Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: July 2013

Part 5 - New developments in stem-cell research

References

1. Yamanaka, S., Blau, H.M.Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010; 465: 704–712.
2. Takahashi, K., Yamanaka, S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676.
3. Park, I.H., Zhao, R., West, J.A.et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451: 141–146.
4. Takahashi, K., Tanabe, K., Ohnuki, M.et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861–872.
5. Yu, J., Vodyanik, M.A., Smuga-Otto, K.et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318: 1917–1920.
6. Jopling, C., Sleep, E., Raya, M.et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010; 464: 606–609.
7. Kikuchi, K., Holdway, J.E., Werdich, A.A.et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010; 464: 601–605.
8. Porrello, E.R., Mahmoud, A.I., Simpson, E.et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331: 1078–1080.
9. Kragl, M., Knapp, D., Nacu, E.et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009; 460: 60–65.
10. Chen, Z.L., Yu, W.M., Strickland, S.Peripheral regeneration. Annual Review of Neuroscience. 2007; 30: 209–233.
11. Thorel, F., Nepote, V., Avril, I.et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010; 464: 1149–1154.
12. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H.Viable offspring derived from fetal and adult mammalian cells. Nature. 1997; 385: 810–813.
13. Blau, H.M., Chiu, C.P., Webster, C.Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 1983; 32: 1171–1180.
14. Schneuwly, S., Klemenz, R., Gehring, W.J.Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature. 1987; 325: 816–818.
15. Davis, R.L., Weintraub, H., Lassar, A.B.Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987; 51: 987–1000.
16. Xie, H., Ye, M., Feng, R., Graf, T.Stepwise reprogramming of B cells into macrophages. Cell. 2004; 117: 663–676.
17. Cobaleda, C., Jochum, W., Busslinger, M.Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007; 449: 473–477.
18. Waddington, C.H.The Strategy of the Genes. London: Geo Allen and Unwin. 1957.
19. Sleep, E., Boue, S., Jopling, C.et al. Transcriptomics approach to investigate zebrafish heart regeneration. Journal of Cardiovascular Medicine (Hagerstown). 2010; 11: 369–380.
20. McGann, C.J., Odelberg, S.J., Keating, M.T.Mammalian myotube dedifferentiation induced by newt regeneration extract. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98: 13699–13704.
21. Nutt, S.L., Heavey, B., Rolink, A.G., Busslinger, M.Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999; 401: 556–562.
22. Hanna, J., Markoulaki, S., Schorderet, P.et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008; 133: 250–264.
23. Li, R., Liang, J., Ni, S.et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010; 7: 51–63.
24. Tursun, B., Patel, T., Kratsios, P., Hobert, O.Direct conversion of C. elegans germ cells into specific neuron types. Science. 2011; 331: 304–308.
25. Vierbuchen, T., Ostermeier, A., Pang, Z.P.et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010; 463: 1035–1041.
26. Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E.et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011; 476: 224–227.
27. Pfisterer, U., Kirkeby, A., Torper, O.et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 10343–10348.
28. Yoo, A.S., Sun, A.X., Li, L.et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011; 476: 228–231.
29. Pang, Z.P., Yang, N., Vierbuchen, T.et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011; 476: 220–223.
30. Ambasudhan, R., Talantova, M., Coleman, R.et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011; 9: 113–118.
31. Heinrich, C., Blum, R., Gascon, S.et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biology. 2010; 8: e1000373.
32. Addis, R.C., Hsu, F.C., Wright, R.L.et al. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One. 2011; 6: e28719.
33. Son, E.Y., Ichida, J.K., Wainger, B.J.et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011; 9: 205–218.
34. Qiang, L., Fujita, R., Yamashita, T.et al. Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell. 2011; 146: 359–371.
35. Marro, S., Pang, Z.P., Yang, N.et al. Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell. 2011; 9: 374–382.
36. Takeuchi, J.K., Bruneau, B.G.Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009; 459: 708–711.
37. Ieda, M., Fu, J.D., Delgado-Olguin, P.et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142: 375–386.
38. Szabo, E., Rampalli, S., Risueno, R.M.et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010; 468: 521–526.
39. Kim, J.B., Greber, B., Arauzo-Bravo, M.J.et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009; 461: 649–653.
40. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., Melton, D.A.In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008; 455: 627–632.
