholar
Galimberti, M.Martino, M.Guenzi, M.Leonardi, G.Citterio, A.Thermal stability of ammonium salts as compatibilizers in polymer/layered silicate nanocompositese-Polymers 2009 056Google Scholar
Cody, C.Campbell, B.Chiavoni, A.Magauran, E.Organoclay CompositionsU.S. Patent 1997Google Scholar
Cody, C. A.Kemnetz, S. J.Improved Organophilic Clay Gellant and Processes for Preparing Organophilic Clay GellantsEU Patent Application 1989Google Scholar
Mardis, W. S.Malcolm, C.Organophilic Organic-Clay ComplexesUK Patent GB 1983Google Scholar
Bellucci, F.Camino, G.Frache, A.Sarra, A.Catalytic charring–volatilization competition in organoclay nanocompositesPolymer Degradation and Stability 92 2007 425CrossRefGoogle Scholar
Qin, H. L.Zhang, Z. G.Feng, M.Gong, F. L.Zhang, S. M.Yang, M. S.The influence of interlayer cations on the photo-oxidative degradation of polyethylene/montmorillonite compositesJournal of Polymer Science Part B: Polymer Physics 42 2004 3006CrossRefGoogle Scholar
Yariv, S.The role of charcoal on DTA curves of organo-clay complexes: An overviewApplied Clay Science 24 2004 225CrossRefGoogle Scholar
Scaffaro, R.Mistretta, M. C.La Mantia, F. P.Compatibilized polyamide 6/polyethylene blend–clay nanocomposites: Effect of the degradation and stabilization of the clay modifierPolymer Degradation and Stability 93 2008 1267CrossRefGoogle Scholar
Pielichowski, K.Njuguna, J.Thermal Degradation of Polymeric MaterialsShawburyRapra 2005Google Scholar
Pielichowski, K.Leszczyńska, A.TG-FTIR study of the thermal degradation of polyoxymethylene (POM)/thermoplastic polyurethane (TPU) blendsJournal of Thermal Analysis and Calorimetry 78 2004 631CrossRefGoogle Scholar
Shah, R. K.Paul, D. R.Organoclay degradation in melt processed polyethylene nanocompositesPolymer 47 2006 4075CrossRefGoogle Scholar
Takekoshi, T.Khouri, F. F.Campbell, J. R.Jordan, T. C.Dai, K. H.Layered Minerals and Compositions Comprising the SameU.S. Patent439 1998Google Scholar
Hudson, R. F.Structure and Mechanism in Organo-Phosphorus ChemistryNew YorkAcademic Press 1965Google Scholar
Xie, W.Xie, R.Pan, W.-P.Hunter, D.Koene, B.Tan, L.-S.Vaia, R.Thermal stability of quaternary phosphonium modified montmorillonitesChemistry of Materials 14 2002 4837CrossRefGoogle Scholar
Weast, R. C.Handbook of Chemistry and PhysicsBoca Raton, FLCRC Press 1984Google Scholar
Semenzato, S.Lorenzetti, A.Modesti, M.Ugel, E.Hrelja, D.Besco, S.Michelin, R. A.Sassi, A.Facchin, G.Zorzi, F.Bertani, R.A novel phosphorus polyurethane FOAM/montmorillonite nanocomposite: Preparation, characterization and thermal behaviourApplied Clay Science 44 2009 35CrossRefGoogle Scholar
Calderon, J. U.Lennox, B.Kamal, M. R.Thermally stable phosphonium–montmorillonite organoclaysApplied Clay Science 40 2008 90CrossRefGoogle Scholar
Patel, H. A.Somani, R. S.Bajaj, H. C.Jasra, R. V.Preparation and characterization of phosphonium montmorillonite, with enhanced thermal stabilityApplied Clay Science 35 2007 194CrossRefGoogle Scholar
Patro, T. U.Khakhar, D. V.Misra, A.Phosphonium-based layered silicate-poly(ethylene terephthalate) nanocomposites: Stability, thermal and mechanical propertiesJournal of Applied Polymer Science 113 2009 1720CrossRefGoogle Scholar
Hedley, C. B.Yuan, G.Theng, B. K. G.Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactantsApplied Clay Science 35 2007 180CrossRefGoogle Scholar
Moens, L.Blake, D. M.Rudnicki, D. L.Hale, M. J.Advanced thermal storage fluids for solar parabolic trough systemsJournal of Solar Energy Engineering 125 2003 112CrossRefGoogle Scholar
