Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: July 2013

Part 4 - Trophoblast, amniotic fluid, endometrium, and bone marrow

References

1. De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M.et al. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology. 2007; 25: 100–106.
2. Murphy, S., Rosli, S., Acharya, R.et al. Amnion epithelial cell isolation and characterization for clinical use. Current Protocols in Stem Cell Biology. 2010; Chapter 1: Unit 1E 6.
3. Serikov, V., Hounshell, C., Larkin, S.et al. Human term placenta as a source of hematopoietic cells. Experimental Biology and Medicine (Maywood). 2009; 234: 813–823.
4. Troyer, D.L., Weiss, M.L.Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26: 591–599.
5. Galende, E., Karakikes, I., Edelmann, L.et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogramming. 2010; 12: 117–125.
6. Ballen, K.K.New trends in umbilical cord blood transplantation. Blood. 2005; 105: 3786–3792.
7. Shaw, S.W., David, A.L., De Coppi, P.Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Current Opinion in Obstetrics and Gynecology. 2011; 23: 109–116.
8. Murphy, S., Lim, R., Dickinson, H.et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplantation. 2011; 20: 909–923.
9. Furth, M.E., Atala, A.Stem cell sources to treat diabetes. Journal of cellular biochemistry. 2009; 106: 507–511.
10. Delo, D.M., Olson, J., Baptista, P.M.et al. Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells and Development. 2008; 17: 1185–1194.
11. Perin, L., Giuliani, S., Jin, D.et al. Renal differentiation of amniotic fluid stem cells. Cell Proliferation. 2007; 40: 936–948.
12. Swartz, W.J. Early mammalian embryonic development. American Journal of Industrial Medicine. 1983; 4: 51–61.
13. LuckettWP. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. American Journal of Anatomy. 1975; 144: 149–167.
14. Robinson, W.P., McFadden, D.E., Barrett, I.J.et al. Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenatal Diagnosis. 2002; 22: 1076–1085.
15. Sakuragawa, N., Elwan, M.A., Fujii, T.et al. Possible dynamic neurotransmitter metabolism surrounding the fetus. Journal of Child Neurology. 1999; 14: 265–266.
16. Baschat, A.A., Hecher, K.Fetal growth restriction due to placental disease. Seminars in Perinatology. 2004; 28: 67–80.
17. In 't Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C.et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102: 1548–1549.
18. Prusa, A.R., Hengstschlager, M.Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor. 2002; 8: RA253–RA257.
19. Torricelli, F., Brizzi, L., Bernabei, P.A.et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Italian Journal of Anatomy and Embryology. 1993; 98: 119–126.
20. Hoehn, H., Bryant, E.M., Karp, L.E.et al. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique. Clinical Genetics. 1975; 7: 29–36.
21. Tsai, M.S., Lee, J.L., Chang, Y.J.et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction. 2004; 19: 1450–1456.
22. Kaviani, A., Perry, T.E., Dzakovic, A.et al. The amniotic fluid as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery. 2001; 36: 1662–1665.
23. Fleischman, R.A.From white spots to stem cells: the role of the Kit receptor in mammalian development. Trends in Genetics. 1993; 9: 285–290.
24. Hoffman, L.M., Carpenter, M.K.Characterization and culture of human embryonic stem cells. Nature Biotechnology. 2005; 23: 699–708.
25. Guo, C.S., Wehrle-Haller, B., Rossi, J.et al. Autocrine regulation of neural crest cell development by steel factor. Developmental Biology. 1997; 184: 61–69.
26. Maraldi, T., Riccio, M., Resca, E.et al. Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix. Tissue Engineering Part A. 2011; 17: 2833–2843.
27. Sun, H., Feng, K., Hu, J.et al. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010; 31: 1133–1139.
28. Higuchi, A., Shen, P.Y., Zhao, J.K.et al. Osteoblast differentiation of amniotic fluid-derived stem cells irradiated with visible light. Tissue Engineering Part A. 2011; 17: 2593–2602.
29. Rosenblatt, J.D., Lunt, A.I., Parry, D.J.et al. Culturing satellite cells from living single muscle fiber explants. In Vitro Cellular and Developmental Biology Animal. 1995; 31: 773–739.
30. Hinterberger, T.J., Sassoon, D.A., Rhodes, S.J.et al. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Developmental Biology. 1991; 147: 144–156.
31. Guan, X., Delo, D.M., Atala, A.et al. In vitro cardiomyogenic potential of human amniotic fluid stem cells. Journal of Tissue Engineering and Regenerative Medicine. 2011; 5: 220–228.
32. Chen, J., Lu, Z., Cheng, D.et al. Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PLoS One. 2011; 6: e19964.
33. Zhang, P., Baxter, J., Vinod, K.et al. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells and Development. 2009; 18: 1299–1308.
34. Schwartz, R.E., Reyes, M., Koodie, L.et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. Journal of Clinical Investigation. 2002; 109: 1291–1302.
35. Morris, S.M., Jr.Regulation of enzymes of the urea cycle and arginine metabolism. Annual Review of Nutrition. 2002; 22: 87–105.
36. Zheng, Y.B., Gao, Z.L., Xie, C.et al. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biology International. 2008; 32: 1439–1448.
37. Kolambkar, Y.M., Peister, A., Soker, S.et al. Chondrogenic differentiation of amniotic fluid-derived stem cells. Journal of Molecular Histology. 2007; 38: 405–413.
38. Park, J.S., Shim, M.S., Shim, S.H.et al. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-beta3. Biomaterials. 2011; 32: 8139–8149.
39. Mareschi, K., Rustichelli, D., Comunanza, V.et al. Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy. 2009; 11: 534–547.
40. Bollini, S., Cheung, K.K., Riegler, J.et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells and Development. 2011; 20: 1985–1994.
41. Lee, W.Y., Wei, H.J., Lin, W.W.et al. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials. 2011; 32: 5558–5567.
42. Perin, L., Sedrakyan, S., Giuliani, S.et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010; 5: e9357.
43. Pan, H.C., Chen, C.J., Cheng, F.C.et al. Combination of G-CSF administration and human amniotic fluid mesenchymal stem cell transplantation promotes peripheral nerve regeneration. Neurochemical Research. 2009; 34: 518–527.
