Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: August 2012

Chapter 19 - Neurobehavioral aspects of deep hemisphere stroke

from Section 1 - Clinical manifestations


Stroke has long been recognized as one of the most common causes of epileptic seizures, particularly in older people. This chapter provides an overview of the various epidemiological studies on poststroke seizures (PSS) and poststroke epilepsy (PSE), and attempts to give an understanding of their pathogenesis, outcome, and management. The most consistent risk factors for PSS at stroke onset are size and cortical involvement. Abnormal electroencephalography's (EEGs) have been noted in up to 38% of patients with lacunar infarction, and lateralizing EEG abnormalities in over 80% of patients with early seizures in lacunar strokes also supports the concept of associated cortical infarction. Large, anterior circulation, ischemic strokes carry the highest risk of seizures. Patients who develop PSE usually require pharmacological treatment. Seizures following stroke occur in less than 10% of patients in the first few weeks after stroke.


1. InzitariD, SimoniM, PracucciG, et al., LADIS Study Group. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. Arch Intern Med 2007; 167: 81–88.
2. DamasioAR, DamasioH, RizzoM, VarneyN, GershF.Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 1982; 39: 15–20.
3. NaeserMA, AlexenderMP, Helm-EstabrooksN, et al. Aphasia with predominantly subcortical sites. Description of three capsular/putaminal aphasia syndromes. Arch Neurol 1982; 39: 2–14.
4. WalleschC-W, KornhuberHH, BrunnerRJ, et al. Lesions of the basal ganglia, thalamus, and deep white matter: differential effects on language functions. Brain Lang 1983; 20: 286–304.
5. PuelM, DemonetJF, CardebatD, et al. Aphasies sous-corticales. Étude neurolinguistique avec scanner X de 25 cas. Rev Neurol (Paris) 1984; 140: 695–710.
6. ColomboA, SorgatoP, ScarpaM.Language disturbances following vascular lesions restricted to the left basal ganglia, thalamus and white matter. Neuropsychology 1989; 3: 75–80.
7. WeillerC, WillmesK, ReicheW, et al. The case of aphasia or neglect after striatocapsular infarction. Brain 1993; 116: 1509–1525.
8. MegaMS, AlexanderMP.Subcortical aphasia: the core profile of capsulostriatal infarction. Neurology 1994; 44: 1824–1829.
9. MohrJP, WattersWC, DuncanGW.Thalamic hemorrhage and aphasia. Brain Lang 1975; 2: 3–17.
10. CappaSF, VignoloLA.“Transcortical” features of aphasia following left thalamic hemorrhage. Cortex 1979; 15: 121–130.
11. Graff-RadfordNR, DamasioH, YamaoaT, EslingerPJ, DamasioAR.Nonhemorrhagic thalamic infarction. Clinical, neuropsychological and neurophysiological findings in four anatomical groups defined by computerized tomography. Brain 1985; 108: 485–516.
12. BogousslavskyJ, RegliF, UskeA.Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 1988; 38: 837–848.
13. PeraniD, VallarG, CappaS, MessaC, FazioF.Aphasia and neglect after subcortical stroke. A clinical/cerebral perfusion correlation study. Brain 1987; 110: 1211–1229.
14. PuelM, DémonetJF, CardebatD, et al. Three topographical types of thalamic aphasia: a neurolinguistic, MRI, and SPECT study. In: VallarG, CappaSF, WalleschCW, eds. Neuropsychological Disorders Associated with Subcortical Lesions. Oxford: Oxford University Press, 1992; 412–426.
15. GodefroyO, RousseauxM, LeysD, et al. Frontal lobe dysfunction in unilateral lenticulostriate infarcts. Prominent role of cortical lesions. Arch Neurol 1992; 49: 1285–1289.
16. GodefroyO, RousseauxM, PruvoJP, CabaretM, LeysD.Neuropsychological changes related to unilateral lenticulostriate infarcts. J Neurol Neurosurg Psychiatry 1994; 57: 480–485.
17. HillisAE, WitykRJ, BarkerPB, et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 2002; 125: 1094–1104.
18. ChoiJY, LeeKH, NaDL, et al. Subcortical aphasia after striatocapsular infarction: quantitative analysis of brain perfusion SPECT using statistical parametric mapping and a statistical probabilistic anatomic map. J Nucl Med 2007; 48: 194–200.
19. HeissWD, KesslerJ, ThielA, GhaemiM, KarbeH.Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 1999; 45: 430–438.
20. de BoissezonX, DémonetJF, PuelM, et al. Subcortical aphasia: a longitudinal PET study. Stroke 2005; 36: 1467–1473.
21. KerteszA.Subcortical agraphia. In: VallarG, CappaSF, WalleschCW, eds. Neuropsychological Disorders Associated with Subcortical Lesions. Oxford: Oxford University Press, 1992; 344–356.
