Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: November 2013

Section 1 - Mammalian reproductive physiology

References

1. L. Johnson, C. S. Petty and W. B. Neaves. A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod 22 (1980): 1233–43.
2. C. O. Nastri, R. A. Ferriani I. A. Rocha and W. P. Martins. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 27 (2010): 121–8.
3. T. G. Baker and W. Sum. Development of the ovary and oogenesis. Clin Obstet Gynaecol 3 (1976): 3–26.
4. S. J. Publicover, et al. Ca2+ signalling in the control of motility and guidance in mammalian sperm. Front Biosci 13 (2008): 5623–37.
5. H. Moore, K. Dvorakova, N. Jenkins and W. Breed. Exceptional sperm cooperation in the wood mouse. Nature 418 (2002): 174–7.
6. G. A. Sartorius and E. Nieschlag. Paternal age and reproduction. Hum Reprod Update 16 (2010): 65–79.
7. E. McGee and M. Shevlin. Effect of humor on interpersonal attraction and mate selection. J Psychol 143 (2009): 67–77.
8. B. D. Shur. Reassessing the role of protein-carbohydrate complementarity during sperm-egg interactions in the mouse. Int J Dev Biol 52 (2008): 703–15.
9. E. S. Litscher, Z. Williams and P. M. Wassarman. Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 76 (2009): 933–41.
10. S. K. Gupta, P. Bansal, A. Ganguly, B. Bhandari and K. Chakrabarti. Human zona pellucida glycoproteins: functional relevance during fertilization. J Reprod Immunol 83 (2009): 50–5.
11. G. Shaw. The uterine environment in early pregnancy in the tammar wallaby. Reprod Fertil Dev 8 (1996): 811–18.
12. J. L. Nelson. Naturally acquired microchimerism: for better or for worse. Arthritis Rheum 60 (2009): 5–7.
13. O. T. Oftedal, W. D. Bowen, E. M. Widdowson and D. J. Boness. Effects of suckling and the postsuckling fast on weights of the body and internal organs of harp and hooded seal pups. Biol Neonate 56 (1989): 283–300.
14. J. A. Sharp, K. Cane, J. P. Arnould and K. R. Nicholas. The lactation cycle of the fur seal. J Dairy Res 72 (2005) Spec No: 81–9.
15. T. H. Kunz and D. J. Hosken. Male lactation: why, why not and is it care? Trends Ecol Evol 24 (2009): 80–5.

Bibliography

1. A. Kobayashi and R. R. Behringer. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet 4 (2003): 969–80.
2. J. Brennan and B. Capel. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5 (2004): 509–21.
3. D. Wilhelm and P. Koopman. The makings of maleness: towards an integrated view of male sexual development. Nat Rev Genet 7 (2006): 620–31.
4. N. H. Uhlenhaut, S. Jakob, K. Anlag, T. Eisenberger, R. Sekido, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139 (2009): 1130–42.
5. S. Guioli, R. Sekido and R. Lovell-Badge. The origin of the Mullerian duct in chick and mouse. Dev Biol 302 (2007): 389–98.
6. J. Karl and B. Capel. Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203 (1998): 323–33.
7. J. Bowles, D. Knight, C. Smith, D. Wilhelm, J. Richman, et al. Retinoid signaling determines germ cell fate in mice. Science 312 (2006): 596–600.
8. A. N. Combes, D. Wilhelm, T. Davidson, E. Dejana, V. Harley, et al. Endothelial cell migration directs testis cord formation. Dev Biol 326 (2009): 112–20.
9. A. H. Sinclair, P. Berta, M. S. Palmer, J. R. Hawkins, B. L. Griffiths, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346 (1990): 240–4.
10. P. Koopman, J. Gubbay, N. Vivian, P. Goodfellow and R. Lovell-Badge. Male development of chromosomally female mice transgenic for Sry. Nature 351 (1991): 117–21.
11. J. W. Foster, M. A. Dominguez-Steglich, S. Guioli, C. Kwok, P. A. Weller, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372 (1994): 525–30.
12. R. Sekido and R. Lovell-Badge. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453 (2008): 930–4.
13. J. S. Colvin, R. P. Green, J. Schmahl, B. Capel and D. M. Ornitz. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104 (2001): 875–89.
14. S. J. Palmer and P. S. Burgoyne. In situ analysis of fetal, prepuberal and adult XX×XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112 (1991): 265–8.
15. Y. Kim, N. Bingham, R. Sekido, K. L. Parker, R. Lovell-Badge, et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci USA 104 (2007): 16558–63.
16. S. Bagheri-Fam, H. Sim, P. Bernard, I. Jayakody, M. M. Taketo, et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol 314 (2008): 71–83.
17. R. Hiramatsu, K. Harikae, N. Tsunekawa, M. Kurohmaru, I. Matsuo, et al. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137 (2010): 303–12.
18. K. McElreavey, E. Vilain, I. Herskowitz and M. Fellous. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci USA 90 (1993): 3368–72.
19. P. Parma, O. Radi, V. Vidal, M. C. Chaboissier, E. Dellambra, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38 (2006): 1304–9.
20. S. Vainio, M. Heikkila, A. Kispert, N. Chin and A. P. McMahon. Female development in mammals is regulated by Wnt-4 signalling. Nature 397 (1999): 405–9.
21. Y. Kim, A. Kobayashi, R. Sekido, L. DiNapoli, J. Brennan, et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4 (2006): e187.
22. C. F. Liu, N. Bingham, K. Parker and H. H. Yao. Sex-specific roles of beta-catenin in mouse gonadal development. Hum Mol Genet 18 (2009): 405–17.
23. C. Ottolenghi, E. Pelosi, J. Tran, M. Colombino, E. Douglass, et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16 (2007): 2795–804.
24. H. Ostrer, D. I. Wilson and N. A. Hanley. Human embryo and early fetus research. Clin Genet 70 (2006): 98–107.
25. D. Bogani, P. Siggers, R. Brixey, N. Warr, S. Beddow, et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 7 (2009): e1000196.

References

1. R. Mieusset and L. Bujan. Testicular heating and its possible contributions to male infertility: a review. Int J Androl 18, no. 4 (Aug 1995): 169–84.
2. H. D. Moore. Contribution of epididymal factors to sperm maturation and storage. Andrologia 30, no. 4–5 (Aug–Sep 1998): 233–9.
3. G. F. Gonzales. Function of seminal vesicles and their role on male fertility. Asian J Androl 34, no. 3 (Dec 2001): 251–8.
4. V. L. Kumar and P. K. Majumder. Prostate gland: structure, functions and regulation. Int Urol Nephrol 27, no. 3 (1995): 231–43.
5. C. A. Wilson and D. C. Davies. The control of sexual differentiation of the reproductive system and brain. Reproduction 2, no. 133 (Feb 2007): 331–59.
6. S. M. Ruwanpura, R. I. McLachlan and S. J. Meachem. Hormonal regulation of male germ cell development. J Endocrinol 2, no. 205 (May 2010): 117–31.
7. R. A. Hess and L. Renato de Franca. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636 (2008): 1–15.
8. N. Sofikitis, N. Giotitsas, P. Tsounapi, D. Baltogiannis, D. Giannakis and N. Pardalidis. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol 109, no. 3–5 (Apr 2008): 323–30.
9. A. Bettegowda and M. F. Wilkinson. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365, 1546 (May 27, 2010): 1637–51.
10. U. Kolthur-Seetharam, I. Martianov and I. Davidson. Specialization of the general transcriptional machinery in male germ cells. Cell Cycle 7, no. 22 (Nov 15, 2008): 3493–8.
11. D. Miller, M. Brinkworth and D. Iles. Paternal DNA packaging in sperm: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2, no. 139 (Feb 2010): 287–301.
12. D. Miller and G. C. Ostermeier. Towards a better understanding of RNA carriage by ejaculate sperm. Hum Rep Update 6 (2006): 757–67.