44. Rehni, A.K., Singh, N., Jaggi, A.S.et al. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behavioural Brain Research. 2007; 183: 95–100.
45. Carraro, G., Perin, L., Sedrakyan, S.et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008; 26: 2902–2911.
46. Buckley, S., Shi, W., Carraro, G.et al. The milieu of damaged AEC2 stimulates alveolar wound repair by endogenous and exogenous progenitors. American Journal of Respiratory Cell and Molecular Biology. 2011; 45: 1212–1221.
47. Ditadi, A., de Coppi, P., Picone, O.et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood. 2009; 113: 3953–3960.
48. Grisafi, D., Piccoli, M., Pozzobon, M.et al. High transduction efficiency of human amniotic fluid stem cells mediated by adenovirus vectors. Stem Cells and Development. 2008; 17: 953–962.
49. Mirebella, T., Poggi, A., Scaranari, M.et al. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation. Biomaterials. 2011; 32: 4218–4227.

References

1. Jabbour, H.N., Kelly, R.W., Fraser, H.M., Critchley, H.O.D.Endocrine regulation of menstruation. Endocrine Reviews. 2006; 27: 17–46.
2. Gargett, C.E.Uterine stem cells: what is the evidence? Human Reproduction Update. 2007; 13: 87–101.
3. Burton, G.J., Watson, A.L., Hempstock, J., Skepper, J.N., Jauniaux, E.Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. Journal of Clinical Endocrinology and Metabolism. 2002; 87: 2954–2959.
4. Henriet, P., Gaide Chevronnay, H.P., Marbaix, E.The endocrine and paracrine control of menstruation. Molecular Cell Endocrinology. 2011; 358: 197–207.
5. Ludwig, H., Metzger, H., Frauli, M.Endometrium: tissue remodelling and regeneration. In: D'Arcangues, C., Fraser, I.S., Newton, J.R., and Odlind, V., eds. Contraception and Mechanisms of Endometrial Bleeding. Cambridge: Cambridge University Press. 1990; 441–446.
6. Okulicz, W.C., Scarrell, R.Estrogen receptor a and progesterone receptor in the rhesus endometrium during the late secretory phase and menses. Proceedings of the Society for Experimental Biology and Medicine. 1998; 218: 316–321.
7. Garry, R., Hart, R., Karthigasu, K.A, Burke, C.A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Human Reproduction. 2009; 24: 1393–1401.
8. Padykula, H.A., Coles, L.G., Okulicz, W.C.et al. Kaiserman–Abramof IR. The basalis of the primate endometrium: a bifunctional germinal compartment. Biology of Reproduction. 1989; 40: 681–690.
9. Slayden, O.D., Brenner, R.M.Hormonal regulation and localization of estrogen, progestin and androgen receptors in the endometrium of nonhuman primates: effects of progesterone receptor antagonists. Archives of Histology and Cytology. 2004; 67: 393–409.
10. Padykula, H.A.Regeneration of the primate uterus: the role of stem cells. Annals of the New York Academy of Science. 1991; 622: 47–56.
11. Ferenczy, A., Bertrand, G., Gelfand, M.M.Proliferation kinetics of human endometrium during the normal menstrual cycle. American Journal of Obstetrics and Gynecology. 1979; 133: 859–867.
12. McLennan, C.E., Rydell, A.H.Extent of endometrial shedding during normal menstruation. Obstetrics and Gynecology. 1965; 26: 605–621.
13. Brenner, R.M., Slayden, O.D., Rodgers, W.H.et al. Immunocytochemical assessment of mitotic activity with an antibody to phosphorylated histone H3 in the macaque and human endometrium. Human Reproduction. 2003; 18: 1185–1193.
14. Fan, X., Krieg, S., Hwang, J.Y.et al. Dynamic regulation of Wnt7a expression in the primate endometrium: implications for postmenstrual regeneration and secretory transformation. Endocrinology. 2012; 153: 1063–1069.
15. Ponnampalam, A.P., Weston, G.C., Trajstman, A.C., Susil, B., Rogers, P.A.Molecular classification of human endometrial cycle stages by transcriptional profiling. Molecular Human Reproduction. 2004; 10: 879–893.
16. Talbi, S., Hamilton, A.E., Vo, K.C.et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006; 147: 1097–1121.
17. Nguyen, H.P.T., Sprung, C.N., Gargett, C.E.Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology. 2012; 153: 2870–2883.
18. Paulson, R.J., Boostanfar, R., Saadat, P.et al. Pregnancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. Journal of the American Medical Association. 2002; 288: 2320–2323.
19. Gargett, C.E., Masuda, H.Adult stem cells in the endometrium. Molecular Human Reproduction. 2010; 16: 818–834.
20. Eckfeldt, C.E., Mendenhall, E.M., Verfaillie, C.M.The molecular repertoire of the “almighty” stem cell. Nature Reviews Molecular Cell Biology. 2005; 6: 726–737.
21. Gargett, C.E., Chan, R.W., Schwab, K.E.Endometrial stem cells. Current Opinion in Obstetrics and Gynecology. 2007; 19: 377–383.
22. Li, L., Xie, T.Stem cell niche: structure and function. Annual Review of Cell Developmental Biology. 2005; 21: 605–631.
23. Snyder, E.Y., Loring, J.F.A role for stem cell biology in the physiological and pathological aspects of aging. Journal of the American Geriatrics Society. 2005; 53: S287–S291.
24. Chan, R.W.S., Schwab, K.E., Gargett, C.E.Clonogenicity of human endometrial epithelial and stromal cells. Biology of Reproduction. 2004; 70: 1738–1750.
25. Schwab, K.E., Chan, R.W., Gargett, C.E.Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertility and Sterility. 2005; 84 Suppl 2: 1124–1130.
26. Gargett, C.E., Chan, R.W.Endometrial stem/progenitor cells and proliferative disorders of the endometrium. Minerva Ginecologica. 2006; 58: 511–526.