Toh, C. L.Xi, L. F.Lau, S. K.Pramoda, K. P.Chua, Y. C.Lu, X. H.Packing behaviors of structurally different polyhedral oligomeric silsesquioxane–imidazolium surfactants in clayJournal of Physical Chemistry B 114 2010 207CrossRefGoogle ScholarPubMed
Ngo, H. L.Le Compte, K.Hargens, L.Mc Ewen, A. B.Thermal properties of imidazolium ionic liquidsThermochimica Acta357 2000Google Scholar
Monemian, S. A.Goodarzi, V.Zahedi, P.Angaji, M. T.PET/imidazolium-based OMMT nanocomposites via in situ polymerization: Morphological, thermal, and nonisothermal crystallization studiesAdvances in Polymer Technology 26 2007 247CrossRefGoogle Scholar
Davis, C. H.Mathias, L. J.Gilman, J. W.Schiraldi, J. R.Trulove, P.Sutto, T. E.Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocompositesJournal of Polymer Science Part B: Polymer Physics 40 2002 2661CrossRefGoogle Scholar
Cui, L.Bara, J. E.Brun, Y.Yoo, Y.Yoon, P. J.Paul, D. R.Polyamide- and polycarbonate-based nanocomposites prepared from thermally stable imidazolium organoclayPolymer 50 2009 2492CrossRefGoogle Scholar
Modesti, M.Besco, S.Lorenzetti, A.Zammarano, M.Causin, V.Marega, C.Gilman, J. W.Fox, D. M.Trulove, P. C.De Long, H. C.Maupin, P. H.Imidazolium–modified clay-based ABS nanocomposites: A comparison between melt-blending and solution-sonication processesPolymers for Advanced Technologies 19 2008 1576Google Scholar
Ding, Y. S.Zhang, X. M.Xiong, R. Y.Wu, S. Y.Zha, M.Tang, H. O.Effects of montmorillonite interlayer micro-circumstance on the PP melting intercalationEuropean Polymer Journal 44 2008 24CrossRefGoogle Scholar
Kim, N. H.Malhotra, S. V.Xanthos, M.Modification of cationic nanoclays with ionic liquidsMicroporous and Mesoporous Materials 96 2006 29CrossRefGoogle Scholar
He, A.Hu, H.Huang, Y.Dong, J.-Y.Han, C. C.Isotactic Poly(propylene)/monoalkylimidazolium-modified montmorillonite nanocomposites: Preparation by intercalative polymerization and thermal stability studyMacromolecular Rapid Communication 25 2004 2008CrossRefGoogle Scholar
Mittal, V.Gas permeation and mechanical properties of polypropylene nanocomposites with thermally-stable imidazolium modified clayEuropean Polymer Journal 43 2007 3727CrossRefGoogle Scholar
Chua, Y. C.Lu, X. H.Wan, Y.Polymorphism behavior of poly(ethylene naphthalate)/clay nanocompositesJournal of Polymer Science Part B: Polymer Physics 44 2006 1040CrossRefGoogle Scholar
Matzke, M.Thiele, K.Muller, A.Filser, J.Sorption and desorption of imidazolium based ionic liquids in different soil typesChemosphere 74 2009 568CrossRefGoogle ScholarPubMed
Chan, B. K. M.Chang, N.-H.Grimmett, M. R.The synthesis and thermolysis of imidazole quaternary saltsAustralian Journal of Chemistry 30 1977 2005CrossRefGoogle Scholar
Awad, W. H.Gilman, J. W.Nyden, M.Harris, R. H.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Fox, D. M.Thermal degradation studies of alkyl-imidazolium salts and their application in nanocompositesThermochimica Acta 409 2004 3CrossRefGoogle Scholar
Abate, L.Blanco, I.Bottino, F. A.Di Pasquale, G.Fabbri, E.Orestano, A.Pollicino, A.Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactantsJournal of Thermal Analysis and Calorimetry 91 2008 681CrossRefGoogle Scholar
Gilman, J. W.Awad, W. H.Davis, R. D.Shields, J.Harris, R. H.Davis, C.Morgan, A. B.Sutto, T. E.Callahan, J.Trulove, P. C.Delong, H. C.Polymer/layered silicate nanocomposites from thermally stable trialkylimidazoliumtreated montmorilloniteChemistry of Materials 14 2002 3776CrossRefGoogle Scholar
