Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2007
  • Online publication date: December 2009

1 - Introduction

Summary

With the explosion of research interest in nanocrystalline materials in recent years, one sub-area that has received significant attention is the mechanical behavior of materials with grain sizes less than 100 nm. The great interest in the mechanical behavior of nanocrystalline materials originates from the unique mechanical properties first observed and/or predicted by the pioneers of this field, Gleiter and co-workers, in materials prepared by the gas condensation method (Gleiter, 1989). Among these early observations or predictions were:

lower elastic moduli than for conventional grain size materials – by as much as 30%–50%;

very high hardness and strength – hardness values for nanocrystalline pure metals (~10 nm grain size) that are 2–10 or more times higher than those of larger grained (>1 μm) metals;

increased ductility – perhaps even superplastic behavior – at low homologous temperatures in even normally brittle ceramics or intermetallics with nanoscale grain sizes, believed to be caused by grain boundary, diffusional deformation mechanisms.

While some of these early observations and predictions have been verified by subsequent studies, in particular the high hardness and strength values, some have been found to be caused by high porosity in the early bulk samples (for example, elastic constant behavior) or to other artifacts introduced by the processing procedures.

References
Baker, M., Kench, P. J., Tsotsos, C., Gibson, P. N., Leyland, A., and Matthews, A. (2005). J. Vac. Sci. Technol. A, 23, 423.
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.
Berger, L. (1996). Phys. Rev. B, 54, 9353.
Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Dabidzha, E. V. (1980). Thin Solid Films, 72, 261.
Buschow, K. H. J. (1988). In Ferromagnetic Materials Vol 4, ed. Wohlfarth, E. P., and Buschow, K. H. J.Amsterdam:Elsevier, p. 1.
Cowburn, R. P., Koltsov, D. K., Adeyeye, A. O., and Welland, M. E. (1998). Appl. Phys. Lett., 73, 3947.
Chung, Y.-W., and Sproul, W. D. (2003). MRS Bulletin, 28, 164.
Dekker, C. (1999). Physics Today, 52(5), 22.
Ehmann, K. F., DeVor, R. E., Kapoor, S. G., and Ni, J. (2000). Micro/Meso-Mechanical Manufacturing M4, NSF Workshop, May 16–17.
Forró, L., Salvetat, J.-P., Bonard, J.-M., Bacsa, R., Thompson, N. H., Garaj, S., Thier-Nga, L., Gaál, R., Kulik, A., Ruzicka, B., Degiorgi, L., Bachtold, A., Schönenberger, C., Pekker, S., and Hernandi, K. (2000). Science and Application of Nanotubes, ed. Tomànek, D., and Enbody, R. J.New York: Kluwer Academic / Plenum Publishers, p. 297.
Gao, G., Cagin, T., and Goddard, W. A. III (1997). Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT) (http://www.wag.caltech.edu/foresight/foresight_2.html). Nanotechnology, 9 (1998), 1984.
Gleiter, H. (1989). Progress in Mater. Sci., 33, 223.
Gojnya, F., Wichmann, M., Fiedler, B., Bauhofer, W., and Schulte, K. (2005). Composites A, 15, 1.
Guinier, A. (1938). Nature, 142, 569.
Hanemann, T., Boehm, J., Henzi, P., Honnef, K., Litfin, K., Ritzhaupt-Kleissl, E., and Hausselt, J. (2004). IEEE Proc.-Nanobiotechnol., 151, 167.
Heinrich, B., and Bland, J. A. C. (1994). Ultrathin Magnetic Structures. Berlin: Springer.
Holleck, H., Lahres, M., and Woll, P. (1990). Surf. Coat. Technol., 41, 179.
Iijima, S. (1991). Nature, 354, 56.
Jianu, A., Valeanu, M., Lazar, D. P., Lifei, M., Tomut, M., Pop, V., and Alexandru, S. (2004). Romanian Rep. Phys., 56, 385.
Jilek, M., Cselle, T., Holubar, P., Marstei, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process., 24, 493.
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scripta Materialia, 49, 651.
Karvankova, P., Männling, H.-D., Eggs, C., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 280.
Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., and Douglas, J. (2002). Macromolecules Rapid Commun., 23, 761.
Kelly, A., and Macmillan, N. H. (1986). Strong Solids, 3rd edition. Oxford: Clarendon Press.
Kneller, E. F., and Hawing, R. (1991). IEEE Trans. Mag., 27, 358.
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bulletin, 24, 54.
Koehler, J. S. (1970). Phys. Rev. B, 2, 547.
