Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 1997
  • Online publication date: October 2009

Chapter 1 - Introduction


Interest in superplasticity is extremely high. The major areas include superplasticity in metals, ceramics, intermetallics, and composites. Superplasticity at very high strain rates (i.e., approximately 0.1–1 s−1) is an area of strong emphasis that is expected to lead to increased applications of superplastic-forming technology.

Historically, there has been no universally accepted definition for superplasticity. After some debate, the following version was proposed and accepted at the 1991 International Conference on Superplasticity in Advanced Materials (ICSAM-91) held in Osaka, Japan:

Superplasticity is the ability of a polycrystalline material to exhibit, in a generally isotropic manner, very high tensile elongations prior to failure.

It is anticipated that there will continue to be some modifications to this definition, but it should serve as a working definition for a phenomenon that was scientifically reported in 1912 and, indeed, may have a far longer history, as described in the following chapter.

During the course of the ICSAM-91 Conference, many different superplastic materials were described. A list of those mentioned is presented in Table 1.1. It is reasonable to infer from the broad range of superplastic materials listed that there is now a good basic understanding of the requirements for developing superplastic structures.