41. Huang, P., He, Z., Ji, S.et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011; 475: 386–389.
42. Sekiya, S., Suzuki, A.Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011; 475: 390–393.
43. Smale, S.T.Pioneer factors in embryonic stem cells and differentiation. Current Opinion in Genetic Development. 2010; 20: 519–526.
44. Efe, J.A., Hilcove, S., Kim, J.et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology. 2011; 13: 215–222.
45. Kim, J., Efe, J.A., Zhu, S.et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 7838–7843.
46. Ng, R.K., Gurdon, J.B.Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biology. 2008; 10: 102–109.
47. Stadtfeld, M., Apostolou, E., Akutsu, H.et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. 2010; 465: 175–181.
48. Kim, K., Doi, A., Wen, B.et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010; 467: 285–290.
49. Polo, J.M., Liu, S., Figueroa, M.E.et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology. 2010; 28: 848–855.
50. Chin, M.H., Mason, M.J., Xie, W.et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009; 5: 111–123.

References

1. Prigione, A., Fauler, B., Lurz, R.et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010; 28(4): 721–733.
2. Varum, S., Rodrigues, A.S., Moura, M.B.et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 2011; 6(6): e20914.
3. Prigione, A., Lichtner, B., Kuhl, H.et al. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells. 2011; 29(9): 1338–1348.
4. Kondoh, H., Lleonart, M.E., Nakashima, Y.et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid ants and Redox Signaling. 2007; 9(3): 293–299.
5. Fernandes, T.G., Fernandes-Platzgummer, A.M., da Silva, C.L.et al. Kinetic and metabolic analysis of mouse embryonic stem cell expansion under serum-free conditions. Biotechnology Letters. 2010; 32(1): 171–179.
6. Zhang, J., Khvorostov, I., Hong, J.S.et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO Journal. 2011; 30(24): 4860–4873.
7. Newsholme, E.A., Crabtree, B., Ardawi, M.S.The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Bioscience Reports. 1985; 5(5): 393–400.
8. Gopichandran, N., Leese, H.J.Metabolic characterization of the bovine blastocyst, inner cell mass, trophectoderm and blastocoel fluid. Reproduction. 2003; 126(3): 299–308.
9. Hewitson, L.C., Leese, H.J.Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. Journal of Experimental Zoology. 1993; 267(3): 337–343.
10. Sariban-Sohraby, S., Magrath, I.T., Balaban, R.S.Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells. Cancer Research. 1983; 43(10): 4662–4664.
11. Hume, D.A., Weidemann, M.J.Role and regulation of glucose metabolism in proliferating cells. Journal of the National Cancer Institute. 1979; 62(1): 3–8.
12. Mandel, L.J.Energy metabolism of cellular activation, growth and transformation. Current Topics in Membrane and Transport. 1986; 27: 261–291.
13. Morgan, M.J., Faik, P.Carbohydrate metabolism in cultured animal cells. Bioscience Reports. 1981; 1(9): 669–686.
14. Reitzer, L.J., Wice, B.M., Kennell, D.The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. Journal of Biological Chemistry. 1980; 255(12): 5616–5626.
15. Alexander, P.B., Wang, J., McKnight, S.L.Targeted killing of a mammalian cell based upon its specialized metabolic state. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(38): 15828–15833.
16. Wang, J., Alexander, P., Wu, L.et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science. 2009; 325(5939): 435–439.
17. Armstrong, L., Tilgner, K., Saretzki, G.et al. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010; 28(4): 661–673.
18. Kelly, R.D., Sumer, H., McKenzie, M.et al. The effects of nuclear reprogramming on mitochondrial DNA replication. Stem Cell Reviews. 2011 Oct 13. [Epub ahead of print.]
19. Cho, Y.M., Kwon, S., Pak, Y.K.et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemistry and Biophysics Research Communications. 2006; 348(4): 1472–1478.
20. Chung, S., Dzeja, P.P., Faustino, R.S.et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice Cardiovascular Medicine. 2007; 4 Suppl 1: S60–S67.
21.St John, J.C., Ramalho-Santos, J., Gray, H.L.et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning and Stem Cells. 2005; 7(3): 141–153.
22. Facucho-Oliveira, J.M., Alderson, J., Spikings, E.C.et al. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science. 2007; 120 (Pt 22): 4025–4034.
23. Suhr, S.T., Chang, E.A., Tjong, J.et al. Mitochondrial rejuvenation after induced pluripotency. PLoS One. 2010; 5(11): e14095.
