Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: May 2019

Chapter 11 - Cerebral Small-Vessel Disease

from Section 3 - Diagnostics and Syndromes

Related content

Powered by UNSILO
1.Banerjee, G, Wilson, D, Jäger, HR, Werring, DJ. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta 2016; 1862: 926–38.
2.Rosenberg, GA, Wallin, A, Wardlaw, JM, et al. Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab 2016; 36: 625.
3.Wardlaw, JM, Smith, EE, Biessels, GJ, et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1): neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–38.
4.Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689701.
5.Jellinger, KA. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol 2007; 113: 349–88.
6.Hachinski, VC, Iliff, LD, Zilhka, E, et al. Cerebral blood flow in dementia. Arch Neurol 1975; 32: 632–7.
7.Guermazi, A, Miaux, Y, Rovira-Cañellas, A, et al. Neuroradiological findings in vascular dementia. Neuroradiol 2007; 49: 122.
8.Pohjasvaara, T, Mäntylä, R, Salonen, O, et al. MRI correlates of dementia after first clinical ischemic stroke. J Neurol Sci 2000; 181: 111–17.
9.Román, GC, Erkinjuntti, T, Wallin, A, Pantoni, L, Chui, HC. Subcortical ischaemic vascular dementia. Lancet Neurol 2002; 1: 426–36.
10.Blair, GW, Hernandez, MV, Thrippleton, MJ, Doubal, FN, Wardlaw, JM. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017; 19: 56.
11.Carrera, E, Bogousslavsky, J. The thalamus and behavior: effects of anatomically distinct strokes. Neurol 2006; 66: 1817–23.
12.Wattjes, MP, Henneman, WJP, van der Flier, WM, et al. Diagnostic imaging of patients in a memory clinic: comparison of MR imaging and 64–detector row CT. Radiol 2009; 253: 174–83.
13.Wahlund, LO, Barkhof, F, Fazekas, F, et al. European Task Force on Age-Related White Matter Changes: a new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32: 1318–22.
14.Vitali, P, Migliaccio, R, Agosta, F, Rosen, H, Geschwind, M. Neuroimaging in dementia. Semin Neurol 2008; 28: 467–83.
15.Brainin, M, Tuomilehto, J, Heiss, W-D, et al. Post Stroke Cognition Study Group, post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol 2015; 22: 229–38, e13–16.
16.Ding, J, Sigurðsson, S, Jónsson, PV, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia. JAMA 2017; 74: 1105.
17.Hachinski, VC, Potter, P, Merskey, H. Leuko-araiosis. Arch Neurol 1987; 44: 21–3.
18.Shi, Y, Thrippleton, MJ, Makin, SD, et al. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2016; 36: 1653–67.
19.De Guio, F, Jouvent, E, Biessels, GJ, et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 2016; 36: 1319–37.
20.Benjamin, P, Viessmann, O, MacKinnon, AD, Jezzard, P, Markus, HS. 7 Tesla MRI in cerebral small vessel disease. Int J Stroke 2015; 10: 659–64.
21.Boone, KB, Miller, BL, Lesser, IM, et al. Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect. Arch Neurol 1992; 49: 549–54.
22.van Straaten, ECW, Scheltens, P, Knol, DL, et al. Operational definitions for the NINDS-AIREN criteria for vascular dementia: an interobserver study. Stroke 2003; 34: 1907–12.
23.Arba, F, Quinn, T, Hankey, GJ, et al. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. Eur J Neurol 2017; 24: 276–82.
24.Román, GC. Senile dementia of the Binswanger type: a vascular form of dementia in the elderly. JAMA 1987; 258: 1782–8.
25.Cordonnier, C, van der Flier, WM, Sluimer, JD, et al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 2006; 66: 1356–60.
26.Koennecke, H-C. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 2006; 66: 165–71.
27.Cordonnier, C, Al-Shahi Salman, R, Wardlaw, J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130: 19882003.
28.Heiss, W-D, Zimmermann-Meinzingen, S. PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci 2012; 322: 268273.
29.Benson, DF, Kuhl, DE, Hawkins, RA, et al. The fluorodeoxyglucose 18F scan in Alzheimer's disease and multi-infarct dementia. Arch Neurol 1983; 40: 711–14.
30.Mielke, R, Herholz, K, Grond, M, Kessler, J, Heiss, WD. Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 1992; 49: 909–13.
31.Herholz, K. PET studies in dementia. Ann Nucl Med 2003; 17: 7989.
32.Herholz, K, Salmon, E, Perani, D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17: 302–16.
33.Bohnen, NI, Djang, DSW, Herholz, K, Anzai, Y, Minoshima, S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 2012; 53: 5971.
34.Herholz, K, Weisenbach, S, Kalbe, E, Diederich, NJ, Heiss, W-D. Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport 2005; 16: 1431–4.
35.Hilker, R, Thomas, AV, Klein, JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005; 65: 1716–22.
36.Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–59.
37.Klunk, WE, Engler, H, Nordberg, A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306–19.
38.Villemagne, VL, Mulligan, RS, Pejoska, S, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer's disease. Eur J Nucl Med Mol Imaging 2012; 39: 983–9.
39.Aizenstein, HJ, Nebes, RD, Saxton, JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509.
40.Herholz, K, Ebmeier, K. Clinical amyloid imaging in Alzheimer's disease. Lancet Neurol 2011; 10: 667–70.
41.Yotter, RA, Doshi, J, Clark, V, et al. Memory decline shows stronger associations with estimated spatial patterns of amyloid deposition progression than total amyloid burden. Neurobiol Aging 2013; 34: 2835–42.
42.Thiel, A, Cechetto, DF, Heiss, W-D, Hachinski, V, Whitehead, SN. Amyloid burden, neuroinflammation, and links to cognitive decline after ischemic stroke. Stroke 2014; 45: 2825–9.
43.Maruyama, M, Shimada, H, Suhara, T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79: 1094–108.
44.Small, GW, Bookheimer, SY, Thompson, PM, et al. Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol 2008; 7: 161–72.
45.Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol 2013; 12: 609–22.
46.Schöll, M, Lockhart, SN, Schonhaut, DR, et al. PET imaging of tau deposition in the aging human brain. Neuron 2016; 89: 971–82.
47.Sepulcre, J, Schultz, AP, Sabuncu, M, et al. In vivo tau, amyloid, and gray matter profiles in the aging brain. J Neurosci 2016; 36: 7364–74.