22. MaeshimaS, SekiguchiE, KakishitaK, et al. Agraphia with abnormal writing stroke sequences due to cerebral infarction. Brain Inj 2003; 17: 339–345.
23. PramstallerPP, MarsdenCD.The basal ganglia and apraxia. Brain 1996; 119: 319–340.
24. TabakiNE, VikelisM, BesmertisL, et al. Apraxia related with subcortical lesions due to cerebrovascular disease. Acta Neurol Scand 2010; 122: 9–14.
25. Hanna-PladdyB, HeilmanKM, FoundasAL.Cortical and subcortical contributions to ideomotor apraxia: analysis of task demands and error types. Brain 2001; 124: 2513–2527.
26. WatsonRT, ValensteinE, HeilmanKM.Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Arch Neurol 1981; 38: 501–506.
27. FerroJM, KerteszA, BlackSE.Subcortical neglect: quantitation, anatomy and recovery. Neurology 1987; 37: 1487–1492.
28. PizzamiglioL, PeraniD, CappaSF, et al. Recovery of neglect after right hemispheric damage: H2(15)O positron emission tomographic activation study. Arch Neurol 1998; 55: 561–568.
29. KarnathHO, RordenC, TiciniLF.Damage to white matter fiber tracts in acute spatial neglect. Cereb Cortex 2009; 19: 2331–2337.
30. VerdonV, SchwartzS, LovbladKO, HauertCA, VuilleumierP.Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 2010; 133: 880–894.
31. McMurtrayAM, SultzerDL, MonserrattL, YeoT, Mendez MF. Content-specific delusions from right caudate lacunar stroke: association with prefrontal hypometabolism. J Neuropsychiatry Clin Neurosci 2008; 20: 62–67.
32. CaplanLR, SchmahmannJD, KaseCS, et al. Caudate infarcts. Arch Neurol 1990; 47: 133–143.
33. MendezMF, AdamsNL, LewandowskiKS.Neurobehavioral changes associated with caudate lesions. Neurology 1989; 39: 349–354.
34. KumralE, EvyapanD, BalkirK.Acute caudate vascular lesions. Stroke 1999; 30: 100–108.
35. KatzDI, AlexanderMP, MandellAM.Dementia following strokes in the mesencephalon and diencephalon. Arch Neurol 1987; 44: 1127–1133.
36. TatemicchiTK, DesmondDW, ProhovnikI, et al. Confusion and memory loss from capsular genu infarction: a thalamocortical disconnection syndrome?Neurology 1992; 42: 1966–1979.
37. MadureiraS, GuerreiroM, FerroJM.A follow-up study of cognitive impairment due to inferior capsular genu infarction. J Neurol 1999; 246: 764–769.
38. YamanakaK, FukuyamaH, KimuraJ.Abulia from unilateral capsular genu infarction: report of two cases. J Neurol Sci 1996; 143: 181–184.
39. KimJS, Choi-KwonS.Poststroke depression and emotional incontinence: correlation with lesion location. Neurology 2000; 54: 1805–1810.
40. HackettML, YangM, AndersonCS, HorrocksJA, HouseA.Pharmaceutical interventions for emotionalism after stroke. Cochrane Database Syst Rev 2010; 2: CD003690.
41. CoelhoM, FerroJM.Fou rire prodromique. Case report and systematic review of literature. Cerebrovasc Dis 2003; 16: 101–104.
42. UzuncaI, UtkuU, AsilT, CelikY.Fou rire prodromique” associated with simultaneous bilateral capsular genu infarction. J Clin Neurosci 2005; 12: 174–175.
43. ShenkinS, BastinM, MacgillivrayT, et al. Cognitive correlates of cerebral white matter lesions and water diffusion tensor parameters in community-dwelling older people. Cerebrovasc Dis 2005; 20: 310–318.
44. FazekasF, RopeleS, EnzingerC, et al. MTI of white matter hyperintensities. Brain 2005; 128: 2926–2932.
45. SchmidtR, RopeleS, FerroJ, et al., LADIS Study Group. Diffusion-weighted imaging and cognition in the leukoariosis and disability in the elderly study. Stroke 2010; 41: e402–408.
46. LongstrethWJ, ArnoldA, BeauchampNJ, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 2005; 36: 56–61.
47. VerdelhoA, MadureiraS, FerroJM, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among nondisabled elderly: the LADIS Study. J Neurol Neurosurg Psychiatry 2007; 78: 1325–1330.
48. YlikoskiR, YlikoskiA, RaininkoR, et al. Cardiovascular diseases, health status, brain imaging findings and neuropsychological functioning in neurologically healthy elderly individuals. Arch Gerontol Geriatr 2000; 30: 115–130.