References

1. A. J. Watkins and T. P. Fleming. Blastocyst environment and its influence on offspring cardiovascular health: the heart of the matter. J Anat 215 (2009): 52–9.
2. C. W. Redman and I. L. Sargent. Immunology of pre-eclampsia. Am J Reprod Immunol 63 (2010): 534–43.
3. J. Dong, D. F. Albertini, K. Nishimori, T. R. Kumar, N. Lu and M. M. Matzuk. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383 (1996): 531–5.
4. J. J. Eppig, K. Wigglesworth and F. L. Pendola. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 99 (2002): 2890–4.
5. P. Da Silva-Buttkus, G. Marcelli, S. Franks, J. Stark and K. Hardy. Inferring biological mechanisms from spatial analysis: prediction of a local inhibitor in the ovary. Proc Natl Acad Sci USA 106 (2009): 456–61.
6. P. Reddy, L. Liu, D. Adhikari, K. Jagarlamudi, S. Rajareddy, Y. Shen, C. Du, W. Tang, T. Hamalainen, S. L. Peng, Z. J. Lan, A. J. Cooney, I. Huhtaniemi and K. Liu. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319 (2008): 611–13.
7. K. Jagarlamudi, L. Liu, D. Adhikari, P. Reddy, A. Idahl, U. Ottander, E. Lundin and K. Liu. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One 4 (2009): e6186.
8. P. Reddy, D. Adhikari, W. Zheng, S. Liang, T. Hamalainen, V. Tohonen, W. Ogawa, T. Noda, S. Volarevic, I. Huhtaniemi and K. Liu. PDK1 signaling in oocytes controls reproductive aging and life span by manipulating the survival of primordial follicles. Hum Mol Genet 18 (2009): 2813–24.
9. D. Adhikari, W. Zheng, Y. Shen, N. Gorre, T. Hamalainen, A. J. Cooney, I. Huhtaniemi, Z. J. Lan and K. Liu. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19 (2010): 397–410.
10. E. R. West, M. Xu, T. K. Woodruff and L. D. Shea. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28 (2007): 4439–48.
11. J. Dean. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol 53 (2002): 171–80.
12. P. M. Wassarman, H. Qi and E. S. Litscher. Mutant female mice carrying a single mZP3 allele produce eggs with a thin zona pellucida, but reproduce normally. Proc Biol Sci 264 (1997): 323–8.
13. H. F. Irving-Rodgers, S. Morris, R. A. Collett, T. T. Peura, M. Davy, J. G. Thompson, H. D. Mason and R. J. Rodgers. Phenotypes of the ovarian follicular basal lamina predict developmental competence of oocytes. Hum Reprod 24 (2009): 936–44.
14. F. J. Diaz, K. Wigglesworth and J. J. Eppig. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci 120 (2007): 1330–40.
15. M. M. Matzuk and D. J. Lamb. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 4 Suppl (2002): s41–9.
16. M. M. Matzuk and D. J. Lamb. The biology of infertility: research advances and clinical challenges. Nat Med 14 (2008): 1197–213.
17. K. R. Barnett, C. Schilling, C. R. Greenfeld, D. Tomic and J. A. Flaws. Ovarian follicle development and transgenic mouse models. Hum Reprod Update 12, no. 5 (2006): 537–50.
18. G. M. Kidder and B. C. Vanderhyden. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 88 (2010): 399–413.
19. T. Y. Li, D. Colley, K. J. Barr, S. P. Yee and G. Kidder. Rescue of oogenesis in Cx37-null mutant mice by oocyte-specific replacement with Cx43. J Cell Sci 120 (2007): 4117–25.
20. S. M. Galloway, K. P. McNatty, L. M. Cambridge, M. P. Laitinen, J. L. Juengel, T. S. Jokiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis and O. Ritvos. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25 (2000): 279–83.
21. G. W. Montgomery, Z. Z. Zhao, A. J. Marsh, R. Mayne, S. A. Treloar, M. James, N. G. Martin, D. I. Boomsma and D. L. Duffy. A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res 7 (2004): 548–55.
22. G. H. Davis, J. C. McEwan, P. F. Fennessy, K. G. Dodds, K. P. McNatty, and W. S. O. Infertility due to bilateral ovarian hypoplasia in sheep homozygous (FecXI FecXI) for the Inverdale prolificacy gene located on the X chromosome. Biol Reprod 46 (1992): 636–40.
23. J. L. Juengel, L. D. Quirke, D. J. Tisdall, P. Smith, N. L. Hudson and K. P. McNatty. Gene expression in abnormal ovarian structures of ewes homozygous for the inverdale prolificacy gene. Biol Reprod 62 (2000): 1467–78.
24. J. P. Hanrahan, S. M. Gregan, P. Mulsant, M. Mullen, G. H. Davis, R. Powell and S. M. Galloway. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70 (2004): 900–9.
25. K. P. McNatty, P. Smith, L. G. Moore, K. Reader, S. Lun, J. P. Hanrahan, N. P. Groome, M. Laitinen, O. Ritvos and J. L. Juengel. Oocyte-expressed genes affecting ovulation rate. Mol Cell Endocrinol 234 (2005): 57–66.
26. S. A. Williams and P. Stanley. Roles for N- and O-glycans in early mouse development. Adv Exp Med Biol 705 (2011): 397–410.
27. S. A. Williams and P. Stanley. Oocyte-specific deletion of complex and hybrid N-glycans leads to defects in preovulatory follicle and cumulus mass development. Reproduction 137 (2009): 321–31.

