Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: December 2009

6 - Corrosion of structural nanomaterials

Summary

Introduction

Corrosion, degradation, and weathering of advanced materials are problems for which mankind has yet to find a proper solution. From the world's ancient man-made and natural monoliths to today's most modern buildings, bridges, and transportation facilities, the longevities of useful structures are closely regulated by the environment where they are located. Having little control over these aggressive environments, we must carefully select materials that have properties best suited for the conditions to which they are exposed. Even after 100 years of industrial revolution and the development of advanced materials, testing and monitoring procedures, we wonder if our knowledge of today's structural materials and their interactions in the current environment is sufficient to produce long-lasting structures that will benefit society.

For example, the total cost of corrosion and corrosion-related issues in the USA alone is quite significant, amounting to 6% GDP or $500 billion per year (Koch et al., 2002). This cost is distributed over direct costs on materials and structures and indirect costs on loss of productivity. About 90% of the corrosion cost is within iron-based materials. The annual direct cost of corrosion of highway bridges is estimated to be $8.3 billion, of which $3.8 billion is for bridge replacement, and $4 billion is for maintenance. It is estimated that indirect costs to the user due to traffic delays and lost productivity are about $38 billion annually. For more details, see the 2001 report by CC Technologies Laboratories, Inc., FWHA (2001).

