Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: November 2013

Chapter 10 - Sperm biology and maturation

from Section 1 - Mammalian reproductive physiology

Related content

Powered by UNSILO


1. R. A. Hess. Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 5 (2000): 84–92.
2. J. Clulow, R. C. Jones and L. A. Hansen. Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp Physiol 79 (1994): 915–28.
3. T. G. Cooper. Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod 20 (2005): 9–11.
4. M. Nikolopoulou, M. Soucek and J. C. Vary. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815 (1985): 486–98.
5. J. E. Parks and R. H. Hammerstedt. Developmental changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod 32 (1985): 653–68.
6. C. R. Brown, G. K. I. Von and R. Jones. Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol 96 (1983): 256–64.
7. J. K. Voglmayr, G. Fairbanks and R. G. Lewis. Surface glycoprotein changes in ram spermatozoa during epididymal maturation. Biol Reprod 29 (1983): 767–75.
8. N. D. Iusem, L. Pineiro, J. A. Blaquier and E. Belocopitow. Identification of a major secretory glycoprotein from rat epididymis – interaction with spermatozoa. Biol Reprod 40 (1989): 307–16.
9. S. R. Marengo. Maturing the sperm: Unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci 105 (2008): 52–63.
10. R. Sullivan, G. Frenette and J. Girouard. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl 9 (2007): 483–91.
11. G. A. Cornwall, D. Vindivich, S. Tillman and T. S. K. Chang. The effect of sulfhydryl oxidation on the morphology of immature hamster epididymal spermatozoa induced to acquire motility in vitro. Biol. Reprod 39 (1988): 141–55.
12. M. C. Orgebin-Crist. Studies on the function of the epididymis. Biol Reprod 1 (1969): 155–75.
13. J. M. Bedford, M. Berrios and G. L. Dryden. Biology of the scrotum. IV. Testis location and temperature sensitivity. J Exp Zool 224 (1982): 379–88.
14. J. W. Overstreet and G. W. Cooper. Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod 19 (1978): 101–14.
15. D. Rath, H. J. Schuberth, P. Coy and U. Taylor. Sperm interactions from insemination to fertilization. Reprod Dom Anim 43 (2008): 2–11.
16. N. Okamura, Y. Tajima, A. Soejima, H. Masuda and Y. Sugita. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260 (1985): 9699–705.
17. U. Taylor, D. Rath, H. Zerbe and H. J. Schuberth. Interaction of intact porcine spermatozoa with epithelial cells and neutrophilic granulocytes during uterine passage. Reprod Dom Anim 43 (2008): 166–75.
18. H. Rodriguez-Martinez, L. Nicander, S. Viring, S. Einarsson and K. Larsson. Ultrastructure of the uterotubal junction in preovulatory pigs. Anat Histol Embryol 19 (1990): 16–36.
19. J. F. Guerin, P. Merviel and M. Plachot. Influence of co-culture with established human endometrial epithelial and stromal cell lines on sperm movement characteristics. Hum Reprod 12 (1997): 1197–202.
20. R. Yanagimachi. Mammalian fertilization. In The Physiology of Reproduction, 2d edn, E. Knobil and J. Neill, eds. (New York: Raven Press, 1994), 189–317.
21. R. Rathi, B. Colenbrander, M. M. Bevers and B. M. Gadella. Evaluation of in vitro capacitation of stallion spermatozoa. Biol Reprod 65 (2001): 462–70.
22. S. S. Suarez. Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod Fertil Dev 19 (2007): 103–10.
23. H. C. Ho and S. S. Suarez. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122 (2001): 519–26.
24. S. S. Suarez. Control of hyperactivation in sperm. Hum Reprod Update 14 (2008): 647–57.
25. R. A. Harrison. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev 67 (2004): 337–52.