27. Gargett, C.E., Schwab, K.E., Zillwood, R.M., Nguyen, H.P.T., Wu, D.Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biology of Reproduction. 2009; 80: 1136–1145.
28. Gargett, C.E.Identification and characterisation of human endometrial stem/progenitor cells. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2006; 46: 250–253.
29. Chan, R.W., Gargett, C.E.Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006; 24: 1529–1538.
30. Cervelló, I., Martinez-Conejero, J.A., Horcajadas, J.A., Pellicer, A., Simón, C.Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Human Reproduction. 2007; 22: 45–51.
31. Szotek, P.P., Chang, H.L., Zhang, L.et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007; 25: 1317–1325.
32. Chan, R.W.S, Kaitu'u-Lino, T., Gargett, C.E.Role of label-retaining cells in estrogen-induced endometrial regeneration. Reproductive Sciences. 2012; 19: 102–114.
33. Dimitrov, R., Timeva, T., Kyurkchiev, D.et al. Characterisation of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008; 135: 551–558.
34. Vaananen, H.K.Mesenchymal stem cells. Annals of Medicine. 2005; 37: 469–479.
35. Wolff, E.F., Wolff, A.B., Du, H., Taylor, H.S.Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reproductive Sciences. 2007; 14: 524–533.
36. Santamaria, X., Massasa, E.E., Feng, Y., Wolff, E., Taylor, H.S.Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Molecular Therapies. 2011; 19: 2065–2071.
37. Wolff, E.F., Gao, X.B., Yao, K.V.et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. Journal of Cell and Molecular Medicine. 2010; 15: 747–755.
38. Potten, C.S., Owen, G., Booth, D.Intestinal stem cells protect their genome by selective segregation of template DNA strands. Journal of Cell Science. 2002; 115: 2381–2388.
39. Kaitu'u-Lino, T.J., Ye, L., Salamonsen, L.A., Girling, J.E., Gargett, C.E.Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. Biology of Reproduction. 2012; 86: 184.
40. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., Mulligan, R.C.Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine. 1997; 183: 1797–1806.
41. Zhou, S., Schuetz, J.D., Bunting, K.D.et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine. 2001; 7: 1028–1034.
42. Smalley, M.J., Clarke, R.B.The mammary gland “side population”: a putative stem/progenitor cell marker? Journal of Mammary Gland Biology and Neoplasia. 2005; 10: 37–47.
43. Kato, K., Yoshimoto, M., Kato, K.et al. Characterization of side-population cells in human normal endometrium. Human Reproduction. 2007; 22: 1214–1223.
44. Cervelló, I., Martinez-Conejero, J.A., Horcajadas, J.A., Pellicier, A., Simón, C.Side population phenotype: an essential characteristic for the somatic stem cells in the human endometrium? Reproductive Sciences. 2008; 15 Suppl 2-72A.
45. Cervelló, I., Gil-Sanchis, C., Mas, A.et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010; 5: e10964.
46. Cervelló, I., Mas, A., Gil-Sanchis, C.et al. Reconstruction of endometrium from human endometrial side population cell lines. Plos One. 2011; 6: e21221.
47. Masuda, H., Matsuzaki, Y., Hiratsu, E.et al. Stem cell-like properties of the endometrial side population: Implication in endometrial regeneration. PLoS One. 2010; 5: e10387.
48. Tsuji, S., Yoshimoto, M., Takahashi, K.et al. Side population cells contribute to the genesis of human endometrium. Fertility and Sterility. 2008; 90: 1528–1537.
49. Ono, M., Maruyama, T., Masuda, H.et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104: 18700–18705.
50. Ito, M., Hiramatsu, H., Kobayashi, K.et al. NOD/SCID/gcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002; 100: 3175–3182.
51. Mas, A., Cervelló, I., Gil-Sanchis, C.et al. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertility and Sterility. 2012; 98: 741–751.
52. Masuda, H., Maruyama, T., Hiratsu, E.et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gcnull immunodeficient mice. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104: 1925–1930.
53. Schwab, K.E., Gargett, C.E.Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Human Reproduction. 2007; 22: 2903–2911.
54. Schwab, K.E., Hutchinson, P., Gargett, C.E.Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Human Reproduction. 2008; 23: 934–943.
55. Spitzer, T.L., Rojas, A., Zelenko, Z.et al. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biology of Reproduction. 2012; 86: 58.
56. Murphy, M.P., Wang, H., Patel, A.N.et al. Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? Journal of Translational Medicine. 2008; 6: 45.
57. Caplan, A.I.Why are MSCs therapeutic? New data: new insight. Journal of Pathology. 2009; 217: 318–324.
58. Masuda, H., Anwar, S.S., Buhring, H.J., Rao, J.R., Gargett, C.E.A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplantation. 2012; 21: 2201–2214.
59. Pittenger, M.F., Mackay, A.M., Beck, S.C.et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147.
60. Zuk, P.A., Zhu, M., Ashjian, P.et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002; 13: 4279–4295.
61. Hansis, C., Tang, Y.X., Grifo, J.A., Krey, L.C.Analysis of Oct-4 expression and ploidy in individual human blastomeres. Molecular Human Reproduction. 2001; 7: 155–161.
62. Tai, M.H., Chang, C.C., Kiupel, M.et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005; 26: 495–502.
63. Matthai, C., Horvat, R., Noe, M.et al. Oct-4 expression in human endometrium. Molecular Human Reproduction. 2006; 12: 7–10.
64. Götte, M., Wolf, M., Staebler, A.et al. Increased experssion of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. Journal of Pathology. 2008; 215: 317–329.
65. Lynch, L., Golden-Mason, L., Eogan, M.et al. Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Human Reproduction. 2007; 22: 919–926.
66. Lev, S., Blechman, J.M., Givol, D., Yarden, Y.Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Critical Reviews in Oncogenesis. 1994; 5: 141–168.
67. Cui, C.H., Uyama, T., Miyado, K.et al. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Molecular Biology of the Cell. 2007; 18: 1586–1594.
68. Hida, N., Nishiyama, N., Miyoshi, S.et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008; 26: 1695–1704.
69. Patel, A.N., Park, E., Kuzman, M.et al. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplantation. 2008; 17: 303–311.
