Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: April 2015

Chapter 28 - Modular signaling in hematopoietic malignancies

from Part 5 - Current state of the evolving MMMN cancer progression models of cancer


1. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70.
2. Thiagalingam S. 2006. A cascade of modules of a network defines cancer progression. Cancer Res 66:7379–7385.
3. Luo J, Solimini NL, Elledge SJ. 2009. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837.
4. Weinstein IB. 2002. Cancer. addiction to oncogenes – the Achilles heel of cancer. Science 297:63–64.
5. Solimini NL, Luo J, Elledge SJ. 2007. Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130:986–988.
6. Higuchi M, O'Brien D, Kumaravelu P, et al. 2002. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1:63–74.
7. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. 1997. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89:376–387.
8. Castilla LH, Garrett L, Adya N, et al. 1999. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23:144–146.
9. Schessl C, Rawat VP, Cusan M, et al. 2005. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115:2159–2168.
10. Gilliland DG, Tallman MS. 2002. Focus on acute leukemias. Cancer Cell 1:417–420.
11. Huang ME, Ye YC, Chen SR, et al. 1987. All-trans retinoic acid with or without low dose cytosine arabinoside in acute promyelocytic leukemia. Report of 6 cases. Chin Med J 100:949–953.
12. de The H, Chomienne C, Lanotte M, Degos L, Dejean A. 1990. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347:558–561.
13. Lin RJ, Nagy L, Inoue S, et al. 1998. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814.
14. Grignani F, De Matteis S, Nervi C, et al. 1998. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818.
15. Zhu J, Zhou J, Peres L, et al. 2005. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 7:143–153.
16. Nasr R, Guillemin MC, Ferhi O, et al. 2008. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 14:1333–1342.
17. Alcalay M, Meani N, Gelmetti V, et al. 2003. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 112:1751–1761.
18. Ayton PM, Cleary ML. 2001. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene. 20:5695–5707.
19. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. 1997. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90:1799–1806.
20. Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. 1998. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95:10632–10636.
21. Armstrong SA, Staunton JE, Silverman LB, et al. 2002. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47.
22. Krivtsov AV, Twomey D, Feng Z, et al. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822.
23. Faber J, Krivtsov AV, Stubbs MC, et al. 2009. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113:2375–2385.
24. Irish JM, Hovland R, Krutzik PO, et al. 2004. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228.
25. He L, Grammer AC, Wu X, Lipsky PE. 2004. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation. J Biol Chem 279:55855–55865.
26. Liu YC, Penninger J, Karin M. 2005. Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5:941–952.
27. Rawlings DJ, Sommer K, Moreno-Garcia ME. 2006. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6:799–812.
28. Lam KP, Kuhn R, Rajewsky K. 1997. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–1083.
29. Pasparakis M, Schmidt-Supprian M, Rajewsky K. 2002. IkappaB kinase signaling is essential for maintenance of mature B cells. J Exp Med 196:743–752.
30. Alizadeh AA, Eisen MB, Davis RE, et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511.
31. Rosenwald A, Wright G, Chan WC, et al. 2002. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947.
32. Davis RE, Brown KD, Siebenlist U, Staudt LM. 2001. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874.
33. Ngo VN, Davis RE, Lamy L, et al. 2006. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110.
34. Lenz G, Davis RE, Ngo VN, et al. 2008. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679.
35. Ferreri AJ, Ponzoni M, Guidoboni M, et al. 2005. Regression of ocular adnexal lymphoma after Chlamydia psittaci-eradicating antibiotic therapy. J Clin Oncol 23:5067–5073.
36. Du MQ. 2007. MALT lymphoma: recent advances in aetiology and molecular genetics. J Clin Exp Hematop 47:31–42.
37. Ye BH, Lista F, Lo Coco F, et al. 1993. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262:747–750.
38. Pasqualucci L, Neumeister P, Goossens T, et al. 2001. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412:341–346.
39. Pasqualucci L, Migliazza A, Basso K, et al. 2003. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101:2914–2923.
40. Ye BH, Cattoretti G, Shen Q, et al. 1997. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 16:161–170.