Langat, J.Bellayer, S.Hudrlik, P.Hudrlik, A.Maupin, P. H.Gilman, Sr J. W.Raghavan, D.Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocompositesPolymer 47 2006 6698CrossRefGoogle Scholar
Ruiz-Hitzky, E.Rojo, J. M.Intracrystalline grafting on layer silicic acidsNature 287 1980 28CrossRefGoogle Scholar
Chen, C.Katsoulis, D.Kenney, M. E.Sheet and Tube Organosilicon PolymersU.S. Patent 1996Google Scholar
Chen, C.Katsoulis, D.Kenney, M. E.Silicone Gels and Composites from Sheet and Tube Organofunctional Siloxane PolymersU.S. Patent 6013705 2000Google Scholar
Chao, T. C.Katsoulis, D.Kenney, M. E.Synthesis and characterization of organosilicon sheet and tube polymersChemistry of Materials 13 2001 4269CrossRefGoogle Scholar
Chow, W. S.Neoh, S. S.Dynamic mechanical, thermal, and morphological properties of silane-treated montmorillonite reinforced polycarbonate nanocompositesJournal of Applied Polymer Science 114 2009 3967CrossRefGoogle Scholar
Chen, C.Yebassa, D.Raghavan, D.Synthesis, characterization, and mechanical properties evaluation of thermally stable apophyllite vinyl ester nanocompositesPolymers for Advanced Technologies 18 2007 574CrossRefGoogle Scholar
Abiko, T.Onikata, M.Development of Highly Dispersed Nanocomposites Using Novel Modification of Bentonite ClaysJapan Society for Polymer Processing (JSPP) SymposiumKanazawa3 2003Google Scholar
Ruiz-Hitzky, E.Van Meerbeek, A.Clay mineral and organoclay–polymer nanocompositesHandbook of Clay ScienceBergaya, F.Theng, B. K. G.Lagal, G.AmsterdamElsevier 2006 583CrossRefGoogle Scholar
Chen, D.Zhu, J. X.Yuan, P.Yang, S. J.Chen, T.-H.He, H. P.Preparation and characterization of anion–cation surfactants modified montmorilloniteJournal of Thermal Analysis Calorimetry 94 2008 841CrossRefGoogle Scholar
Pielichowski, K.Leszczyńska, A.Polyoxymethylene-based nanocomposites with montmorillonite: An introductory studyPolimery 51 2006 60Google Scholar
Camino, G.Tartaglione, G.Frache, A.Manferti, C.Costa, G.Thermal and combustion behaviour of layered silicate–epoxy nanocompositesPolymer Degradation and Stability 90 2005 354CrossRefGoogle Scholar
Billingham, J.Breen, C.Yarwood, J.In situ determination of Brønsted/Lewis acidity on cation-exchanged clay mineral surfaces by ATR-IRClay Minerals 31 1996 513CrossRefGoogle Scholar
Kou, M. R. S.Mendioroz, S.Munoz, V.Evaluation of the acidity of pillared montmorillonites by pyridine adsorptionClays and Clay Minerals 48 2000 528CrossRefGoogle Scholar
Li, Q. B.Hunter, K. C.East, A. L. L.A theoretical comparison of Lewis acid vs Brønsted acid catalysis for -hexane → propane + propeneJournal of Physical Chemistry A 109 2005 6223CrossRefGoogle ScholarPubMed
Avalos, F.Ortiz, J. C.Zitzumbo, R.López-Manchado, M. A.Verdejo, R.Arroyo, M.Phosphonium salt intercalated montmorillonitesApplied Clay Science 43 2009 27CrossRefGoogle Scholar
Ming-Yuan, H.Zhonghui, L.Enze, M.Acidic and hydrocarbon catalytic properties of pillared clayCatalysis Today 2 1988 321CrossRefGoogle Scholar
Cai, Y.Huang, F.Wei, Q.Song, L.Hu, Y.Ye, Y.Xu, Y.Gao, W.Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibersPolymer Degradation and Stability 93 2008 2180CrossRefGoogle Scholar
Liu, J.Hu, Y.Wang, S. F.Song, L.Chen, Z. Y.Fan, W. C.Preparation and characterization of nylon 6/Cu2+-exchanged and Fe3+-exchanged montmorillonite nanocompositeColloid and Polymer Science 282 2004 291CrossRefGoogle Scholar