70. Meng, X., Ichim, T.E., Zhong, J.et al. Endometrial regenerative cells: a novel stem cell population. Journal of Translational Medicine. 2007; 5: 57.
71. Anwar, S., Buhring, H.J., Gargett, C.E.A single perivascular marker identifies MSC in human endometrium and menstrual blood. Australian Health and Medical Research Congress. 2008; 4: P700.
72. Sasson, I.E., Taylor, H.S.Stem cells and the pathogenesis of endometriosis. Annals of the New York Academy of Science. 2008; 1127: 106–115.
73. Starzinski-Powitz, A., Zeitvogel, A., Schreiner, A., Baumann, R.In search of pathogenic mechanims in endometriosis: the challenge for molecular cell biology. Current Molecular Medicine. 2001; 1: 655–664.
74. Spencer, T.E., Hayashi, K., Hu, J., Carpenter, K.D.Comparative developmental biology of the mammalian uterus. Current Topics in Developmental Biology. 2005; 68: 85–122.
75. Taylor, H.S.Endometrial cells derived from donor stem cells in bone marrow transplant recipients. Journal of the American Medical Association. 2004; 292: 81–85.
76. Bratincsak, A., Brownstein, M.J., Cassiani-Ingoni, R.et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007; 25: 2820–2826.
77. Du, H., Taylor, H.S.Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007; 25: 2082–2086.
78. Cervelló, I., Gil-Sanchis, C., Mas, A.et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. Plos One. 2012; 7: e30260.
79. Pardal, R., Clarke, M.F., Morrison, S.J.Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer. 2003; 3: 895–902.
80. Lobo, N.A., Shimono, Y., Qian, D., Clarke, M.F.The biology of cancer stem cells. Annual Review of Cell Developmental Biology. 2007; 23: 675–699.
81. Jordan, C.T.Searching for leukemia stem cells: not yet the end of the road? Cancer Cell. 2006; 10: 253–254.
82. Cancer Research UK. http://infocancerresearchuk org/cancerstats/types/uterus/incidence/?a=5541. 2008; accessed 06/30/08.
83 Di Cristofano, A., Ellenson, L.H.Endometrial carcinoma. Annual Reviews of Pathology: Mechanisms of Disease. 2007; 2: 57–85.
84. Friel, A.M., Sergent, P.A., Patnaude, C.et al. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle. 2008; 7: 242–249.
85. Hubbard, S.A., Friel, A.M., Kumar, B.et al. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Research. 2009; 69: 8241–8248.
86. Kato, K., Takao, T., Kuboyama, A.et al. Endometrial cancer side-population cells show prominent migration and have a potential to differentiate into the mesenchymal cell lineage. American Journal of Pathology. 2010; 176: 381–392.
87. Rutella, S., Bonanno, G., Procoli, A.et al. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clinical Cancer Research. 2009; 15: 4299–4311.
88. Friel, A.M., Zhang, L., Curley, M.D.et al. Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reproductive Biology and Endocrinology. 2010; 8: 147.
89. Giudice, L.C., Kao, L.C.Endometriosis. Lancet 2004; 364: 1789–1799.
90. Kao, A.P., Wang, K.H., Chang, C.C.et al. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertility and Sterility. 2011; 95: 1308–1315.
91. Chan, R.W., Ng, E.H., Yeung, W.S.Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. American Journal of Pathology. 2011; 178: 2832–2844.
92. Ferenczy, A.Pathophysiology of adenomyosis. Human Reproduction Update. 1998; 4: 312–322.
93. Chen, Y.J., Li, H.Y., Chang, Y.L.et al. Suppression of migratory/invasive ability and induction of apoptosis in adenomyosis-derived mesenchymal stem cells by cyclooxygenase-2 inhibitors. Fertility and Sterility. 2010; 94: 1972–1979.
94. Vats, A., Bielby, R.C., Tolley, N.S., Nerem, R., Polak, J.M.Stem cells. Lancet. 2005; 366: 592–602.
95. Rahaman, M.N., Mao, J.J.Stem cell-based composite tissue constructs for regenerative medicine. Biotechnology and Bioengineering. 2005; 91: 261–284.
96. Smith, F.J., Holman, C.D., Moorin, R.E., Tsokos, N.Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstetrics and Gynecology. 2010; 116: 1096–1100.

References

1. Harrison, M.R., Golbus, M.S., Filly, R.A.et al. Fetal surgery for congenital hydronephrosis. New England Journal of Medicine. 1982; 306(10): 591–593.
2. Sydorak, R.M., Nijagal, A., Albanese, C.T.Endoscopic techniques in fetal surgery. Yonsei Medical Journal. 2001; 42(6): 695–710.
3. Adzick, N.S., Thom, E.A., Spong, C.Y.et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. New England Journal of Medicine. 2011; 364(11): 993–1004.
4. Johnson, F.L., Look, A.T., Gockerman, J.et al. Bone-marrow transplantation in a patient with sickle-cell anemia. New England Journal of Medicine. 1984; 311(12): 780–783.
5. Kamani, N., August, C.S., Douglas, S.D.et al. Bone marrow transplantation in chronic granulomatous disease. Journal of Pediatrics. 1984; 105(1): 42–46.
6. Lucarelli, G., Galimberti, M., Polchi, P.et al. Bone marrow transplantation in patients with thalassemia. New England Journal of Medicine. 1990; 322(7): 417–421.
7. Parkman, R.The application of bone marrow transplantation to the treatment of genetic diseases. Science. 1986; 232(4756): 1373–1378.
8. Santore, M.T., Roybal, J.L., Flake, A.W.Prenatal stem cell transplantation and gene therapy. Clinical Perinatology. 2009; 36(2): 451–471, xi.
9. Palmer, E.Negative selection–clearing out the bad apples from the T-cell repertoire. Nature Reviews Immunology. 2003; 3(5): 383–391.
10. Ashizuka, S., Peranteau, W.H., Hayashi, S., Flake, A.W.Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Experimental Hematology. 2006; 34(3): 359–368.
11. Hayashi, S., Peranteau, W.H., Shaaban, A.F., Flake, A.W.Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion. Blood. 2002; 100(3): 804–812.