49. de GrootJC, de LeeuwFE, OudkerkM, et al. Cerebral white matter lesions and cognitive function: the Rotterdam scan study. Ann Neurol 2000; 47: 145–151.
50 StensetV, HofossD, JohnsenL, et al. White matter lesion severity is associated with reduced cognitive performances in patients with normal CSF Abeta42 levels. Acta Neurol Scand 2008; 118: 373–378.
51. SkoogI, BergS, JohanssonB, PalmertzB, AndreassonLA.The influence of white matter lesions on neuropsychological functioning in demented and non-demented 85-year-olds. Acta Neurol Scand 1996; 93: 142–148.
52. BretelerMM, van SwietenJC, BotsML, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 1994; 44: 1246–1252.
53. LongstrethWT Jr, ManolioTA, ArnoldA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovalscular Health Study. Stroke 1996; 27: 1274–1282.
54. DebetteS, BeiserA, DeCarliC, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia and mortality: the Framingham Offspring Study. Stroke 2010; 41: 600–606.
55. PrinsND, van DijkEJ, den HeijerT, et al. Cerebral small vessel disease and decline in information processing speed, executive function and memory. Brain 2005; 128: 2034–2041.
56. GardeE, MortensenEL, KrabbeK, RostrupE, LarssonHB.Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000; 356: 628–634.
57. VerdelhoA, MadureiraS, MoleiroC, et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 2010; 75: 160–167.
58. SilbertLC, HowiesonDB, DodgeH, KayeJA.Cognitive impairment risk: white matter hyperintensity progression matters. Neurology 2009; 73: 120–125.
59. KramerJH, MungasD, ReedBR, et al. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 2007; 21: 412–418.
60. SchmidtR, RopeleS, EnzingerC, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian Stroke Prevention Study. Ann Neurol 2005; 58: 610–616.
61. GardeE, Lykke MortensenE, RostrupE, PaulsonO.Decline in intelligence is associated with progression in white matter hyperintensity volume. J Neurol Neurosurg Psychiatry 2005; 76: 1289–1291.
62. Van den HeuvelD, ten DamV, de CraenA, et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. J Neurol Neurosurg Psychiatry 2006; 77: 149–153.
63. de GrootJC, de LeeuwF-E, OudkerkM, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 2002; 52: 335–341.
64. PrinsND, van DijkEJ, den HeijerT, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol 2004; 61: 1531–1534.
65. BarberR, GholkarA, ScheltensP, et al. MRI volumetric correlates of white matter lesions in dementia with Lewy bodies and Alzheimer’s disease. Int J Geriatr Psychiatry 2000; 15: 911–916.
66. BomboisS, DebetteS, BruandetA, et al. Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in MCI patients. Stroke 2008; 39: 2046–2051.
67. MeyerJS, HuangJ, ChowdhuryMH.MRI confirms mild cognitive impairments prodromal for Alzheimer’s, vascular and Parkinson-Lewy body dementias. J Neurol Sci 2007; 257: 97–104.
68. CapizzanoAA, AciónL, BekinschteinT, et al. White matter hyperintensities are significantly associated with cortical atrophy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75: 822–827.
69. KovariE, GoldG, HerrmannFR, et al. Cortical microinfarcts and demyelination significantly affect cognition in brain aging. Stroke 2004; 35: 410–414.
70. JagustWJ, ZhengL, HarveyDJ, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol 2008; 63: 72–80.
71. VermeerSE, Den HeijerT, KoudstaalPJ, et al. Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 2003; 34: 392–396.
72. RomanGC, ErkinjunttiT, WallinA, PantoniL, ChuiHC.Subcortical ischaemic vascular dementia. Lancet Neurol 2002; 1: 426–436.
73. VermeerSE, PrinsND, den HeijerT, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003; 348: 1215–1222.
74. van DijkEJ, PrinsND, VroomanHA, et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan Study. Stroke 2008; 39: 2712–2719.
75. CareyCL, KramerJH, JosephsonSA, et al. Subcortical lacunes are associated with executive dysfunction in cognitively normal elderly. Stroke 2008; 39: 397–402.
76. KogaH, TakashimaY, MurakawaR, et al. Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J Stroke Cerebrovasc Dis 2009; 18: 32–37.
77. GoldG, KovariE, HerrmannFR, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke 2005; 36: 1184–1188.
78. BenistyS, GouwAA, PorcherR, et al., LADIS Study Group. Location of lacunar infarcts correlates with cognition in a sample of non disabled subjects with age-related white matter changes: the LADIS Study. J Neurol Neurosurg Psychiatry 2009; 80: 478–483.
79. SnowdonDA, GreinerLH, MortimerJA, et al. Brain infarction and the clinical expression of Alzheimer disease. The NUN Study. JAMA 1997; 277: 813–817.