26. P. E. Visconti, H. Galantino-Homer, X. Ning, G. D. Moore, J. P. Valenzuela, C. J. Jorgez, J. G. Alvarez and G. S. Kopf. Cholesterol efflux-mediated signal transduction in mammalian sperm. Beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274 (1999): 3235–42.
27. E. de Lamirande and C. O’Flaherty. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784 (2008): 106–15.
28. C. O’Flaherty, M. Beconi and N. Beorlegui. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia 29 (1997): 269–75.
29. C. M. O’Flaherty, N. B. Beorlegui and M. T. Beconi. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52 (1999): 289–301.
30. D. N. Neild, B. M. Gadella, A. Aguero, T. A. Stout and B. Colenbrander. Capacitation, acrosome function and chromatin structure in stallion sperm. Anim Reprod Sci 89 (2005): 47–56.
31. P. F. Watson. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fert Dev 7 (1995): 871–91.
32. C. M. Zumoffen, A. M. Caille, M. J. Munuce, M. O. Cabada and S. A. Ghersevich. Proteins from human oviductal tissue-conditioned medium modulate sperm capacitation. Hum Reprod 25 (2010): 1504–12.
33. L. R. Fraser. The ‘switching on’ of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev 77 (2010): 197–208.
34. P. Talbot, B. D. Shur and D. G. Myles. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 68 (2003): 1–9.
35. C. X. Zhou, X. F. Wang and H. C. Chan. Bicarbonate secretion by the female reproductive tract and its impact on sperm fertilizing capacity. Sheng Li Xue Bao 57 (2005): 115–24.
36. R. H. F. Hunter. Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44 (1996): 417–22.
37. P. Coy and M. Aviles. What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev Camb Philos Soc 85 (2009): 593–605.
38. H. Hasuwa, Y. Muro, M. Ikawa, N. Kato, Y. Tsujimoto and M. Okabe. Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp Anim 59 (2010): 105–7.
39. H. A. Foster, L. R. Abeydeera, D. K. Griffin and J. M. Bridger. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118 (2005): 1811–20.
40. A. Zalensky and I. Zalenskaya. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35 (2007): 609–11.
41. R. Oliva, S. de Mateo and J. M. Estanyol. Sperm cell proteomics. Proteomics 9 (2009): 1004–17.
42. D. Miller, M. Brinkworth and D. Iles. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139 (2010): 287–301.
43. T. Li, T. H. Vu, G. A. Ulaner, E. Littman, J. Q. Ling, H. L. Chen, J. F. Hu, B. Behr, L. Giudice and A. R. Hoffman. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 11 (2005): 631–40.
44. G. D. Palermo, Q. V. Neri, T. Takeuchi, J. Squires, F. Moy and Z. Rosenwaks. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online 17 (2008): 820–33.
45. M. Benchaib, V. Braun, D. Ressnikof, J. Lornage, P. Durand, A. Niveleau and J. F. Guerin. Influence of global sperm DNA methylation on IVF results. Hum Reprod 20 (2005): 768–73.
46. M. D. Anway, C. Leathers and M. K. Skinner. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147 (2006): 5515–23.
47. M. D. Anway, M. A. Memon, M. Uzumcu and M. K. Skinner. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27 (2006): 868–79.
48. M. E. Pembrey, L. O. Bygren, G. Kaati, S. Edvinsson, K. Northstone, M. Sjostrom and J. Golding. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14 (2006): 159–66.
49. J. H. Nadeau. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet 18 (2009): R202–10.
50. T. M. Edwards, B. C. Moore and L. J. Guillette, Jr. Reproductive dysgenesis in wildlife: a comparative view. Int J Androl 29 (2006): 109–21.
51. G. C. Ostermeier, D. Miller, J. D. Huntriss, M. P. Diamond and S. A. Krawetz. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429 (2004): 154.
52. G. C. Ostermeier, D. J. Dix, D. Miller, P. Khatri and S. A. Krawetz. Spermatozoal RNA profiles of normal fertile men. Lancet 360 (2002): 772–7.