12. Peranteau, W.H., Hayashi, S., Hsieh, M., Shaaban, A.F., Flake, A.W.High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood. 2002; 100(6): 2225–2234.
13. Owen, R.D.Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945; 102(2651): 400–401.
14. Thomsen, M., Hansen, H.E., Dickmeiss, E.MLC and CML studies in the family of a pair of HLA haploidentical chimeric twins. Scandinavian Journal of Immunology. 1977; 6(5): 523–528.
15. Picus, J., Aldrich, W.R., Letvin, N.L.A naturally occurring bone-marrow-chimeric primate. I. Integrity of its immune system. Transplantation. 1985; 39(3): 297–303.
16. Picus, J., Holley, K., Aldrich, W.R., Griffin, J.D., Letvin, N.L.A naturally occurring bone marrow-chimeric primate. II. Environment dictates restriction on cytolytic T lymphocyte-target cell interactions. Journal of Experimental Medicine. 1985; 162(6): 2035–2052.
17. Bianchi, D.W., Zickwolf, G.K., Weil, G.J., Sylvester, S., DeMaria, M.A.Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(2): 705–708.
18. Mold, J.E., Michaelsson, J., Burt, T.D.et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008; 322(5907): 1562–1565.
19. Suskind, D.L., Rosenthal, P., Heyman, M.B.et al. Maternal microchimerism in the livers of patients with biliary atresia. BMC Gastroenterology. 2004; 4: 14.
20. Nijagal, A., Fleck, S., Hills, N.K.et al. Decreased risk of graft failure with maternal liver transplantation in patients with biliary atresia. American Journal of Transplantation. 2012; 12(2): 409–419.
21. Burlingham, W.J., Grailer, A.P., Heisey, D.M.et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. New England Journal of Medicine. 1998; 339(23): 1657–1664.
22. van Rood, J.J., Loberiza, F.R., Jr., Zhang, M.J.et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002; 99(5): 1572–1577.
23. Hayashi, S., Abdulmalik, O., Peranteau, W.H.et al. Mixed chimerism following in utero hematopoietic stem cell transplantation in murine models of hemoglobinopathy. Experimental Hematology. 2003; 31(2): 176–184.
24. Peranteau, W.H., Heaton, T.E., Gu, Y.C.et al. Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine leukocyte adhesion deficiency model. Biology of Blood and Marrow Transplantation. 2009; 15(3): 293–305.
25. Flake, A.W., Zanjani, E.D.In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood. 1999; 94(7): 2179–2191.
26. Touraine, J.L., Raudrant, D., Royo, C.et al. In-utero transplantation of stem cells in bare lymphocyte syndrome. Lancet. 1989; 1(8651): 1382.
27. Flake, A.W., Roncarolo, M.G., Puck, J.M.et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. New England Journal of Medicine. 1996; 335(24): 1806–1810.
28. Wengler, G.S., Lanfranchi, A., Frusca, T.et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet. 1996; 348(9040): 1484–1487.
29. Touraine, J.L., Raudrant, D., Laplace, S.Transplantation of hemopoietic cells from the fetal liver to treat patients with congenital diseases postnatally or prenatally. Transplantation Proceedings. 1997; 29(1–2): 712–713.
30. Gil, J., Porta, F., Bartolome, J.et al. Immune reconstitution after in utero bone marrow transplantation in a fetus with severe combined immunodeficiency with natural killer cells. Transplantation Proceedings.1999; 31(6): 2581.
31. Pirovano, S., Notarangelo, L.D., Malacarne, F.et al. Reconstitution of T-cell compartment after in utero stem cell transplantation: analysis of T-cell repertoire and thymic output. Haematologica. 2004; 89(4): 450–461.
32. Nijagal, A., Flake, A.W., MacKenzie, T.C.In utero hematopoietic cell transplantation for the treatment of congenital anomalies. Clinical Perinatology. 2012; 39: 301–310.
33. Billingham, R.E., Brent, L., Medawar, P.B.Actively acquired tolerance of foreign cells. Nature. 1953; 172(4379): 603–606.
34. Blazar, B.R., Taylor, P.A., Vallera, D.A. In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities. Blood. 1995; 86(11): 4353–4366.
35. Blazar, B.R., Taylor, P.A., Vallera, D.A.Adult bone marrow-derived pluripotent hematopoietic stem cells are engraftable when transferred in utero into moderately anemic fetal recipients. Blood. 1995; 85(3): 833–841.
36. Fleischman, R.A., Mintz, B.Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. Proceedings of the National Academy of Sciences of the United States of America. 1979; 76(11): 5736–5740.
37. Fleischman, R.A., Mintz, B.Development of adult bone marrow stem cells in H-2-compatible and -incompatible mouse fetuses. Journal of Experimental Medicine. 1984; 159(3): 731–745.
38. Merianos, D.J., Tiblad, E., Santore, M.T.et al. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. Journal of Clinical Investigation. 2009; 119(9): 2590–2600.
39. Nijagal, A., Wegorzewska, M., Jarvis, E.et al. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. Journal of Clinical Investigation. 2011; 121(2): 582–592.
40. Kim, H.B., Shaaban, A.F., Milner, R., Fichter, C., Flake, A.W.In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy. Journal of Pediatric Surgery. 1999; 34(5): 726–729; discussion 9–30.
41. Hayashi, S., Hsieh, M., Peranteau, W.H., Ashizuka, S., Flake, A.W.Complete allogeneic hematopoietic chimerism achieved by in utero hematopoietic cell transplantation and cotransplantation of LLME-treated, MHC-sensitized donor lymphocytes. Experimental Hematology. 2004; 32(3): 290–299.
42. Durkin, E.T., Jones, K.A., Rajesh, D., Shaaban, A.F.Early chimerism threshold predicts sustained engraftment and NK-cell tolerance in prenatal allogeneic chimeras. Blood. 2008; 112(13): 5245–5253.
43. Flake, A.W., Harrison, M.R., Adzick, N.S., Zanjani, E.D.Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science. 1986; 233(4765): 776–778.