41. Phan RT, Dalla-Favera R. 2004. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432:635–639.
42. Parekh S, Polo JM, Shaknovich R, et al. 2007. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110:2067–2074.
43. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, et al. 2004. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol 173:1158–1165.
44. Ranuncolo SM, Polo JM, Dierov J, et al. 2007. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 8:705–714.
45. Polo JM, Dell'Oso T, Ranuncolo SM, et al. 2004. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 10:1329–1335.
46. Cerchietti LC, Yang SN, Shaknovich R, et al. 2009. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 113:3397–3405.
47. Monti S, Savage KJ, Kutok JL, et al. 2005. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105:1851–1861.
48. Polo JM, Juszczynski P, Monti S, et al. 2007. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas. Proc Natl Acad Sci USA 104:3207–3212.
49. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. 2004. H2AX: the histone guardian of the genome. DNA Repair 3:959–967.
50. Fujita N, Jaye DL, Geigerman C, et al. 2004. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119:75–86.
51. Dalla-Favera R, Bregni M, Erikson J, et al. 1982. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827.
52. Hermeking H, Eick D. 1994. Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093.
53. Vaux DL, Cory S, Adams JM. 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442.
54. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. 1992. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552–554.
55. Gaidano G, Ballerini P, Gong JZ, et al. 1991. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88:5413–5417.
56. Zindy F, Eischen CM, Randle DH, et al. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433.
57. Lowe SW, Sherr CJ. 2003. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13:77–83.
58. Adams JM, Harris AW, Pinkert CA, et al. 1985. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538.
59. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. 1999. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669.
60. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW. 1999. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13:2670–2677.
61. Wilda M, Bruch J, Harder L, et al. 2004. Inactivation of the ARF-MDM-2-p53 pathway in sporadic Burkitt's lymphoma in children. Leukemia 18:584–588.
62. Villuendas R, Sanchez-Beato M, Martinez JC, et al. 1998. Loss of p16/INK4A protein expression in non-Hodgkin's lymphomas is a frequent finding associated with tumor progression. Am J Pathol 153:887–897.
63. Klangby U, Okan I, Magnusson KP, et al. 1998. p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma. Blood 91:1680–1687.
64. Baur AS, Shaw P, Burri N, et al. 1999. Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood 94:1773–1781.
65. Egle A, Harris AW, Bouillet P, Cory S. 2004. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101:6164–6169.
66. Hemann MT, Bric A, Teruya-Feldstein J, et al. 2005. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811.
67. Ouillette P, Erba H, Kujawski L, et al. 2008. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 68:1012–1021.
68. Calin GA, Dumitru CD, Shimizu M, et al. 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529.
69. Cimmino A, Calin GA, Fabbri M, et al. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949.
70. Fulci V, Chiaretti S, Goldoni M, et al. 2007. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109:4944–4951.
71. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. 2004. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117:787–800.
72. Rassenti LZ, Huynh L, Toy TL, et al. 2004. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901.
73. Rassenti LZ, Jain S, Keating MJ, et al. 2008. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 112:1923–1930.
74. Chen L, Apgar J, Huynh L, et al. 2005. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105:2036–2041.
75. Gobessi S, Laurenti L, Longo PG, et al. 2007. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 109:2032–2039.
76. Chen L, Huynh L, Apgar J, et al. 2008. ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 111:2685–2692.
77. Ghia EM, Jain S, Widhopf GF, 2nd, et al. 2008. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood 111:5101–5108.
78. Chu CC, Catera R, Zhang L, et al. 2010. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood 115:3907–3915.
79. Gobessi S, Laurenti L, Longo PG, et al. 2009. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 23:686–697.
80. Friedberg JW, Sharman J, Sweetenham J, et al. 2010. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115:2578–2585.