24. Smiley, S.T., Reers, M., Mottola-Hartshorn, C.et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proceedings of the National Academy of Sciences of the United States of America. 1991; 88(9): 3671–3675.
25. Schieke, S.M., Ma, M., Cao, L.et al. Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells. Journal of Biological Chemistry. 2008; 283(42): 28506–28512.
26. Ramos-Mejia, V., Bueno, C., Roldan, M.et al. The adaptation of human embryonic stem cells to different feeder-free culture conditions is accompanied by a mitochondrial response. Stem Cells and Development. 2012; 21: 1145–1155.
27. Hayashi, K., Lopes, S.M., Tang, F.et al. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell. 2008; 3(4): 391–401.
28. Toyooka, Y., Shimosato, D., Murakami, K.et al. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development. 2008; 135(5): 909–918.
29. Harvey, A., Gibson, T., Lonergan, T.et al. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion. 2011; 11(5): 829–838.
30. Todd, L.R., Damin, M.N., Gomathinayagam, R.et al. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Molecular Biology of the Cell. 2010; 21(7): 1225–1236.
31. Mandal, S., Lindgren, A.G., Srivatava, A.S.et al. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells. 2010; 29: 486–495.
32. Varum, S., Momcilovic, O., Castro, C.et al. Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Research. 2009; 3(2–3): 142–156.
33. Fernandes, T.G., Diogo, M.M., Fernandes-Platzgummer, A.et al. Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Research. 2010; 5(1): 76–89.
34. Ludwig, T.E., Levenstein, M.E., Jones, J.M.et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnology. 2006; 24(2): 185–187.
35. Tan, B.S., Lonic, A., Morris, M.B.et al. The amino acid transporter SNAT2 mediates L-proline-induced differentiation of ES cells. American Journal of Physiology, Cell Physiology. 2011; 300(6): C1270–C1279.
36. Washington, J.M., Rathjen, J., Felquer, F.et al. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. American Journal of Physiology, Cell Physiology. 2010; 298(5): C982–C992.
37. Yanes, O., Clark, J., Wong, D.M.et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology. 2010; 6(6): 411–417.
38. Sathananthan, A.H., Trounson, A.O. Mitochondrial morphology during preimplantational human embryogenesis. Human Reproduction. 2000; 15 Suppl 2: 148–159.
39. Takahashi, K., Yamanaka, S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663–676.
40. Wang, P., Na, J.Mechanism and methods to induce pluripotency. Protein and Cell. 2011; 2(10): 792–799.
41. Folmes, C.D., Nelson, T.J., Martinez-Fernandez, A.et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism. 2011; 14(2): 264–271.
42. Prigione, A., Adjaye, J.Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. International Journal of Developmental Biology. 2010; 54(11–12): 1729–1741.
43. Panopoulos, A.D., Yanes, O., Ruiz, S.et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research. 2012; 22(1): 168–177.
44. Abaci, H.E., Truitt, R., Luong, E.et al. Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. American Journal of Physiology, Cell Physiology. 2010; 298(6): C1527–C1537.
45. Chin, M.H., Mason, M.J., Xie, W.et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009; 5(1): 111–123.
46. Lowry, W.E., Richter, L., Yachechko, R.et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(8): 2883–2888.
47. Donohoe, D.R., Bultman, S.J.Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. Journal of Cell Physiology. 2012; 227: 169–177.
48. Gardner, D.K., Lane, M.Ex vivo early embryo development and effects on gene expression and imprinting. Reproduction, Fertility and Development. 2005; 17(3): 361–370.
49. Oddens, B., Ledger, B. (eds.) A Decade of Success in ART: The Most-cited Research Articles on Assisted Reproduction Treatments From the Last 10 Years. Amsterdam: Excerpta Medica; 2006.
50. Fischer, B., Bavister, B.D.Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Journal of Reproduction and Fertility. 1993; 99(2): 673–679.
51. Forristal, C.E., Wright, K.L., Hanley, N.A.et al. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010; 139(1): 85–97.
52. Prasad, S.M., Czepiel, M., Cetinkaya, C.et al. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Proliferation. 2009; 42(1): 63–74.
53. Forsyth, N.R., Musio, A., Vezzoni, P.et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning and Stem Cells. 2006; 8(1): 16–23.