Allen, N. S.Harrison, M. J.Ledward, M.Fellows, G. W.Thermal and photo-chemical degradation of nylon 6,6 polymer. Part III – Influence of iron and metal deactivatorsPolymer Degradation and Stability 23 1989 165CrossRefGoogle Scholar
Dunn, P.Sansom, G. F.The stress cracking of polyamides by metal salts. Part II. Mechanism of crackingJournal of Applied Polymer Science 13 1969 1657CrossRefGoogle Scholar
Kong, Q.Hu, Y.Song, L.Yi, C.Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocompositesPolymers for Advanced Technologies 20 2009 404CrossRefGoogle Scholar
Zhu, J.Uhl, F. M.Morgan, A. B.Wilkie, C. A.Studies on the mechanism by which the formation of nanocomposites enhances thermal stabilityChemistry of Materials 13 2001 4649CrossRefGoogle Scholar
Bordes, P.Hablot, E.Pollet, E.Avérous, L.Effect of clay organomodifiers on degradation of polyhydroxyalkanoatesPolymer Degradation and Stability 94 2009 789CrossRefGoogle Scholar
Bottino, F. A.Di Pasquale, G.Fabbri, E.Orestano, A.Pollicino, A.Influence of montmorillonite nano-dispersion on polystyrene photo-oxidationPolymer Degradation and Stability 94 2009 369CrossRefGoogle Scholar
Pielichowski, K.Leszczyńska, A.Njuguna, J.Mechanism of thermal stability enhancement in polymer nanocompositesOptimization of Polymer Nanocomposite PropertiesMittal, V.WeinheimWiley–VCH 2010Google Scholar
Xi, Y.Ding, Z.He, H.Frost, R. L.Structure of organoclays – An X-Ray diffraction and thermogravimetric analysis studyJournal of Colloid and Interface Science 277 2004 116CrossRefGoogle ScholarPubMed
Xi, Y.Zhou, Q.Frost, R. L.He, H.Thermal stability of octadecyltrimethyl-ammonium bromide modified montmorillonite organoclayJournal of Colloid and Interface Science 311 2007 347CrossRefGoogle Scholar
Zhu, R.Zhu, L.Zhu, J.Xu, L.Structure of cetyltrimethylammonium intercalated hydrobiotiteApplied Clay Science 42 2008 224CrossRefGoogle Scholar
Zidelkheir, B.Abdelgoad, M.Effect of surfactant agent upon the structure of montmorillonite X-Ray diffraction and thermal analysisJournal of Thermal Analysis and Calorimetry 94 2008 181CrossRefGoogle Scholar
Osman, M. A.Ploetze, M.Suter, U. W.Surface treatment of clay minerals – Thermal stability, basal-plane spacing and surface coverageJournal of Materials Chemistry 13 2003 2359CrossRefGoogle Scholar
Avalos, F.Ortiz, J. C.Zitzumbo, R.López-Manchado, M. A.Verdejo, R.Arroyo, M.Effect of montmorillonite intercalant structure on the cure parameters of natural rubberEuropean Polymer Journal 44 2008 3108CrossRefGoogle Scholar
Davis, R. D.Gilman, J. W.Sutto, T. W.Callahan, J. H.Trulove, P. C.De Long, H. C.Improved thermal stability of organically modified layered silicatesClays and Clay Minerals 52 2004 171CrossRefGoogle Scholar
Morgan, A. B.Harris, J. D.Effects of organoclay Soxhlet extraction on mechanical properties, flammability properties and organoclay dispersion of polypropylene nanocompositesPolymer 44 2003 2313CrossRefGoogle Scholar
Cui, L.Hunter, D. L.Yoon, P. J.Paul, D. R.Effect of organoclay purity and degradation on nanocomposite performance. Part 2. Morphology and properties of nanocompositesPolymer 49 2008 3762CrossRefGoogle Scholar
Marras, S. I.Tsimpliaraki, A.Zuburtikudis, I.Panayiotou, C.Morphological, thermal, and mechanical characteristics of polymer/layered silicate nanocomposites: The role of filler modification levelPolymer Engineering and Science 49 2009 1206CrossRefGoogle Scholar
Ratinac, K. R.Gilbert, R. G.Ye, L.Jones, A. S.Ringer, S. P.The effects of processing and organoclay properties on the structure of poly(methyl methacrylate)–clay nanocompositesPolymer 47 2006CrossRefGoogle Scholar
