Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2007
  • Online publication date: December 2009

7 - Applications of structural nanomaterials



The very early application of nanomaterials is utilized in systems where nanopowders are used in their free form, without consolidation or blending. For a simple example, nanoscale titanium dioxide and zinc oxide powders are now commonly used by cosmetics manufacturers for facial base creams and sunscreen lotions for UV protection. Nanoscale iron oxide powder is now being used as a base material for rouge and lipstick. Paints with reflective properties are also being manufactured using nanoscale titanium dioxide particles. Figure 7.1 lists some of the common current and future applications of nanomaterials. The list is not complete, however; it is a current summary and the view of the present authors.

Nanostructured wear-resistant coatings for cutting tools and engineering components have been in use for several years. Nanostructured cemented carbide coatings are used on some Navy ships for their increased durability. Recently, more sophisticated uses of nanoscale materials have been realized. Nanostructured materials are in wide use in the area of information technology, integrated into complex products such as the hard disk drives that provide faster communication in today's world.

Many uses of nanoscale particles have already appeared in specialty markets, such as defense applications, and in markets for scientific and technical equipment. Producers of optical materials and electronics substrates such as silicon and gallium arsenide have embraced the use of nanosize particles for chemomechanical polishing of these substrates for chip manufacturing.

Bhattacharya, V., and Chattopadhyay, K. (2001). Scripta Mater., 44, 1677.
Buchholz, K. (2003). Nanocomposite debuts on GM vehicles. Automotive Engineering International Online, April 30, 2003.
Carlson, J. D., Matthis, W., and Toscano, J. R. (2001). Industrial and commercial applications of smart structures technologies (Lord Corporation), ed. Anna-Maria R. McGowan. Proceedings of SPIE, 4332, 308.
Cselle, T., Morstein, M., Coddet, O., Geisser, L., Holubar, P., Julik, M., Sima, M., and Janak, M. (2003). Werkzeug Technik, 77 (March 2003), 1. (Accessible at and
Choudhary, P. (2003). Advanced Materials and Processes, ASM International Journal, July 2003, 8.
Current nanotechnology applications. (2003). Nanotechnology Now, May 1, 2003.
Dong, S. R., Tu, J. P., and Zhang, X. B. (2001). Mater. Sci. Eng., A313, 83.
Ferkel, H., and Mordike, B. L. (2001). Mater. Sci. Eng., A298, 193.
El-Eskandarany, S. M. (1998). J. Alloys Compd., 279, 263.
Flink, A., Larsson, T., Sjölén, J., Karlsson, L., and Hultman, L. (2006). Surf. Coat. Technol., 200, 1535.
Gilbert, B., Feng, H., Zhang, H., Waychunas, G. A., and Banfield, J. F., (2004). Science, 305, 651.
Hitachi Tool Engineering, Ltd., Narita Works (2005).
Holubar, P., Jilek, M., and Sima, M. (1999). Surf. Coat. Technol., 120–121, 184.
Holubar, P., Jilek, M., and Sima, M. (2000). Surf. Coat. Technol., 133–134, 145.
Hurt, M. K., and Wereley, N. M. (1996). AIAA-96–1294-CP, AIAA/ASME/AHS Adaptive Structures Forum, Salt Lake City, UT, Apr. 18, 19, 1996, Technical Papers (A96–27071 06–39), 247.
Jilek, M., Holubar, P., Veprek-Heijman, M. G. J., and Veprek, S. (2003). Mater. Res. Soc. Symp. Proc., 697, 393.
Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process., 24, 493.
Kawabe, A., et al. (1999). J. Jpn. Inst. Met., 149.
Kuzumaki, T., Uj, O. iie, Ichinose, H., and Ito, K. (2000). Adv. Eng. Mater., 2, 416.
Law, M., Sirbuly, D. J., Johnnson, J. C., Goldberger, J., Saykally, R. J., and Yang, P. (2004). Science, 305, 1269.
Liu, H., et al. (1997). Mater. Manuf. Processes., 12, 831.
Münz, W.-D. (2003). MRS Bulletin, 28, 173.
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J. (2001). Surf. Engineering, 17, 15.
Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C. (1997). NanoStructured Mater., 9, 737.
Palumbo, G., Erb, U., McCrea, J. L., Hibbard, G. D., Brooks, I., and Gonzalez, F. (2002). AESF SUR/Fin Proc. Q, 204.
Palumbo, G., McCrea, J. L., and Erb, U. (2004). In Encyclopedia of Nanoscience and Nanotechnology, ed. Nalwa, H. S.American Scientific, Publishing, pp. 89–99.
Pickrell, D. (2005), Advanced Materials and Processes, ASM International Journal, March issue, 11.
Rohatgi, P. K., and Asthana, R. (1986). Int. Mat. Rev. 31, 115.
Takagi, M., Ohta, H., Imura, T., Kawamura, Y., and Inoue, A. (2001), Scripta Mater., 44, 2145.
Tanaka, Y., Ichimiya, N., Onischi, Y., and Yamada, Y. (2001). Surf. Coat. Technol., 146–147, 215.
Tanaka, Y., Kondo, A., and Maeda, K. (2004). Invited lecture at the International Conference on Metallurgical Coatings and Thin Films, Session B, San Diego, April/May 2003 (unpublished).
Veprek, S., Veprek-Heijman., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1–29.
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200, 3876.
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64–71.
Wang, X., Padture, N. P., and Tanaka, H. (2004). Nat. Mater., 3, 539.
Wei, Q., Ramesh, K. T., Ma, E., Keskes, L. J., Dowding, R. J., Kazykanov, V. U., and Valiev, R. Z. (2005) Appl. Phys. Lett., 86, 101907.
Xu, C. L., Wei, B. Q., Ma, R. Z., Liang, J., Ma, X. K., and Wu, D. H. (1999). Carbon, 37, 855.
Ying, D. Y., and Zhang, D. L. (2000). Mater. Sci. Eng., 286, 152.
Zhong, L. W. (2004). Advanced Materials and Processes, ASM International Journal, Jan. issue, 22.
Zindulka, O. (2003). Unpublished.