44. Almeida-Porada, G., Porada, C., Gupta, N.et al. The human-sheep chimeras as a model for human stem cell mobilization and evaluation of hematopoietic grafts’ potential. Experimental Hematology. 2007; 35(10): 1594–1600.
45. Zanjani, E.D., Flake, A.W., Rice, H., Hedrick, M., Tavassoli, M.Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem cells in sheep. Journal of Clinical Investigation. 1994; 93(3): 1051–1055.
46. Zanjani, E.D., Pallavicini, M.G., Ascensao, J.L.et al. Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero. Journal of Clinical Investigation. 1992; 89(4): 1178–1188.
47. Narayan, A.D., Chase, J.L., Lewis, R.L.et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood. 2006; 107(5): 2180–2183.
48. Liechty, K.W., MacKenzie, T.C., Shaaban, A.F.et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine. 2000; 6(11): 1282–1286.
49. Lee, P.W., Cina, R.A., Randolph, M.A.et al. In utero bone marrow transplantation induces kidney allograft tolerance across a full major histocompatibility complex barrier in swine. Transplantation. 2005; 79(9): 1084–1090.
50. Shields, L.E., Gaur, L.K., Gough, M.et al. In utero hematopoietic stem cell transplantation in nonhuman primates: the role of T cells. Stem Cells. 2003; 21(3): 304–314.
51. Tarantal, A.F., Goldstein, O., Barley, F., Cowan, M.J.Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta). Transplantation. 2000; 69(9): 1818–1823.
52. Asano, T., Ageyama, N., Takeuchi, K.et al. Engraftment and tumor formation after allogeneic in utero transplantation of primate embryonic stem cells. Transplantation. 2003; 76(7): 1061–1067.
53. Mintz, B., Anthony, K., Litwin, S.Monoclonal derivation of mouse myeloid and lymphoid lineages from totipotent hematopoietic stem cells experimentally engrafted in fetal hosts. Proceedings of the National Academy of Sciences of the United States of America. 1984; 81(24): 7835–7839.
54. Stewart, F.M., Zhong, S., Wuu, J.et al. Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood. 1998; 91(10): 3681–3687.
55. Peranteau, W.H., Endo, M., Adibe, O.O.et al. CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation. Blood. 2006; 108(13): 4268–4274.
56. Lindton, B., Tolfvenstam, T., Norbeck, O.et al. Recombinant parvovirus B19 empty capsids inhibit fetal hematopoietic colony formation in vitro. Fetal Diagnosis and Therapy. 2001; 16(1): 26–31.
57. Shaaban, A.F., Kim, H.B., Milner, R., Flake, A.W.A kinetic model for the homing and migration of prenatally transplanted marrow. Blood. 1999; 94(9): 3251–3257.
58. Taylor, P.A., McElmurry, R.T., Lees, C.J., Harrison, D.E., Blazar, B.R.Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood. 2002; 99(5): 1870–1872.
59. Czechowicz, A., Kraft, D., Weissman, I.L., Bhattacharya, D.Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007; 318(5854): 1296–1299.
60. Flake, A.W., Zanjani, E.D.Cellular therapy. Obstetrics and Gynecology Clinics of North America. 1997; 24(1): 159–177.
61. Peranteau, W.H., Endo, M., Adibe, O.O., Flake, A.W.Evidence for an immune barrier after in utero hematopoietic-cell transplantation. Blood. 2007; 109(3): 1331–1333.
62. Mackenzie, T.C., Shaaban, A.F., Radu, A., Flake, A.W.Engraftment of bone marrow and fetal liver cells after in utero transplantation in MDX mice. Journal of Pediatric Surgery. 2002; 37(7): 1058–1064.
63. Sabatino, D.E., Mackenzie, T.C., Peranteau, W.et al. Persistent expression of hF. IX. After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Molecular Therapeutics. 2007; 15(9): 1677–1685.
64. Ye, L., Chang, J.C., Lin, C.et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(24): 9826–9830.
65. Howson-Jan, K., Matloub, Y.H., Vallera, D.A., Blazar, B.R.In utero engraftment of fully H-2-incompatible versus congenic adult bone marrow transferred into nonanemic or anemic murine fetal recipients. Transplantation. 1993; 56(3): 709–716.
66. Frattini, A., Blair, H.C., Sacco, M.G.et al. Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(41): 14629–14634.
67. Tondelli, B., Blair, H.C., Guerrini, M.et al. Fetal liver cells transplanted in utero rescue the osteopetrotic phenotype in the oc/oc mouse. American Journal of Pathology. 2009; 174(3): 727–735.
68. Panaroni, C., Gioia, R., Lupi, A.et al. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood. 2009; 114(2): 459–468.
69. Archer, D.R., Turner, C.W., Yeager, A.M., Fleming, W.H.Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation. Blood. 1997; 90(8): 3222–3229.
70. Liuba, K., Pronk, C.J., Stott, S.R., Jacobsen, S.E.Polyclonal T-cell reconstitution of X-SCID recipients after in utero transplantation of lymphoid-primed multipotent progenitors. Blood. 2009; 113(19): 4790–4798.
71. Waldschmidt, T.J., Panoskaltsis-Mortari, A., McElmurry, R.T.et al. Abnormal T cell-dependent B-cell responses in SCID mice receiving allogeneic bone marrow in utero. Severe combined immune deficiency. Blood. 2002; 100(13): 4557–4564.

References

1. Zapata, A.Stem cell populations in adult bone marrow: phenotypes and biological relevance for production of somatic stem cells. In: Simón, C. and Pellicer, A., eds. Stem Cells in Human Reproduction. Basic Science and Therapeutic Potential, 2nd edn. New York: Informa Healthcare. 2009; 178–188.
2. Friedenstein, A.J., Gorskaja, J.F., Kulagina, N.N.Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology. 1976; 4: 267–274.
3. Young, H.E., Mancini, M.L., Wright, R.P.et al. Mesenchymal stem cells reside within the connective tissues of many organs. Developmental Dynamics. 1995; 202: 137–144.