Mandalia, T.Bergaya, F.Organo clay mineral–melted polyolefin nanocomposites: Effect of surfactant/CEC ratioJournal of Chemistry and Physics of Solids 67 2006CrossRefGoogle Scholar
Shah, R. K.Hunter, D. L.Paul, D. R.Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: Effect of surfactant structure on morphology and propertiesPolymer 46 2005 2646CrossRefGoogle Scholar
Panek, G.Schleidt, S.Mao, Q.Wolkenhauer, M.Spiess, H. W.Jeschke, G.Heterogeneity of the surfactant layer in organically modified silicates and polymer/layered silicate compositesMacromolecules 39 2006CrossRefGoogle Scholar
Garcia-Lopez, D.Gobernado-Mitre, I.Fernandez, J. F.Merino, J. C.Pastor, J. M.Influence of clay modification process in PA6-layered silicate nanocomposite propertiesPolymer 46 2005 2758CrossRefGoogle Scholar
Lee, S. S.Lee, C. S.Kim, M. H.Kwak, S. Y.Park, M.Lim, S.Choe, C. R.Kim, J.Specific interaction governing the melt intercalation of clay with poly(styrene-co-acrylonitrile) copolymersJournal of Polymer Science Part B: Polymer Physics 39 2001 2430CrossRefGoogle Scholar
Zhao, Z. F.Tang, T.Qin, Y. X.Huang, B. T.Effects of surfactant loadings on the dispersion of clays in maleated polypropyleneLangmuir 19 2003 7157CrossRefGoogle Scholar
VanderHart, D. L.Asano, A.Gilman, J. W.Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiersChemistry of Materials 13 2001 3796CrossRefGoogle Scholar
Leszczyńska, A.Njuguna, J.Pielichowski, K.Banerjee, J. R.Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvementThermochimica Acta 453 2007 75CrossRefGoogle Scholar
Leszczyńska, A.Njuguna, J.Pielichowski, K.Banerjee, J. R.Polymer/montmorillonite nanocomposites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixesThermochimica Acta 454 2007 1CrossRefGoogle Scholar
Fornes, T. D.Yoon, P. J.Hunter, D. L.Keskkula, H.Paul, D. R.Effect of organoclay structure on nylon 6 nanocomposite morphology and propertiesPolymer 43 2002 5915CrossRefGoogle Scholar
Hotta, S.Paul, D. R.Nanocomposites formed from linear low density polyethylene and organoclaysPolymer 45 2004 7639CrossRefGoogle Scholar
Araújo, E. M.Barbosa, R.Oliveira, A. D.Morais, C. R. S.deMélo, T. J. A.Souza, A. G.Thermal and mechanical properties of pe/organoclay nanocompositesJournal of Thermal Analysis and Calorimetry 87 2007 811CrossRefGoogle Scholar
Gu, A.Liang, G.Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocompositesPolymer Degradation and Stability 80 2003 383CrossRefGoogle Scholar
Gintert, M. J.Jana, S. C.Miller, S. G.An optimum organic treatment of nanoclay for PMR-15 nanocompositesPolymer 48 2007 7573CrossRefGoogle Scholar
Liang, Z.-M.Yin, J.Xu, H.-J.Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiersPolymer 44 2003 1391CrossRefGoogle Scholar
Campbell, S.Scheiman, D.Orientation of aromatic ion exchange diamines and the effect on melt viscosity and thermal stability of PMR-15/silicate nanocompositesHigh Performance Polymers 14 2002 17CrossRefGoogle Scholar
Pattanayak, A.Jana, S.Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methodsPolymer 46 2005 3275CrossRefGoogle Scholar
Cao, F.Jana, S.Nanoclay-tethered shape memory polyurethane nanocompositesPolymer 48 2007 3790CrossRefGoogle Scholar
Ahmed, S.Jones, F.A review of particulate reinforcement theories for polymer compositesJournal of Materials Science 25 1990 4933CrossRefGoogle Scholar
Xiong, J.Liu, Y.Yang, X.Wang, X.Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifierPolymer Degradation and Stability 86 2004 549CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×