Related content

Powered by UNSILO
References
Aguilar, C., Colson, J. C., and Larpin, J. P. (1992). Corros. Sci., 89, 447.
Aledresse, A., and Alfantazi, A. (2004). J. Mater. Sci., 39, 523.
Alves, H., Ferreria, M. G. S., and Köster, U. (2001). Corros. Sci, 45, 1833.
Antill, J., and Peakall, K. (1967). J. Iron Steel Inst., 205, 1136.
Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E. (1984). J. Appl. Phys., 55, 2078.
Czerwinski, F., and Smeltzer, W. W. (1993). Oxid. Met., 40, 503.
Czerwinski, F., and Szpunar, J. A. (1997). J. Sol-Gel Sci. Technol., 9, 103.
Corrosion Costs and Preventive Strategies in the United States. Report by CC Technologies Laboratories, Inc., to Federal Highway Administration (FHWA) (2001). Office of Infrastructure Research and Development, Report FHWA-RD-01-156.
Dey, G. K., Savalia, R. T., Sharma, S. K., and Kulkarni, S. D. (1989). Corros. Sci., 29, 823.
Dutta, R. S., Savalia, R. T., and Dey, G. K. (1995). Scripta Mater., 32, 207.
D'Souza, C. A., Kuri, S. E., Politti, F. S., May, J. E., and Kiminami, C. S. (1999). J. Non Cryst. Solids, 247, 69.
El-Moneim, A. A., Gebert, A., Schneider, F., Guteisch, O., and Schultz, L. (2002). Corrosion Science, 44, 1097.
Gebert, A., Buchholtz, K., El-Aziz, A. M., and Eckert, E. (2001). J. Mater. Sci. Eng., A 316, 60.
Gebert, A., Buchholtz, K., Leonhard, A. A., Mummert, K., Eckert, J., and Schultz, L. (1999). Mater. Sci. Eng., A 267, 294.
Helfand, M. A., Sorensen, N. R., and Nelson, G. C. (1992). J. Electrochem. Soc., 133(9), 2121.
Hiromoto, S., Tsai, A. P., Sumita, M., and Hanawa, T. (2001). Mater. Trans., JIM, 42, 656.
Hussey, R. J., Papaiacovou, P., Shen, J., Mitchell, D. F., and Graham, M. J. (1989). Mater. Sci. Eng., A120, 147.
Inturi, R. B., and Szklarska-Smialowska, Z. (1992). Corrosion, 48, 398.
InTech Magazine Online (1998). Published at www.isa.org.
John, A., Zeiger, W., Scharnweber, D., Worch, H., and Oswald, S. J. (1999). Anal. Chem., 365, 136.
Jung, H., and Alfantazi, A. (2005). Electrochemical Acta (Online DOI: 10.1016/j.electacta.2005.06.037).
Kim, S. H., Aust, K. T., Erb, U., Gonzalez, F., and Palumbo, G. (2003). Scripta Mater., 48, 1379.
Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., and Payer, J. H. (2002). Federal Highway Adminstration Technical Report No. FHWA-RD-01-156, March 2002 (www.corrosioncost.com), 773.
Klement, U., Erb, U., El-Sherik, A. M., and Aust, K. T. (1995). Mater. Sci., 177, A203.
Köster, U., Zander, D., Triwikantoro, A., Rüdiger, A., and Jastrow, L. (2001). Scripta Mater., 44, 1649.
Krolikowski, A. (1988). Key. Engr. Mater., 20, 1169.
Kuiry, S. C., Seal, S., Bose, S. K., and Roy, S. K. (1994). Iron Steel Inst. Japan International, 34, 599.
Lee, B. W. (1985). Appl. Phys. Lett., 46, 790.
Lumsden, J. B., and Szklarska-Smialowska, Z. (1978). Corrosion, 34, 169.
Mishra, R., and Balasubramaniam, R. (2004). Corrosion Science, 46, 3019.
Mondal, K., Murty, B. S., and Chatterjee, U. K. (2005). Corrosion Science, 47, 2619.
Moon, D. P., and Bennett, M. J. (1989). Mater. Sci. Forum, 43, 269.
Murty, B. S., Ping, D. H., and Hono, K. (2000). Appl. Phys. Lett., 77, 1102.
Murty, B. S., Ping, D. H., Ohnuma, M., and Hono, K. (2001). Acta Mater., 49, 3453.
Naka, M., Hashimoto, K., and Masumoto, T. (1976). Corrosion, 32, 146.
Nazeri, A., Trzaskoma-Paulette, P. P., and Bauer, D. (1997). J. Sol-Gel Sci. Technol., 10, 317.
Palumbo, G., and Aust., K. T. (1989). Mat. Sci. Eng A., 113, 139.
Palumbo, G., Thorpe, S. J., and Aust, K. T. (1990). Scripta Metall., 24, 1347.
Pardo, A., Otero, E., Merino, M. C., Lopez, M. D., Vazquez, M., and Agudo, P. (2001). Corros. Sci., 43, 689.
Pardo, A., Otero, E., Merino, M. C., Lopez, M. D., Vazquez, M., Agudo, P., and Hich, A. M. (2002). Corrosion, 58, 987.
Patil, et al. (2004). Proc. R. Soc. Lond. A., 460, 3569.
Pieraggi, B., and Rapp, R. A. (1993). J. Electrochem. Soc., 140, 2844.
Rhys-Jones, et al. (1987). Corr. Sci., 27, 49.
Roure, S., Czerwinski, F., and Petric, A. (1994). Oxid. Met., 42, 75.
Rofagha, R., Langer, R., El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., (1991). Scripta Mat., 25, 2867.
Rofagha, R., Langer, R., El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T. (1992). Mater. Res. Res. Soc. Symp., 283, 751.
Rofagha, R., Splinter, S. J., Erb, U., and Intyre, Mc N. S. (1994a). Nanostructured Materials, 4, 69.
Rofagha, R., Plinter, S. J., Erb, U., McIntyre, N. S. (1994b). Nanostruct. Mater., 4, 69.
Sagawa, M., Fujimura, S., Togawa, M., Yamamoto, H., and Mastura, Y. J. (1985). J. Appl. Phys., 55, 2083.
Schroeder, V., Gilbert, C. J., and Ritchie, R. O. (1998). Scripta Mater., 38, 1481.
Schultz, L., Wecker, J., and Hellstern, E. J. (1987). Appl. Phys., 61, 3583.
Schultz, L., El-Aziz, A. M., Barkleit, G., and Mummert, K. (1999). Mater. Sci. Eng. A, 267, 307.
Seal, S., Bose, S. K., and Roy, S. K. (1994). Oxid. Met. 41, 139.
Seal, S., Roy, S. K., Bose, S. K., and Kuiry, S. C. (2000). J. Mater. (Electronic), 52(1), 1.
Shannon, R. D. (1976). Acta Crystall. Sect. A: Cryst. Phys., Diffr. Theor., Gen. Crystallogr., A32, 751.
Shen, J., Zhou, L., and Li, T. (1998). J. Mater. Sci., 33, 5815.
Shimotomai, M., Fukufa, Y., Fujita, A., and Ozaki, Y. (1990). IEEE Trans. Mag., 26, 1939.
Stringer, J. (1970). Corros. Sci., 10, 513.
Surayanarayana, C., Mukhopadhayay, D., Patanker, S. N., and Froes, F. H. (1992). J. Mater. Res., 7, 2114.
Thorpe, S. J., Ramaswami, B., and Aust, K. T. (1988). J. Electrochem. Soc, 135, 2162.
Tong, H. Y., and Shi, F. G. (1995). Scripta Metall. Mater., 32, 511.
Tokuhara, K., and Hirosawa, S. (1991). J. Appl. Phys, 69, 5521.
Tsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A., and Fukuda, T. (1999). Nanostructured Materials, 11, 141.
Uhlig, H. H. (1971). Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. New York: John Wiley & Sons, Inc.
Wang, Z. B., Yong, X. P., Tao, N. R., and Li, S. (2001). Acta Metall. Sinica, 37, 1251.
Wang, X. Y., and Li, D. Y. (2003). Wear, 255, 836.
Waren, P. J., Thuvander, M., Abraham, M., Lane, H., Cerezo, A., and Smith, G. D. W. (2000). Mater. Sci. Forum, 701, 343.
Whittle, D. P., and Stringer, J. (1980). Phil. Trans. R. Soc. Lond., A 295, 309.
Yousef, Kh. M. S., Koch, C. C., and Fedkiw, P. S. (2004). Corros. Sci., 41, 51.
Zieger, W., Schneider, M., Scharnweber, D., and Worch, H. (1995). Nanostructured Materials, 6, 1013.