54. Ezashi, T., Das, P., Roberts, R.M.Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(13): 4783–4788.
55. Zachar, V., Prasad, S.M., Weli, S.C.et al. The effect of human embryonic stem cells (hESCs) long-term normoxic and hypoxic cultures on the maintenance of pluripotency. In Vitro Cellular and Developmental Biology, Animal. 2010; 46(3–4): 276–283.
56. Gibbons, J., Hewitt, E., Gardner, D.K.Effects of oxygen tension on the establishment and lactate dehydrogenase activity of murine embryonic stem cells. Cloning and Stem Cells. 2006; 8(2): 117–122.
57. Peura, T.T., Bosman, A., Stojanov, T.Derivation of human embryonic stem cell lines. Theriogenology. 2007; 67(1): 32–42.
58. Yoshida, Y., Takahashi, K., Okita, K.et al. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009; 5(3): 237–241.
59. Rathjen, J., Lake, J.A., Bettess, M.D.et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. Journal of Cell Science. 1999; 112 (Pt 5): 601–612.
60. Ying, Q.L., Wray, J., Nichols, J.et al. The ground state of embryonic stem cell self-renewal. Nature. 2008; 453(7194): 519–523.
61. Pera, M.F., Tam, P.P.Extrinsic regulation of pluripotent stem cells. Nature. 2010; 465(7299): 713–720.
62. Zhou, W., Choi, M., Margineantu, D.et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO Journal. 2012; 31: 2103–2116.
63. Khosla, S., Dean, W., Brown, D.et al. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biology of Reproduction. 2001; 64(3): 918–926.
64. Martin, M.J., Muotri, A., Gage, F., Varki, A.Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine. 2005; 11(2): 228–232.
65. Chung, T.L., Turner, J.P., Thaker, N.Y.et al. Ascorbate promotes epigenetic activation of CD30 in human embryonic stem cells. Stem Cells. 2010; 28(10): 1782–1793.
66. Xie, X., Hiona, A., Lee, A.S.et al. Effects of long-term culture on human embryonic stem cell aging. Stem Cells and Development. 2011; 20(1): 127–138.
67. Semenza, G.L.Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009; 24: 97–106.
68. Harvey, A.J., Kind, K.L., Pantaleon, M.et al. Oxygen-regulated gene expression in bovine blastocysts. Biology of Reproduction. 2004; 71(4): 1108–1119.
69. Covello, K.L., Kehler, J., Yu, H.et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes and Development. 2006; 20(5): 557–570.
70. Moreno-Manzano, V., Rodriguez-Jimenez, F.J., Acena-Bonilla, J.L.et al. FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. Journal of Biological Chemistry. 2010; 285(2): 1333–1342.
71. Mazumdar, J., O’Brien, W.T., Johnson, R.S.et al. O2 regulates stem cells through Wnt/beta-catenin signalling. Nature Cell Biology. 2010; 12(10): 1007–1013.
72. Finley, L.W., Haigis, M.C.The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Research Reviews. 2009; 8(3): 173–188.
73. Adamo, L., Zhang, Y., Garcia-Cardena, G.AICAR activates the pluripotency transcriptional network in embryonic stem cells and induces KLF4 and KLF2 expression in fibroblasts. BMC Pharmacology. 2009; 9: 2.
74. Chae, H.D., Lee, M.R., Broxmeyer, H.E.5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells. 2012; 30(2): 140–149.
75. Chen, T., Shen, L., Yu, J.et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell. 2011; 10(5): 908–911.
76. Han, M.K., Song, E.K., Guo, Y.et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008; 2(3): 241–251.
77. Saunders, L.R., Sharma, A.D., Tawney, J.et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY). 2010; 2(7): 415–431.
78. Calvanese, V., Lara, E., Suarez-Alvarez, B.et al. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(31): 13736–13741.
79. Murakami, M., Ichisaka, T., Maeda, M.et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Molecular and Cellular Biology. 2004; 24(15): 6710–6718.
80. Zhou, J., Su, P., Wang, L.et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(19): 7840–7845.
81. Easley, C.A., Ben-Yehudah, A., Redinger, C.J.et al. mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cellular Reprogramming. 2010; 12(3): 263–273.
82. He, J., Kang, L., Wu, T.et al. An elaborate regulation of mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells and Development. 2012; 21: 2630–2641.
83. ChenX, Xu, H., Yuan, P.et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008; 133(6): 1106–1117.