4. Kern, S., Eichler, H., Stoeve, J.et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006; 24: 1294–1301.
5. Pittenger, M.F., Mackay, A.M., Beck, S.C.et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147.
6. da Silva Meirelles, L., Caplan, A.I., Nardi, N.B.In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008; 26: 2287–2299.
7. Deschaseaux, F., Pontikoglou, C., Sensebe, L.Bone regeneration: the stem/progenitor cells point of view. Journal of Cell and Molecular Medicine. 2010; 14: 103–115.
8. Pontikoglou, C., Delorme, B., Charbord, P.Human bone marrow native mesenchymal stem cells. Regenerative Medicine. 2008; 3: 731–741.
9. Caplan, A.I.Mesenchymal stem cells. Journal of Orthopaedic Research. 1991; 9: 641–650.
10. Phinney, D.G., Prockop, D.J.Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells. 2007; 25: 2896–2902.
11. Mendez-Ferrer, S., Michurina, T.V., Ferraro, F.et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466: 829–834.
12. Buhring, H.J., Battula, V.L., Treml, S.et al. Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Science. 2007; 1106: 262–271.
13. Battula, V.L., Treml, S., Bareiss, P.M.et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica. 2009; 94: 173–184.
14. Tormin, A., Li, O., Brune, J.C.et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011; 117: 5067–5077.
15. Maijenburg, M.W., Kleijer, M., Vermeul, K.et al. The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica. 2011; 97: 179–183.
16. Kuznetsov, S.A., Mankani, M.H., Bianco, P.et al. Enumeration of the colony-forming units-fibroblast from mouse and human bone marrow in normal and pathological conditions. Stem Cell Research. 2009; 2: 83–94.
17. Dazzi, F., Marelli-Berg, F.M.Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. European Journal of Immunology. 2008; 38: 1479–1482.
18. Ren, G., Zhang, L., Zhao, X.et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2: 141–150.
19. Chan, J.L., Tang, K.C., Patel, A.P.et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood. 2006; 107: 4817–4824.
20. English, K., Barry, F.P., Mahon, B.P. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters. 2008; 115: 50–58.
21. Aggarwal, S., Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105: 1815–1822.
22. Zhao, S., Wehner, R., Bornhauser, M.et al. Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells and Development. 2010; 19: 607–614.
23. Kim, J., Hematti, P.Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology. 2009; 37: 1445–1453.
24. Raffaghello, L., Bianchi, G., Bertolotto, M.et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008; 26: 151–162.
25. Stagg, J.Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens. 2007; 69: 1–9.
26. Uccelli, A., Moretta, L., Pistoia, V.Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008; 8: 726–736.
27. Siegel, G., Schafer, R., Dazzi, F.The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009; 87: S45–S49.
28. Corcione, A., Benvenuto, F., Ferretti, E.et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006; 107: 367–372.
29. Benvenuto, F., Ferrari, S., Gerdoni, E.et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007; 25: 1753–1760.
30. Maccario, R., Podesta, M., Moretta, A.et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005; 90: 516–525.
31. Krampera, M., Glennie, S., Dyson, J.et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003; 101: 3722–3729.
32. Mills, K.H.Induction, function and regulation of IL-17-producing T cells. European Journal of Immunology. 2008; 38: 2636–2649.
33. Bettelli, E., Oukka, M., Kuchroo, V.K.T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunology. 2007; 8: 345–350.
34. Turner, J.E., Paust, H.J., Steinmetz, O.M.et al. The Th17 immune response in renal inflammation. Kidney International. 2010; 77: 1070–1075.
35. Wang, J., Wang, G., Sun, B.et al. Interleukin-27 suppresses experimental autoimmune encephalomyelitis during bone marrow stromal cell treatment. Journal of Autoimmunity. 2008; 30: 222–229.
36. Zhao, W., Wang, Y., Wang, D.et al. TGF-beta expression by allogeneic bone marrow stromal cells ameliorates diabetes in NOD mice through modulating the distribution of CD4+ T cell subsets. Cell Immunology. 2008; 253: 23–30.
37. Zhang, X., Ren, X., Li, G.et al. Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Investigative Ophthalmology and Visual Science. 2011; 52: 3143–3152.
38. Ghannam, S., Pene, J., Torcy-Moquet, G.et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology. 2010; 185: 302–312.
39. Duffy, M.M., Pindjakova, J., Hanley, S.A.et al. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. European Journal of Immunology. 2011; 41: 2840–2851.
40. Tatara, R., Ozaki, K., Kikuchi, Y.et al. Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy. 2011; 13: 686–694.
41. Guo, Z., Zheng, C., Chen, Z.et al. Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. European Journal of Immunology. 2009; 39: 2840–2849.
42. Selmani, Z., Naji, A., Zidi, I.et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008; 26: 212–222.
43. Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D.et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006; 24: 74–85.
44. Spaggiari, G.M., Capobianco, A., Becchetti, S.et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006; 107: 1484–1490.
45. Spaggiari, G.M., Capobianco, A., Abdelrazik, H.et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008; 111: 1327–1333.
46. Tomchuck, S.L., Zwezdaryk, K.J., Coffelt, S.B.et al. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2008; 26: 99–107.
47. Romieu-Mourez, R., Francois, M., Boivin, M.N.et al. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. Journal of Immunology. 2009; 182: 7963–7973.
48. Liotta, F., Angeli, R., Cosmi, L.et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008; 26: 279–289.
49. DelaRosa, O., Lombardo, E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators of Inflammation. 2010; 865601.
50. Waterman, R.S., Tomchuck, S.L., Henkle, S.L.et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010; 5: e10088.
51. Le Blanc, K., Ringden, O.Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine. 2007; 262: 509–525.
52. Nauta, A.J., Fibbe, W.E.Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007; 110: 3499–3506.
53. Pittenger, M.F., Martin, B.J.Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research. 2004; 95: 9–20.
54. Trumpp, A., Essers, M., Wilson, A.Awakening dormant haematopoietic stem cells. Nature Reviews Immunology. 2010; 10: 201–209.
55. Sacchetti, B., Funari, A., Michienzi, S.et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131: 324–336.
56. Crisan, M., Yap, S., Casteilla, L.et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008; 3: 301–313.
57. Morikawa, S., Mabuchi, Y., Kubota, Y.et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. Journal of Experimental Medicine. 2009; 206: 2483–2496.