References

1. K. Munster, L. Schmidt and P. Helm. Length and variation in the menstrual cycle – a cross-sectional study from a Danish county. Br J Obstet Gynaecol 99, no. 5 (1992): 422–9.
2. S. S. Yen. Regulation of the hypothalamic–pituitary– ovarian axis in women. J Reprod Fertil 51, no. 1 (1977): 181–91.
3. A. Gougeon. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod 1, no. 2 (1986): 81–7.
4. Geneva Foundation for Medical Education and Research, International Association for Maternal and Neonatal Health, and BioMed Central Ltd. Reproductive health RH. (London: BioMed Central, 2004).
5. K. P. McNatty, et al. Follicular development during the luteal phase of the human menstrual cycle. J Clin Endocrinol Metab 56, no. 5 (1983): 1022–31.
6. O. Bomsel-Helmreich, et al. Healthy and atretic human follicles in the preovulatory phase: differences in evolution of follicular morphology and steroid content of follicular fluid. J Clin Endocrinol Metab 48, no. 4 (1979): 686–94.
7. B. K. Petroff, et al. A review of mechanisms controlling ovulation with implications for the anovulatory effects of polychlorinated dibenzo-p-dioxins in rodents. Toxicology 158, no. 3 (2001): 91–107.
8. N. W. Bruce and R. M. Moor. Ovarian follicular blood flow in the sheep. J Reprod Fertil 43, no. 2 (1975): 392–3.
9. G. F. Erickson and A. J. Hsueh. Stimulation of aromatase activity by follicle stimulating hormone in rat granulosa cells in vivo and in vitro. Endocrinology 102, no. 4 (1978): 1275–82.
10. L. Speroff and M. A. Fritz. Clinical gynecologic endocrinology and infertility. 7th edn (Philadelphia, PA; London: Lippincott Williams & Wilkins, 2004).
11. M. A. Fritz, et al. Onset and characteristics of the midcycle surge in bioactive and immunoactive luteinizing hormone secretion in normal women: influence of physiological variations in periovulatory ovarian steroid hormone secretion. J Clin Endocrinol Metab 75, no. 2 (1992): 489–93.
12. B. Couzinet, et al. Progesterone stimulates luteinizing hormone secretion by acting directly on the pituitary. J Clin Endocrinol Metab 74, no. 2 (1992): 374–8.
13. C. Tedeschi, et al. Endothelin-1 as a luteinization inhibitor: inhibition of rat granulosa cell progesterone accumulation via selective modulation of key steroidogenic steps affecting both progesterone formation and degradation. Endocrinology 131, no. 5 (1992): 2476–8.
14. E. Knobil, J. D. Neill and L. L. Ewing. The physiology of reproduction. 2 vols. (New York: Raven Press, 1988).
15. Y. Yoshimura et al. The effects of proteolytic enzymes on in vitro ovulation in the rabbit. Am J Obstet Gynecol 157, no. 2 (1987): 468–75.
16. W. J. Murdoch. Plasmin-tumour necrosis factor interaction in the ovulatory process. J Reprod Fertil Suppl 54 (1999): 353–8.
17. W. J. Murdoch, T. R. Hansen and L. A. McPherson. A review – role of eicosanoids in vertebrate ovulation. Prostaglandins 46, no. 2 (1993): 85–115.
18. L. L. Espey. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod 50, no. 2 (1994): 233–8.
19. L. L. Espey et al. Ovarian hydroxyeicosatetraenoic acids compared with prostanoids and steroids during ovulation in rats. Am J Physiol 260, no. 2, Pt 1 (1991): E163–9.
20. G. D. Niswender et al. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev 80, no. 1 (2000): 1–29.
21. L. K. Christenson and R. L. Stouffer. Follicle-stimulating hormone and luteinizing hormone/chorionic gonadotropin stimulation of vascular endothelial growth factor production by macaque granulosa cells from pre- and periovulatory follicles. J Clin Endocrinol Metab 82, no. 7 (1997): 2135–42.
22. C. Wulff et al. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab 85, no. 11 (2000): 4302–9.
23. M. S. Brown and J. L. Goldstein. A receptor-mediated pathway for cholesterol homeostasis. Science 232, no. 4746 (1986): 34–47.
24. M. C. Wiltbank, C. J. Belfiore and G. D. Niswender. Steroidogenic enzyme activity after acute activation of protein kinase (PK) A and PKC in ovine small and large luteal cells. Mol Cell Endocrinol 97, nos. 1–2 (1993): 1–7.
25. R. T. Swann and N. W. Bruce. Oxygen consumption, carbon dioxide production and progestagen secretion in the intact ovary of the day-16 pregnant rat. J Reprod Fertil 80, no. 2 (1987): 599–605.
26. B. Z. Gore, B. V. Caldwell and L. Speroff. Estrogen-induced human luteolysis. J Clin Endocrinol Metab 36, no. 3 (1973): 615–17.
27. J. A. McCracken et al. The central oxytocin pulse generator: a pacemaker for the ovarian cycle. Acta Neurobiol Exp (Wars) 56, no. 3 (1996): 819–32.
28. R. J. Fairclough et al. Temporal relationship between plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F and neurophysin I/II around luteolysis in sheep. Prostaglandins 20, no. 2 (1980): 199–208.
29. E. Girsh et al. Regulation of endothelin-1 expression in the bovine corpus luteum: elevation by prostaglandin F 2 alpha. Endocrinology 137, no. 12 (1996): 5191–6.
30. T. Shikone et al. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J Clin Endocrinol Metab 81, no. 6 (1996): 2376–80.
31. B. B. Pharriss, J. C. Cornette and G. D. Gutknecht. Vascular control of luteal steroidogenesis. J Reprod Fertil Suppl 10 (1970): 97–103.
32. K. A. Young, J. D. Hennebold and R. L. Stouffer, Dynamic expression of mRNAs and proteins for matrix metalloproteinases and their tissue inhibitors in the primate corpus luteum during the menstrual cycle. Mol Hum Reprod 8, no. 9 (2002): 833–40.
33. W. C. Duncan. The human corpus luteum: remodelling during luteolysis and maternal recognition of pregnancy. Rev Reprod 5, no. 1 (2000): 12–17.
34. C. Wulff et al. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod 16, no. 12 (2001): 2515–24.
35. S. Y. Ying. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9, no. 2 (1988): 267–93.
36. T. A. Molskness et al. Recombinant human inhibin-A administered early in the menstrual cycle alters concurrent pituitary and follicular, plus subsequent luteal, function in rhesus monkeys. J Clin Endocrinol Metab 81, no. 11 (1996): 4002–6.
37. E. Garcia et al. Use of immunocytochemistry of progesterone and estrogen receptors for endometrial dating. J Clin Endocrinol Metab 67, no. 1 (1988): 80–7.
38. A. Chauchereau, J. F. Savouret and E. Milgrom. Control of biosynthesis and post-transcriptional modification of the progesterone receptor. Biol Reprod 46, no. 2 (1992): 174–7.
39. J. E. Markee. Menstruation in intraocular endometrial transplants in the Rhesus monkey. Am J Obstet Gynecol 131, no. 5 (1978): 558–9.
40. W. H. Rodgers et al. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest 94, no. 3 (1994): 946–53.
41. T. Higuchi et al. Induction of tissue inhibitor of metalloproteinase 3 gene expression during in vitro decidualization of human endometrial stromal cells. Endocrinology 136, no. 11 (1995): 4973–81.
42. H. O. Critchley et al. The endocrinology of menstruation – a role for the immune system. Clin Endocrinol (Oxf) 55, no. 6 (2001): 701–10.
43. E. D. Albrecht et al. Acute temporal regulation of vascular endothelial growth/permeability factor expression and endothelial morphology in the baboon endometrium by ovarian steroids. J Clin Endocrinol Metab 88, no. 6 (2003): 2844–52.