Kovacevic, V., Lucic, S., and Leskovac, M. (2002). J. Adhesion Sci. Technol., 16, 1343.
Krivorotov, I. N., Emley, N. C., Sankey, J. C., Kiseiev, S. I., Ralph, D. C., and Buhrman, R. A. (2005). Science, 307, 228.
Kusano, E., Kitagawa, M., Nanto, H., and Kinbara, A. (1998). J. Vac. Sci. Technol. A, 16, 1272.
Lehocky, S. L. (1978a). J. Appl. Phys., 49, 5479.
Lehocky, S. L. (1978b). Phys. Rev. Lett., 41, 1814.
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307.
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process., 12, 287.
Liu, Q., Wijn, J., and Blitterswijk, C. (1997). Biomaterials, 18, 1263.
Maziasz, P. J., and Pollard, M. (2003). Adv. Mater. Processes, 161, 57.
McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684.
Mehl, R. F., and Cahn, R. W. (1983). In: Physical Metallurgy, 3rd edition. Amesterdam: North Holland, p. 1.
Merica, P. D., Waltenburg, R. G., and Scott, H. (1919). Bulletin, AIME (June), 913.
Mohanan, J. L., Arachchige, I. U. and Brock, S. L. (2005). Science, 307(5708), 397.
Münz, W.-D. (2003). MRS Bulletin, 28, 173.
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J., (2001). Surf. Engineering, 17, 15.
Musil, J., Kadlec, S., Vyskocil, J., and Valvoda, V. (1988). Thin Solid Films, 167, 107.
Musil, J. (2000). Surf. Coat. Technol., 125, 322.
Porter, D. A., and Easterling, K. E. (1983). Phase Transformations in Metals and Alloys. New York: Van Nostrand Reinhold, p. 291.
Preston, G. D. (1938). Nature, 142, 570.
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon Nanotubes. Singapore: Imperial College Press, Utopia Publications.
Scattergood, R. O., and Koch, C. C. (2003). Unpublished, North Carolina State University.
Shinn, M., Hulman, L., and Barnett, S. A. (1992). J. Mater. Res., 7, 901.
Singh, S., Godhkindi, M. M., Krishnarao, R. V., Murthy, B. S., and Mukunda, P. G. (2003). Rev. Adv. Mat. Sci., 5, 337.
Slonczewski, J. C. (1996). J. Magn. Mater., 159, L1.
Soe, W.-H., and Yamamoto, R. (1999). Radiat. Effects Defects Solids, 148, 213.
Sun, S. H., and Murray, C. B. (1999). J. Appl. Phys., 85, 4325.
Tixier, S., Böni, P., and Swygenhoven, H. (1999). Thin Solid Films, 342, 188.
Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1996). Nature, 381, 678.
Urazhdin, S., Birge, N. O., Pratt, W. P., and Bass, J. (2003). Phys. Rev. Lett., 91, 146 803.
Veprek, S. (1999). J. Vac. Sci. Technol. A, 17, 2401.
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.
Veprek, S., Reiprich, S., and Li, S. H. (1995a). Appl. Phys. Lett., 66, 2640.
Veprek, S., Haussmann, M., and Reiprich, S. (1995b). J. Vac. Sci. Technol. A, 14, 46.
Veprek, S., Haussmann, M., Reiprich, S., Li, S. H., and Dian, J. (1996). Surf. Coat. Technol., 86–87, 394.
Veprek, S., Männling, H.-D., Jilek, M., and Holubar., P. (2004). Mater. Sci. Eng. A, 366, 202.
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005). Thin Solid Films, 476, 1.
Voevodin, A. A., and Zabinski, J. S. (1998). Diamond and Related Materials, 7, 463.
Voevodin., A. A., and Zabinski, J. S. (2000). Thin Solid Films, 370, 223.
Voevodin, A. A., Schneider, J. M., Rebholz, C., and Matthews, A. (1996a). Tribology Int., 29, 559.
Voevodin, A. A., Capano, M. A., Safriet, A. J., Donley, M. S., and Zabinski, J. S. (1996b). Appl. Phys. Lett., 69, 188.
Voevodin, A. A., Prasad, S. V., and Zabinski, J. S. (1997a). J. Appl. Phys., 82, 855.
Voevodin, A. A., Walck, S. D., and Zabinski, J. S. (1997b). Wear, 203–204, 516.
Voevodin, A. A., Fitz, T. A., Hu, J. J., and Zabinski, J. S. (2002). J. Vac. Sci. Technol. A, 20, 1434.
Wilm, A. (1906). German patent DRP244554.
Wu, C. L., Zhang, M. Q., Rong, M. Z., Lehmann, B., and Friedrich, K., (2004). Plastics, Rubbers and Composites, 33 (2/3), 71.
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929.
Yu, M. F., Files, B. S., Arepalli, S., and Ruoff, R. S. (2000). Phys. Rev. Lett., 84, 5552.
Zeman, P., Cerstvy, R., Mayrhofer, P. H., Mitterer, C., and Musil, J. (2000). Mater. Sci. Eng. A, 289, 189.
Zhang, M., and Rong, M. (2003). Chinese J. Polymer Sci., 21(6), 587.
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A, 424 (1–2), 128.
Zhitomirsky, V. N., Grimber, I., Rapoport, L., Travitzky, N. A., Bocman, R. L., Goldsmith, S., and Weiss, B. Z. (1999). Surf. Coat. Technol., 120–121, 219.