Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: June 2014

Chapter 14 - Brain stimulation

from Section 2 - Therapeutic technology


1. Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000; 406: 147–50.
2. Siebner H, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 2003; 148: 1–16.
3. Hummel FC, Cohen LG. Drivers of brain plasticity. Curr Opin Neurol 2005; 18: 667.
4. Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron 2005; 45: 201–6.
5. Nitsche MA, Paulus W. Transcranial direct current stimulation–update 2011. Restor Neurol Neurosci 2011; 29: 463–92.
6. Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul 2008; 1: 206–23.
7. Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66: 198–204.
8. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 2006; 117: 845–50.
9. Rossi S, Hallett M, Rossini PM, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120: 2008–39.
10. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 1998; 108: 1–16.
11. Classen J, Witte O, Schlaug G, et al. Epileptic seizures triggered directly by focal transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 1995; 94: 19–25.
12. Kamida T, Kong S, Eshima N, et al. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behav Brain Res 2011; 217: 99–103.
13. Frank E, Wilfurth S, Landgrebe M, et al. Anodal skin lesions after treatment with transcranial direct current stimulation. Brain Stimul 2010; 3: 58–9.
14. Wessel M, Zimerman M, Timmerman JE, et al. Eyelid myokymia in an older subject after repetitive sessions of anodal transcranial direct current stimulation. Brain Stimul 2013; 6: 436–5.
15. Chen R, Tam A, Bütefisch C, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 1998; 80: 2870–81.
16. Ziemann U, Lönnecker S, Steinhoff B, et al. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 1996; 40: 367–78.
17. Chen R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 2000; 9: S26–32.
18. Reis J, Swayne OB, Vandermeeren Y, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 2008; 586: 325–51.
19. Daskalakis ZJ, Christensen BK, Fitzgerald PB, et al. The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol (Lond) 2002; 543: 317–26.
20. Liuzzi G, Hörniss V, Zimerman M, et al. Coordination of uncoupled bimanual movements by strictly timed interhemispheric connectivity. J Neurosci 2011; 31: 9111–7.
21. Ugawa Y, Uesaka Y, Terao Y, et al. Magnetic stimulation over the cerebellum in humans. Ann Neurol 1995; 37: 703–13.
22. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res 2001; 140: 505.
23. Middleton FA, Strick PL. The cerebellum: an overview. Trends Neurosci 1998; 21: 367–9.
24. Jayaram G, Galea JM, Bastian AJ, et al. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cerebral Cortex 2011; 21: 1901–9.
25. Murase N, Duque J, Mazzocchio R, et al. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004; 55: 400–9.
26. Duque J, Murase N, Celnik P, et al. Intermanual differences in movement-related interhemispheric inhibition. J Cogn Neurosci 2007; 19: 204–13.
27. Kolominsky-Rabas PL, Weber M, Gefeller O, et al. Epidemiology of ischemic stroke subtypes according to TOAST criteria. Stroke 2001; 32: 2735–40.
28. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics – 2009 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119: 480–6.
29. Kavanagh S, Knapp M, Patel A. Costs and disability among stroke patients. J Public Health 1999; 21: 385–94.
30. Lai SM, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002; 33: 1840–4.
31. Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 34: 2181–6.
32. Hummel FC, Cn LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006; 5: 708–12.
33. Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul 2008; 1: 370–82.
34. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004; 61: 1844.
35. Jayaram G, Tang B, Pallegadda R, et al. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 2012; 107: 2950–7.
36. Galea JM, Vazquez A, Pasricha N, de Xivry JJO, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex 2011; 21: 1761–70.
37. Zimerman M, Heise K, Hoppe J, et al. Modulation of training by single session tDCS to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke 2012; 43: 2185–91.
38. Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128: 490–9.
39. Fregni F, Boggio PS, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005; 16: 1551.
40. Boggio PS, Nunes A, Rigonatti SP, et al. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 2007; 25: 123–9.
41. Kim DY, Lim JY, Kang EK, et al. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am J Phys Med Rehabil 2010; 89: 879–86.
42. Mansur C, Fregni F, Boggio P, et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 2005; 64: 1802–4.
43. Takeuchi N, Tada T, Toshima M, et al. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J Rehabil Med 2009; 41: 1049–54.
44. Talelli P, Greenwood R, Rothwell J. Exploring theta burst atimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol 2007; 118: 333–42.
45. Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation–induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 2006; 37: 1471–6.
46. Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci 2011; 29: 395–409.
47. Nowak DA, Grefkes C, Ameli M, et al. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 2009; 23: 641–56.
48. Khedr E, Abdel-Fadeil M, Farghali A, et al. Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. Eur J Neurol 2009; 16: 1323–30.
49. Reis J, Schambra HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A 2009; 106: 1590–5.
50. Zimerman M, Nitsch M, Giraux P, et al. Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol 2013; 73: 10–15.
51. Lindenberg R, Renga V, Zhu L, et al. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010; 75: 2176–84.
52. Bolognini N, Vallar G, Casati C, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair 2011; 25: 819–29.
53. Bestmann S, Swayne O, Blankenburg F, et al. Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cerebral Cortex 2008; 18: 1281–91.
54. Miniussi C, Cappa SF, Cohen LG, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 2008; 1: 326–36.
55. Fridriksson J, Richardson JD, Baker JM, et al. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke 2011; 42: 819–21.
56. Schlaug G, Marchina S, Wan CY. The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychol Rev 2011: 21: 288–301.
57. Holland R, Leff AP, Josephs O, et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 2011; 21: 1403–7.
58. Flöel A, Meinzer M, Kirstein R, et al. Short-term anomia training and electrical brain stimulation. Stroke 2011; 42: 2065–7.
59. Sparing R, Thimm M, Hesse M, et al. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 2009; 132: 3011–20.
60. Nyffeler T, Cazzoli D, Hess CW, et al. One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 2009; 40: 2791–6.