References

1. M. J. Faddy and R. G. Gosden. A mathematical model of follicle dynamics in the human ovary. Hum Reprod 10 (1995): 770–5.
2. G. M. Hartshorne, S. Lyrakou, H. Hamoda, E. Oloto and F. Ghafari. Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol Hum Reprod 15 (2009): 805–19.
3. M. De Felici, F. G. Klinger, D. Farini, M. L. Scaldaferri, S. Iona and M. Lobascio. Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death. Reprod Biomed Online 10 (2005): 182–91.
4. M. C. Lutterodt, K. P. Sorensen, K. B. Larsen, S. O. Skouby, Y. C. Andersen and A. G. Byskov. The number of oogonia and somatic cells in the human female embryo and fetus in relation to whether or not exposed to maternal cigarette smoking. Hum Reprod 24 (2009): 2558–66.
5. D. Adhikari, G. Flohr, N. Gorre, Y. Shen, H. Yang, E. Lundin, Z. Lan, M. J. Gambello and K. Liu. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15 (2009): 765–70.
6. M. Jääskeläinen, A. Nieminen, R. M. Pökkylä, M. Kauppinen, A. Liakka, M. Heikinheimo, T. W. Vaskivuo, J. Klefström and J. S. Tapanainen. Regulation of cell death in human fetal and adult ovaries – Role of Bok and Bcl-X(L). Mol Cell Endocrinol 2010 Jul 29. [Epub ahead of print]
7. K. R. Hansen, G. M. Hodnett, N. Knowlton and L. B. Craig. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril 2010 May 25. [Epub ahead of print]
8. E. E. Telfer, M. McLaughlin, C. Ding and K. J. Thong. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23 (2008): 1151–8.
9. J. Li, K. Kawamura, Y. Cheng, S. Liu, C. Klein, S. Liu, E. K. Duan and A. J. Hsueh. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 107 (2010): 10280–4.
10. J. Johnson, J. Canning, T. Kaneko, J. K. Pru and J. L. Tilly. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428 (2004): 145–50.
11. A. G. Byskov, M. J. Faddy, J. G. Lemmen and C. Y. Andersen. Eggs forever? Differentiation 73 (2005): 438–46.
12. H. Peters, A. G. Byskov and J. Grinsted. Follicular growth in fetal and prepubertal ovaries of humans and other primates. Clin Endocrinol Metab 7 (1978): 469–85.
13. K. T. Jones. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 14 (2008): 143–58.
14. C. Tease, G. Hartshorne and M. Hultén. Altered patterns of meiotic recombination in human fetal oocytes with asynapsis and/or synaptonemal complex fragmentation at pachytene. Reprod Biomed Online 13 (2006): 88–95.
15. D. T. Baird, J. Collins, J. Egozcue, L. H. Evers, L. Gianaroli, H. Leridon, A. Sunde, A. Templeton, A. Van Steirteghem, J. Cohen, P. G. Crosignani, P. Devroey, K. Diedrich, B. C. Fauser, L. Fraser, A. Glasier, I. Liebaers, G. Mautone, G. Penney, B. Tarlatzis; ESHRE Capri Workshop Group. Fertility and ageing. Hum Reprod Update 11 (2005): 261–76.
16. S. Lintern-Moore, H. Peters, G. P. Moore and M. Faber. Follicular development in the infant human ovary. J Reprod Fertil 39 (1974): 53–64.
17. K. Ikeda and Y. Takahashi. Comparison of maturational and developmental parameters of oocytes recovered from prepubertal and adult pigs. Reprod Fertil Dev 15 (2003): 215–21.
18. J. L. Cavilla, C. R. Kennedy, A. G. Byskov and G. M. Hartshorne. Human immature oocytes grow during culture for IVM. Hum Reprod 23 (2008): 37–45.
19. A. Hasegawa and K. Koyama. Contribution of zona proteins to oocyte growth. Soc Reprod Fertil Suppl 63 (2007): 229–35.
20. G. Marteil, L. Richard-Parpaillon and J. K. Kubiak. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol 9 (2009): 203–24.