58. Dennis, J.E., Carbillet, J.P., Caplan, A.I.et al. The STRO-1+ marrow cell population is multipotential. Cells Tissues and Organs. 2002; 170: 73–82.
59. Gang, E.J., Bosnakovski, D., Figueiredo, C.A.et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007; 109: 1743–1751.
60. Charbord, P., Tavian, M., Humeau, L.et al. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood. 1996; 87: 4109–4119.
61. Westen, H., Bainton, D.F.Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. Journal of Experimental Medicine. 1979; 150: 919–937.
62. Quirici, N., Soligo, D., Bossolasco, P.et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology. 2002; 30: 783–791.
63. Kiel, M.J., Morrison, S.J.Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews Immunology. 2008; 8: 290–301.
64. Katayama, Y., Battista, M., Kao, W.M.et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006; 124: 407–421.
65. Chakroborty, D., Chowdhury, U.R., Sarkar, C.et al. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. Journal of Clinical Investigation. 2008; 118: 1380–1389.
66. Ehninger, A., Trumpp, A.The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. Journal of Experimental Medicine. 2011; 208: 421–428.
67. Schajnovitz, A., Itkin, T., D’Uva, G.et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology. 2011; 12: 391–398.
68. Lucas, D., Battista, M., Shi, P.A.et al. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell. 2008; 3: 364–366.
69. Yamazaki, S., Ema, H., Karlsson, G.et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011; 147: 1146–1158.
70. Pontikoglou, C., Deschaseaux, F., Sensebe, L.et al. Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell in Review. 2011; 7: 569–589.
71. Quarto, R., Mastrogiacomo, M., Cancedda, R.et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. New England Journal of Medicine. 2001; 344: 385–386.
72. Wakitani, S., Imoto, K., Yamamoto, T.et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage. 2002; 10: 199–206.
73. Chung, N.G., Jeong, D.C., Park, S.J.et al. Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. International Journal of Hematology. 2004; 80: 370–376.
74. Sudres, M., Norol, F., Trenado, A.et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology. 2006; 176: 7761–7767.
75. Ringden, O., Uzunel, M., Rasmusson, I.et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006; 81: 1390–1397.
76. Fang, B., Song, Y., Liao, L.et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplantation Proceedings. 2007; 39: 3358–3362.
77. Muller, I., Kordowich, S., Holzwarth, C.et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells, Molecules and Diseases. 2008; 40: 25–32.
78. Tisato, V., Naresh, K., Girdlestone, J.et al. Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia. 2007; 21: 1992–1999.
79. Polchert, D., Sobinsky, J., Douglas, G.et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. European Journal of Immunology. 2008; 38: 1745–1755.
80. Le Blanc, K., Frassoni, F., Ball, L.et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008; 371: 1579–1586.
81. von Bonin, M., Stolzel, F., Goedecke, A.et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation. 2009; 43: 245–251.
82. Lucchini, G., Introna, M., Dander, E.et al. Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biology of Blood and Marrow Transplantation. 2010; 16: 1293–1301.
83. Martin, P.J., Uberti, J.P., Soiffer, R.J.et al. Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized placebo-controlled, multicenter phase III trial in GVHD. Biology of Blood and Marrow Transplantation. 2010; 16(2): 169–170.
84. Kebriaei, P., Isola, L., Bahceci, E.et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation. 2009; 15: 804–811.
85. Ning, H., Yang, F., Jiang, M.et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia. 2008; 22: 593–599.
86.In ‘t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C.et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102: 1548–1549.
87. Bensidhoum, M., Chapel, A., Francois, S.et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004; 103: 3313–3319.
88. Gottschling, S., Saffrich, R., Seckinger, A.et al. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism. Stem Cells. 2007; 25: 798–806.
89. Majumdar, M.K., Thiede, M.A., Mosca, J.D.et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cell Physiology. 1998; 176: 57–66.
90. Muguruma, Y., Yahata, T., Miyatake, H.et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006; 107: 1878–1887.
91. Cheng, L., Qasba, P., Vanguri, P.et al. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. Journal of Cell Physiology. 2000; 184: 58–69.
92. Ichii, M., Oritani, K., Yokota, T.et al. Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Experimental Hematology. 2008; 36: 587–597.
93. Zappia, E., Casazza, S., Pedemonte, E.et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005; 106: 1755–1761.
94. Augello, A., Tasso, R., Negrini, S.M.et al. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis and Rheumatism. 2007; 56: 1175–1186.
95. Zheng, Z.H., Li, X.Y., Ding, J.et al. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford). 2008; 47: 22–30.
96. Fiorina, P., Jurewicz, M., Augello, A.et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology. 2009; 183: 993–1004.
97. Madec, A.M., Mallone, R., Afonso, G.et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia. 2009; 52: 1391–1399.
98. Gonzalez, M.A., Gonzalez-Rey, E., Rico, L.et al. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009; 136: 978–989.
99. Sun, L., Akiyama, K., Zhang, H.et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells. 2009; 27: 1421–1432.
100. Djouad, F., Fritz, V., Apparailly, F.et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis and Rheumatism. 2005; 52: 1595–1603.
101. Constantin, G., Marconi, S., Rossi, B.et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009; 27: 2624–2635.
102. Parekkadan, B., Tilles, A.W., Yarmush, M.L.Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells. 2008; 26: 1913–1919.
103. Rafei, M., Campeau, P.M., Aguilar-Mahecha, A.et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. Journal of Immunology. 2009; 182: 5994–6002.
104. Yamout, B., Hourani, R., Salti, H.et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. Journal of Neuroimmunology. 2010; 227: 185–189.
105. Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J.et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal of Immunology. 2007; 4: 50–57.
106. Carrion, F., Nova, E., Ruiz, C.et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 2010; 19: 317–322.
107. Liang, J., Zhang, H., Hua, B.et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Annals of Rheumatic Diseases. 2010; 69: 1423–1429.
108. Sun, L., Wang, D., Liang, J.et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism. 2010; 62: 2467–2475.