References

1. J. Hotchkiss and E. Knobil. The hypothalamic pulse generator: the reproductive core. In E. Y. Adashi, J. A. Rock and Z. Rosenwaks, eds., Reproductive Endocrinology, Surgery, and Technology (Philadelphia, New York: Lipincott-Raven, 1996), 123–62.
3. P. W. Carmel, S. Araki and M. Ferin. Pituitary stalk portal blood collection in rhesus monkeys: evidence for pulsatile release of gonadotropin-releasing hormone (GnRH). Endocrinology 99 (1976): 243–8.
4. C. Y. Williams, T. G. Harris, D. F. Battaglia, C. Viguie and F. J. Karsch. Endotoxin inhibits pituitary responsiveness to gonadotropin-releasing hormone. Endocrinology 142 (2001): 1915–22.
5. E. Terasawa, K. L. Keen, K. Mogi and P. Claude. Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140 (1999): 1432–41.
6. A. J. Silverman. The gonadotropin releasing hormone neuronal system: immunocytochemistry. In E. Knobil and J. D. Neill, eds., The Physiology of Reproduction (New York: Raven Press, 1988), 1283–304.
7. M. Filicori, N. Santoro, G. R. Merriam and W. F. Crowley, Jr. Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab 62 (1986): 1136–44.
8. P. E. Belchetz, T. M. Plant, Y. Nakai, E. J. Keogh and E. Knobil. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202 (1978): 631–3.
9. D. A. Van Vugt, W. D. Diefenbach, E. Alston and M. Ferin. Gonadotropin-releasing hormone pulses in third ventricular cerebrospinal fluid of ovariectomized rhesus monkeys: correlation with luteinizing hormone pulses. Endocrinology 117 (1985): 1550–8.
10. M. Schwanzel-Fukuda, J. I. Morrell and D. W. Pfaff. Ontogenesis of neurons producing luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis of the rat. J Comp Neurol 238 (1985): 348–64.
11. S. Wray. From nose to brain: development of gonadotrophin-releasing hormone-1 neurones. J Neuroendocrinol 22 (2010): 743–53.
12. R. Balasubramanian, A. Dwyer, S. B. Seminara, N. Pitteloud, U. B. Kaiser and W. F. Crowley, Jr. Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology 92 (2010): 81–99.
13. R. Guillemin. Neuroendocrinology: a short historical review. Ann NY Acad Sci 1220 (2011): 1–5.
14. D. J. Haisenleder, A. C. Dalkin, G. A. Ortolano, J. C. Marshall and M. A. Shupnik. A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology 128 (1991): 509–17.
15. H. N. Jabbour, R. W. Kelly, H. M. Fraser and H. O. Critchley. Endocrine regulation of menstruation. Endocr Rev 27 (2006): 17–46.
16. N. Chabbert Buffet, C. Djakoure, S. C. Maitre and P. Bouchard. Regulation of the human menstrual cycle. Front Neuroendocrinol 19 (1998): 151–86.
17. A. N. Andersen, C. Hagen, P. Lange, S. Boesgaard, H. Djursing, E. Eldrup and S. Micic. Dopaminergic regulation of gonadotropin levels and pulsatility in normal women. Fertil Steril 47 (1987): 391–7.
18. Y. J. Feng, E. Shalts, L. N. Xia, J. Rivier, C. Rivier, W. Vale and M. Ferin. An inhibitory effect of interleukin-1a on basal gonadotropin release in the ovariectomized rhesus monkey: reversal by a corticotropin-releasing factor antagonist. Endocrinology 128 (1991): 2077–82.
19. E. Shalts, Y. J. Feng and M. Ferin. Vasopressin mediates the interleukin-1 alpha-induced decrease in luteinizing hormone secretion in the ovariectomized rhesus monkey. Endocrinology 131 (1992): 153–8.
20. X. F. Li, A. M. Knox and K. T. O’Byrne. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res 1364 (2010): 153–63.
21. S. P. Kalra and P. S. Kalra. NPY – an endearing journey in search of a neurochemical on/off switch for appetite, sex and reproduction. Peptides 25 (2994): 465–71.
22. K. Y. Pau, M. Berria, D. L. Hess and H. G. Spies. Hypothalamic site-dependent effects of neuropeptide Y on gonadotropin-releasing hormone secretion in rhesus macaques. J Neuroendocrinol 7 (1995): 63–7.
23. T. M. Hahn, J. F. Breininger, D. G. Baskin and M. W. Schwartz. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1 (1998): 271–2.
24. N. R. Vulliemoz, E. Xiao, L. Xia-Zhang, S. L. Wardlaw and M. Ferin. Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey. Endocrinology 146 (2005): 784–9.
25. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and K. Kangawa. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402 (1999): 656–60.
26. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara and I. Wakabayashi. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50 (2001): 2438–43.
27. B. Otto, U. Cuntz, E. Fruehauf, R. Wawarta, C. Folwaczny, R. L. Riepl, M. L. Heiman, P. Lehnert, M. Fichter and M. Tschop. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145 (2001): 669–73.
28. N. R. Vulliemoz, E. Xiao, L. Xia-Zhang, J. Rivier and M. Ferin. Astressin B, a nonselective corticotropin-releasing hormone receptor antagonist, prevents the inhibitory effect of ghrelin on luteinizing hormone pulse frequency in the ovariectomized rhesus monkey. Endocrinology 149 (2008): 869–74.
29. J. M. Friedman and J. L. Halaas. Leptin and the regulation of body weight in mammals. Nature 395 (1998): 763–70.
30. J. Donato, Jr, R. M. Cravo, R. Frazao and C. F. Elias. Hypothalamic sites of leptin action linking metabolism and reproduction. Neuroendocrinology 93 (2011): 9–18.
31. S. Hameed, C. N. Jayasena and W. S. Dhillo. Kisspeptin and fertility. J Endocrinol 208 (2011): 97–105.
32. T. Yamaji, D. J. Dierschke, A. N. Bhattacharya and E. Knobil. The negative feedback control by estradiol and progesterone of LH secretion in the ovariectomized rhesus monkey. Endocrinology 90 (1972): 771–7.
33. F. J. Karsch, D. K. Dierschke, R. F. Weick, T. Yamaji, J. Hotchkiss and E. Knobil. Positive and negative feedback control by estrogen of luteinizing hormone secretion in the rhesus monkey. Endocrinology 92 (1973): 799–804.
34. C. K. Welt. Regulation and function of inhibins in the normal menstrual cycle. Semin Reprod Med 22 (2004): 187–93.
35. D. M. de Kretser, M. P. Hedger, K. L. Loveland and D. J. Phillips. Inhibins, activins and follistatin in reproduction. Hum Reprod Update 8 (2002): 529–41.
36. P. R. Gindoff and M. Ferin. Endogenous opioid peptides modulate the effect of corticotropin-releasing factor on gonadotropin release in the primate. Endocrinology 121 (1987): 837–42.
37. R. F. Casper and S. Alapin-Rubillovitz. Progestins increase endogenous opioid peptide activity in postmenopausal women. J Clin Endocrinol Metab 60 (1985): 34–6.
38. R. L. Goodman, D. B. Parfitt, N. P. Evans, G. E. Dahl and F. J. Karsch. Endogenous opioid peptides control the amplitude and shape of gonadotropin-releasing hormone pulses in the ewe. Endocrinology 136 (1995): 2412–20.

References

1. J. E. Rossouw, G. L. Anderson, R. L. Prentice, A. Z. Lacroix, C. Kooperberg, M. L. Stefanick, R. D. Jackson, S. A. Beresford, B. V. Howard, K. C. Johnson, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. J Am Med Assoc 288 (2002): 321–33.
2. Breast cancer and hormone replacement therapy in the Million Women Study. Lancet 362 (2003): 419–42.

Further reading

Illustrated Textbook of Paediatrics 2d rev edn, by Tom Lissaue and Graham Clayde (Mosby, 2001).
Textbook of Endocrine Physiology 5th edn, edited by James E. Griffin and Sergio R. Ojeda (Oxford: Oxford University Press).
Management of the Menopause: The Handbook 4th edn, by Margaret Rees and John Purdie. (Royal Society of Medicine Press Ltd, 2006). The British Menopause Society: http://www.thebms.org.uk/index.php.

References

1. P. B. Medawar. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 7 (1953): 320–38.
2. K. J. Askelund and L. W. Chamley. Trophoblast deportation part I: review of the evidence demonstrating trophoblast shedding and deportation during human pregnancy. Placenta 32, no. 10 (Oct 2011): 716–23.
3. L. Fugazzola, V. Cirello and P. Beck-Peccoz. Fetal microchimerism as an explanation of disease. Nat Rev Endocrinol 7, no. 2 (Feb 2011): 89–97.
4. G. E. Lash, S. C. Robson and J. N. Bulmer. Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta 31 Suppl (Mar 2010): S87–92.
5. R. Apps, L. Gardner and A. A. Moffett. A critical look at HLA-G. Trends Immunol 29, no. 7 (Jul 2008): 313–21.
6. A. Ishitani, N. Sageshima and K. Hatake. The involvement of HLA-E and -F in pregnancy. J Reprod Immunol 69, no. 2 (Apr 2006): 101–13.
7. J. Hanna, D. Goldman-Wohl, Y. Hamani, I. Avraham, C. Greenfield, S. Natanson-Yaron, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12, no. 9 (Sep 2006): 1065–74.
8. M. J. Vercammen, A. Verloes, H. Van de Velde and P. Haentjens. Accuracy of soluble human leukocyte antigen-G for predicting pregnancy among women undergoing infertility treatment: meta-analysis. Hum Reprod Update 14, no. 3 (May–Jun 2008): 209–18.
9. S. E. Hiby, R. Apps, A. M. Sharkey, L. E. Farrell, L. Gardner, A. Mulder, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120, no. 11 (1 Nov 2010): 4102–10.
10. A. Munoz-Suano, A. B. Hamilton and A. G. Betz. Gimme shelter: the immune system during pregnancy. Immunol Rev 241, no. 1 (May 2011): 20–38.
11. T. Tilburgs, S. A. Scherjon, B. J. van der Mas, G. W. Haasnoot, V. D. V-M. M. Versteeg, S. L. Roelen, et al. Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol 82, no. 2 (Nov 2009): 148–57.
12. L. R. Guerin, J. R. Prins and S. A. Robertson. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 15, 5 (Sep–Oct 2009): 517–35.
13. R. Rizzo, M. Vercammen, , H. van de Velde, P. A. Horn and V. Rebmann. The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell Mol Life Sci 68, no. 3 (Feb 2011): 341–52.
14. Y. Kudo, C. A. Boyd, I. L. Sargent and C. W. Redman. Decreased tryptophan catabolism by placental indoleamine 2,3-dioxygenase in preeclampsia. Am J Obstet Gynecol 188, no. 3 (Mar 2003): 719–26.
15. T. M. Chucr, J. M. Monteiro, A. R. Lima, M. L. Salvadori, J. R. Kfoury, Jr and M. A. Miglino. A review of immune transfer by the placenta. J Reprod Immunol 87, nos. 1–2 (Dec 2010): 14–20.
16. D. Brinc and A. H. Lazarus. Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn. Hematol Am Soc Hematol Educ Program 2009: 185–91.
17. I. L. Sargent, A. M. Borzychowski and C. W. Redman. NK cells and human pregnancy – an inflammatory view. Trends Immunol 27, no. 9 (Sep 2006): 399–404.
18. S. Sait, A. Nakashima, T. Shima and M. Ito. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 63, no. 6 (Jun 2010): 601–10.
19. G. E. Lash, J. N. Bulmer, B. A. Innes, J. A. Drury, S. C. Robson and S. Quenby. Prednisolone treatment reduces endometrial spiral artery development in women with recurrent miscarriage. Angiogenesis 2011, Oct 9.

References

1. R. A. Hess. Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 5 (2000): 84–92.
2. J. Clulow, R. C. Jones and L. A. Hansen. Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp Physiol 79 (1994): 915–28.
3. T. G. Cooper. Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod 20 (2005): 9–11.
4. M. Nikolopoulou, M. Soucek and J. C. Vary. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815 (1985): 486–98.
5. J. E. Parks and R. H. Hammerstedt. Developmental changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod 32 (1985): 653–68.
6. C. R. Brown, G. K. I. Von and R. Jones. Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol 96 (1983): 256–64.
7. J. K. Voglmayr, G. Fairbanks and R. G. Lewis. Surface glycoprotein changes in ram spermatozoa during epididymal maturation. Biol Reprod 29 (1983): 767–75.
8. N. D. Iusem, L. Pineiro, J. A. Blaquier and E. Belocopitow. Identification of a major secretory glycoprotein from rat epididymis – interaction with spermatozoa. Biol Reprod 40 (1989): 307–16.
9. S. R. Marengo. Maturing the sperm: Unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci 105 (2008): 52–63.
10. R. Sullivan, G. Frenette and J. Girouard. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl 9 (2007): 483–91.
11. G. A. Cornwall, D. Vindivich, S. Tillman and T. S. K. Chang. The effect of sulfhydryl oxidation on the morphology of immature hamster epididymal spermatozoa induced to acquire motility in vitro. Biol. Reprod 39 (1988): 141–55.
12. M. C. Orgebin-Crist. Studies on the function of the epididymis. Biol Reprod 1 (1969): 155–75.
13. J. M. Bedford, M. Berrios and G. L. Dryden. Biology of the scrotum. IV. Testis location and temperature sensitivity. J Exp Zool 224 (1982): 379–88.
14. J. W. Overstreet and G. W. Cooper. Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod 19 (1978): 101–14.
15. D. Rath, H. J. Schuberth, P. Coy and U. Taylor. Sperm interactions from insemination to fertilization. Reprod Dom Anim 43 (2008): 2–11.
16. N. Okamura, Y. Tajima, A. Soejima, H. Masuda and Y. Sugita. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260 (1985): 9699–705.
17. U. Taylor, D. Rath, H. Zerbe and H. J. Schuberth. Interaction of intact porcine spermatozoa with epithelial cells and neutrophilic granulocytes during uterine passage. Reprod Dom Anim 43 (2008): 166–75.
18. H. Rodriguez-Martinez, L. Nicander, S. Viring, S. Einarsson and K. Larsson. Ultrastructure of the uterotubal junction in preovulatory pigs. Anat Histol Embryol 19 (1990): 16–36.
19. J. F. Guerin, P. Merviel and M. Plachot. Influence of co-culture with established human endometrial epithelial and stromal cell lines on sperm movement characteristics. Hum Reprod 12 (1997): 1197–202.
20. R. Yanagimachi. Mammalian fertilization. In The Physiology of Reproduction, 2d edn, E. Knobil and J. Neill, eds. (New York: Raven Press, 1994), 189–317.
21. R. Rathi, B. Colenbrander, M. M. Bevers and B. M. Gadella. Evaluation of in vitro capacitation of stallion spermatozoa. Biol Reprod 65 (2001): 462–70.
22. S. S. Suarez. Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod Fertil Dev 19 (2007): 103–10.
23. H. C. Ho and S. S. Suarez. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122 (2001): 519–26.
24. S. S. Suarez. Control of hyperactivation in sperm. Hum Reprod Update 14 (2008): 647–57.
25. R. A. Harrison. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev 67 (2004): 337–52.
26. P. E. Visconti, H. Galantino-Homer, X. Ning, G. D. Moore, J. P. Valenzuela, C. J. Jorgez, J. G. Alvarez and G. S. Kopf. Cholesterol efflux-mediated signal transduction in mammalian sperm. Beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274 (1999): 3235–42.
27. E. de Lamirande and C. O’Flaherty. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784 (2008): 106–15.
28. C. O’Flaherty, M. Beconi and N. Beorlegui. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia 29 (1997): 269–75.
29. C. M. O’Flaherty, N. B. Beorlegui and M. T. Beconi. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52 (1999): 289–301.
30. D. N. Neild, B. M. Gadella, A. Aguero, T. A. Stout and B. Colenbrander. Capacitation, acrosome function and chromatin structure in stallion sperm. Anim Reprod Sci 89 (2005): 47–56.
31. P. F. Watson. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fert Dev 7 (1995): 871–91.
32. C. M. Zumoffen, A. M. Caille, M. J. Munuce, M. O. Cabada and S. A. Ghersevich. Proteins from human oviductal tissue-conditioned medium modulate sperm capacitation. Hum Reprod 25 (2010): 1504–12.
33. L. R. Fraser. The ‘switching on’ of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev 77 (2010): 197–208.
34. P. Talbot, B. D. Shur and D. G. Myles. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 68 (2003): 1–9.
35. C. X. Zhou, X. F. Wang and H. C. Chan. Bicarbonate secretion by the female reproductive tract and its impact on sperm fertilizing capacity. Sheng Li Xue Bao 57 (2005): 115–24.
36. R. H. F. Hunter. Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44 (1996): 417–22.
37. P. Coy and M. Aviles. What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev Camb Philos Soc 85 (2009): 593–605.
38. H. Hasuwa, Y. Muro, M. Ikawa, N. Kato, Y. Tsujimoto and M. Okabe. Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp Anim 59 (2010): 105–7.
39. H. A. Foster, L. R. Abeydeera, D. K. Griffin and J. M. Bridger. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118 (2005): 1811–20.
40. A. Zalensky and I. Zalenskaya. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35 (2007): 609–11.
41. R. Oliva, S. de Mateo and J. M. Estanyol. Sperm cell proteomics. Proteomics 9 (2009): 1004–17.
42. D. Miller, M. Brinkworth and D. Iles. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139 (2010): 287–301.
43. T. Li, T. H. Vu, G. A. Ulaner, E. Littman, J. Q. Ling, H. L. Chen, J. F. Hu, B. Behr, L. Giudice and A. R. Hoffman. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 11 (2005): 631–40.
44. G. D. Palermo, Q. V. Neri, T. Takeuchi, J. Squires, F. Moy and Z. Rosenwaks. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online 17 (2008): 820–33.
45. M. Benchaib, V. Braun, D. Ressnikof, J. Lornage, P. Durand, A. Niveleau and J. F. Guerin. Influence of global sperm DNA methylation on IVF results. Hum Reprod 20 (2005): 768–73.
46. M. D. Anway, C. Leathers and M. K. Skinner. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147 (2006): 5515–23.
47. M. D. Anway, M. A. Memon, M. Uzumcu and M. K. Skinner. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27 (2006): 868–79.
48. M. E. Pembrey, L. O. Bygren, G. Kaati, S. Edvinsson, K. Northstone, M. Sjostrom and J. Golding. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14 (2006): 159–66.
49. J. H. Nadeau. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet 18 (2009): R202–10.
50. T. M. Edwards, B. C. Moore and L. J. Guillette, Jr. Reproductive dysgenesis in wildlife: a comparative view. Int J Androl 29 (2006): 109–21.
51. G. C. Ostermeier, D. Miller, J. D. Huntriss, M. P. Diamond and S. A. Krawetz. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429 (2004): 154.
52. G. C. Ostermeier, D. J. Dix, D. Miller, P. Khatri and S. A. Krawetz. Spermatozoal RNA profiles of normal fertile men. Lancet 360 (2002): 772–7.

References

1. M. Yoshida, N. Kawano and K. Yoshida. Control of sperm motility and fertility: diverse factors and common mechanisms. Cell Mol Life Sci 65 (2008): 3446–57.
2. M. E. Teves, H. A. Guidobaldi, D. R. Uñates, R. Sanchez, W. Miska, S. J. Publicover, A. A. Morales Garcia and L. C. Giojalas. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One 4 (2009): e8211.
3. M. Ikawa, N. Inoue and M. Okabe. Mechanisms of sperm-egg interactions emerging from gene-manipulated animals. Int J Dev Biol 52 (2008): 657–64.
4. A. M. Salicioni, M. D. Platt, E. V. Wertheimer, E. Arcelay, A. Allaire, J. Sosnik and P. E. Visconti. Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65 (2007): 245–59.
5. L. R. Fraser. The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev 77 (2010): 197–208.
6. P. E. Visconti. Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci USA 106 (2009): 667–8.
7. A. Abou-haila and D. R. Tulsiani. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 485 (2009): 72–81.
8. H. Breitbart, T. Rotman, S. Rubinstein and N. Etkovitz. Role and regulation of PI3K in sperm capacitation and the acrosome reaction. Mol Cell Endocrinol 314 (2010): 234–8.
9. K. Yoshinaga and K. Toshimori. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation. Microsc Res Tech 61 (2003): 39–45.
10. H. M. Florman, M. K. Jungnickel and K. A. Sutton. Regulating the acrosome reaction. Int J Dev Biol 52 (2008): 503–10.
11. E. Kim, M. Yamashita, M. Kimura, A. Honda, S. Kashiwabara and T. Baba. Sperm penetration through cumulus mass and zona pellucida. Int J Dev Biol 52 (2008): 677–82.
12. P. Talbot, B. D. Shur and D. G. Myles. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 68 (2003): 1–9.
13. B. D. Shur, C. Rodeheffer, M. A. Ensslin, R. Lyng and A. Raymond. Identification of novel gamete receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol 250 (2006): 137–48.
14. P Sutovsky. Sperm-egg adhesion and fusion in mammals. Expert Rev Mol Med 11 (2009): e11.
15. E. Rubinstein, A. Ziyyat, J. P. Wolf, F. Le Naour and C. Boucheix. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17 (2006): 254–63.
16. B. Lefèvre, J. P. Wolf and A. Ziyyat. Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)? Bioessays 32 (2010): 143–52.
17. V. L. Horner and M. F. Wolfner. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237 (2008): 527–44.
18. K. Swann and Y. Yu. The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol 52 (2008): 585–94.
19. M. Whitaker. Calcium at fertilization and in early development. Physiol Rev 86 (2006): 25–88.
20. T. Ducibella, R. M. Schultz and J. P. Ozil. Role of calcium signals in early development. Semin Cell Dev Biol 17 (2006): 324–32.
21. J. Parrington, L. C. Davis, A. Galione and G. Wessel. Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn 236 (2007): 2027–38.
22. K. Swann. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110 (1990): 1295–302.
23. K. Swann, C. M. Saunders, N. T. Rogers and F. A. Lai. PLCzeta (zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol 17 (2006): 264–73.
24. M. Aarabi, Z. Qin, W. Xu, J. Mewburn and R. Oko. Sperm borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev 77 (2010): 249–56.
25. C. M. Saunders, M. G. Larman, J. Parrington, L. J. Cox, J. Royse, L. M. Blayney, K. Swann and F. A. Lai. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129 (2002): 3533–44.
26. J. Kashir, B. Heindryckx, C. Jones, P. De Sutter, J. Parrington and K. Coward. Oocyte activation, phospholipase C zeta, and human infertility. Hum Reprod Update 16 (2010): 690–703.
27. A. Cheung, K. Swann and J. Carroll. The ability to generate normal Ca2+ transients in response to spermatozoa develops during the final stages of oocyte growth and maturation. Hum Reprod 15 (2000): 389–95.
28. R. A. Fissore, M. Kurokawa, J. Knott, M. Zhang and J. Smyth. Mechanisms underlying oocyte activation and postovulatory ageing. Reprod 124 (2002): 745–54.
29. A. Ajduk, M. A. Ciemerych, V. Nixon, K. Swann and M. Maleszewski. Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes. Reproduction 136 (2008): 741–52.
30. J. E. Swain and T. B. Pool. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14 (2008): 431–46.
31. J. Van Blerkom, P. Davis, V. Mathwig and S. Alexander. Domains of high polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17 (2002): 393–406.
32. R. Dumollard, M. Duchen and C. Sardet. Calcium signals and mitochondria at fertilization. Semin Cell Dev Biol 17 (2006): 314–23.
33. M. A. Cooney, C. Malcuit, B. Cheon, M. K. Holland, R. A. Fissore and N. T. D’Cruz. Species-specific differences in the activity and nuclear localization of murine and bovine Phospholipase C, Zeta 1. Biol Reprod 2010 83 (2010): 92–101.
34. P. Grasa, K. Coward, C. Young and J. Parrington. The pattern of localization of the putative oocyte activation factor, phospholipase Czeta, in uncapacitated, capacitated, and ionophore-treated human spermatozoa. Hum Reprod 23 (2008): 2513–22.
35. C. Young, P. Grasa, K. Coward, L. C. Davis and J. Parrington. Phospholipase C zeta undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril 91 (2009): 2230–42.
36. Y. Bi, W. M. Xu, H. Y. Wong, H. Zhu, Z. M. Zhou, H. C. Chan and J. H. Sha. NYD-SP27, a novel intrinsic decapacitation factor in sperm. Asian J Androl 11 (2009): 229–39.
37. M. Kurokawa, S. Y. Yoon, D. Alfandari, K. Fukami, K. Sato and R. A. Fissore. Proteolytic processing of phospholipase C zeta and [Ca2+]i oscillations during mammalian fertilization. Dev Biol 312 (2007): 407–18.
38. E. Heytens, J. Parrington, K. Coward, C. Young, S. Lambrecht, S. Y. Yoon, R. A. Fissore, R. Hamer, C. M. Deane, M. Ruas, et al. Reduced amounts and abnormal forms of phospholipase C zeta in spermatozoa from infertile men. Hum Reprod 24 (2009): 2417–28.
39. M. Muratori, M. Luconi, S. Marchiani, G. Forti and E. Baldi. Molecular markers of human sperm functions. Int J Androl 32 (2009): 25–45.
40. N. Forgione, A. W. Vogl and S. Varmuza. Loss of protein phosphatase 1cγ(PPP1CC) leads to impaired spermatogenesis associated with defects in chromatin condensation and acrosome development: an ultrastructural analysis. Reproduction 139 (2010): 1021–9.
41. Y. Terada, G. Schatten, H. Hasegawa and N. Yaegashi. Essential roles of the sperm centrosome in human fertilization: developing the therapy for fertilization failure due to sperm centrosomal dysfunction. Tohoku J Exp Med 220 (2010): 247–58.
42. C. M. Santi, P. Martínez-López, J. L. de la Vega-Beltrán, A. Butler, A. Alisio, A. Darszon and L. Salkoff. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS let 584 (2010): 1041–6.
43. A. H. Dam, I. Feenstra, J. R. Westphal, L. Ramos, R. J. van Golde and J. A. Kremer. Globozoospermia revisited. Hum Reprod Update 13 (2007): 63–75.
44. M. H. Nasr-Esfahani, S. Razavi and M. Tavalaee. Failed fertilization after ICSI and spermiogenic defects. Fertil Steril 89 (2008): 892–8.
45. D. Sakkas and J. G. Alvarez. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93 (2010): 1027–36.
46. P. Zheng and J. Dean. Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med 25 (2007): 243–51.
47. S. T. Page, J. K. Amory and W. J. Bremner. Advances in male contraception. Endocr Rev 29 (2008): 465–93.
48. S. Y. Yoon, T. Jellerette, A. M. Salicioni, H. C. Lee, M. S. Yoo, K. Coward, J. Parrington, D. Grow, J. B. Cibelli, P. E. Visconti, et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca2+ release and are unable to initiate the first step of embryo development. J Clin Invest 118 (2008): 3671–81.
49. S. L. Taylor, S. Y. Yoon, M. S. Morshedi, D. R. Lacey, T. Jellerette, R. A. Fissore and S. Oehninger. Complete globozoospermia associated with PLCzeta deficiency treated with calcium ionophore and ICSI results in pregnancy. Reprod Biomed Online 20 (2010): 559–64.

References and further reading

1. L. R. Cochard. Netter’s Atlas of Human Embryology. (Icon Learning Systems, 2002).
2. S. F. Gilbert. Developmental Biology. (Sunderland, MA: Sinauer Associates, 2006).
3. Y. Mio and K. Maeda. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol 199, no. 6 (2008): 660 e1–5.
4. J. Rossant and P. P. Tam. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, no. 5 (2009): 701–13.
5. G. C. Schoenwolf and W. J. Larsen. Larsen’s Human Embryology. (Churchill Livingstone/Elsevier, 2009).
6. C. J. Weijer. Collective cell migration in development. J Cell Sci 122, Pt 18 (2009): 3215–23.
7. L. Wolpert. Principles of Development. (New York: Oxford University Press, 2007).

References

1. T. W. Sadler. Langman’s Medical Embryology. 11th edn. (Philadelphia Lippincott Williams & Wilkins, 2010).
2. S. F. Gilbert. Developmental Biology, 7th revised edn. (Sunderland, MA: Sinauer Associates, 2003).
3. C. Gary, S. B. B Schoenwolf, Philip R. Brauer and Philippa H. Francis-West. Larsen’s Human Embryology, 4th edn. (Philadelphia, PA: Churchill Livingston Elsevier, 2009).
4. M. H. Parker, P. Seale and M. A. Rudnicki. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4, no. 7 (2003 Jul): 497–507.
5. M. Towers and C. Tickle. Generation of pattern and form in the developing limb. Int J Dev Biol 53, no. 5–6 (2009): 805–12.
6. M. Jessell. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1, no. 1 (2000 Oct): 20–9.
7. R. P. Harvey. Patterning the vertebrate heart. Nat Rev Genet 3, no. 7 (2002 Jul): 544–56.
8. A. M. Zorn and J. M. Wells. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25 (2009): 221–51.
9. Barbara P. de Santa, G. R. van den Brink and D. J. Roberts. Molecular etiology of gut malformations and diseases. Am J Med Genet 115, no. 4 (2002 Dec 30): 221–30.
10. G. K. Gittes. Developmental biology of the pancreas: a comprehensive review. Dev Biol 136 (2009): 4–35.
11. G. R. Dressler. Advances in early kidney specification, development and patterning. Development 136, no. 23 (2009 Dec): 3863–74.
12. D. Wilhelm and P. Koopman. The makings of maleness: towards an integrated view of male sexual development. Nat Rev Genet 7, no. 8 (2006 Aug): 620–31.
13. K. A. Loffler and P. Koopman. Charting the course of ovarian development in vertebrates. Int J Dev Biol 46, (2002): 503–10.
14. G. Yamada, K. Suzuki, R. Haraguchi, S. Miyagawa, Y. Satoh, M. Kamimura, et al. Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev Dyn 235, no. 7 (2006 Jul): 1738–52.