Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: July 2013

6 - Meiotic recombination in human oocytes

from Part 3 - The embryo/blastomere

References

1. Nagaoka, S., Hassold, T., Hunt, P.Human aneuploidy: mechanisms and new insights to an age old problem. Nature Reviews Genetics. 2012; 13(7): 493–504.
2. Baudat, F., de Massy, B.Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Research. 2007; 15(5): 565–577.
3. Longhese, M.P., Bonetti, D., Guerini, I., Manfrini, N., Clerici, M.DNA double-strand breaks in meiosis: checking their formation, processing and repair. DNA Repair (Amsterdam). 2009; 8(9): 1127–1138.
4. Szekvolgyi, L., Nicolas, A.From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS Journal. 2009; 277(3): 571–589.
5. Lenzi, M.L., Smith, J., Snowden, T.et al. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. American Journal of Human Genetics. 2005; 76(1): 112–127.
6. Revenkova, E., Eijpe, M., Heyting, C.et al. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biology. 2004; 6(6): 555–562.
7. Xu, H., Beasley, M.D., Warren, W.D., van der Horst, G.T., McKay, M.J.Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Developmental Cell. 2005; 8(6): 949–961.
8. Yuan, L., Liu, J.G., Hoja, M.R.et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science. 2002; 296(5570): 1115–1118.
9. Race, R.R., Sanger, R.Blood Groups in Man, 6th edn. Chichester: Blackwell Science Ltd. 1975.
10. Harris, H.Enzyme polymorphisms in man. Proceedings of the Royal Society of London B, Biological Science. 1966; 164(995): 298–310.
11. Westerveld, A., Jongsma, A.P., Meera Khan, P., van Someren, H., Bootsma, D.Assignment of the AK1: Np: ABO linkage group to human chromosome 9. Proceedings of the National Academy of Sciences of the United States of America. 1976; 73(3): 895–899.
12. Hassold, T., Kumlin, E., Takaesu, N., Leppert, M.Use of restriction fragment length polymorphisms to study the origin of human aneuploidy. Annals of the New York Academy of Science. 1985; 450: 179–189.
13. Jeffreys, A.J., Wilson, V., Thein, S.L.Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985; 314(6006): 67–73.
14. Weber, J.L. Human DNA polymorphisms and methods of analysis. Current Opinion in Biotechnology. 1990; 1(2): 166–171.
15. Kong, A., Thorleifsson, G., Gudbjartsson, D.F.et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature. 2010; 467(7319): 1099–1103.
16. Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M.High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science. 2008; 319(5868): 1395–1398.
17. Rosenberg, N.A., Huang, L., Jewett, E.M.et al. Genome-wide association studies in diverse populations. Nature Reviews Genetics. 2010; 11(5): 356–366.
18. Hall, H.E., Chan, E.R., Collins, A.et al. The origin of trisomy 13. American Journal of Medical Genetics A. 2007; 143A(19): 2242–2248.
19. Robinson, W.P., Kuchinka, B.D., Bernasconi, F.et al. Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Human Molecular Genetics. 1998; 7(6): 1011–1019.
20. Bugge, M., Collins, A., Hertz, J.M.et al. Non-disjunction of chromosome 13. Human Molecular Genetics. 2007; 16(16): 2004–2010.
21. Bugge, M., Collins, A., Petersen, M.B.et al. Non-disjunction of chromosome 18. Human Molecular Genetics. 1998; 7(4): 661–669.
22. Hall, H.E., Surti, U., Hoffner, L.et al. The origin of trisomy 22: evidence for acrocentric chromosome-specific patterns of nondisjunction. American Journal of Medical Genetics A. 2007; 143A(19): 2249–2255.
23. Thomas, N.S., Ennis, S., Sharp, A.J.et al. Maternal sex chromosome non-disjunction: evidence for X chromosome-specific risk factors. Human Molecular Genetics. 2001; 10(3): 243–250.
24. Hassold, T., Hunt, P.To err (meiotically) is human: the genesis of human aneuploidy. Nature Reviews Genetics. 2001; 2(4): 280–291.
25. Lipkin, S.M., Moens, P.B., Wang, V.et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature Genetics. 2002; 31(4): 385–390.
26. Kan, R., Sun, X., Kolas, N.K.et al. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway. Biology of Reproduction. 2008; 78(3): 462–471.
27. Lynn, A., Koehler, K.E., Judis, L.et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science. 2002; 296(5576): 2222–2225.
28. Cheng, E.Y., Hunt, P.A., Naluai-Cecchini, T.A.et al. Meiotic recombination in human oocytes. PLoS Genetics. 2009; 5(9): e1000661.
29. Laurie, D.A., Hulten, M.A.Further studies on chiasma distribution and interference in the human male. Annals of Human Genetics. 1985; 49(Pt 3): 203–214.
30. Hulten, M., Luciani, J.M., Kirton, V., Devictor-Vuillet, M.The use and limitations of chiasma scoring with reference to human genetic mapping. Cytogenetics and Cell Genetics. 1978; 22(1–6): 37–58.
31. Schuler, G.D., Boguski, M.S., Stewart, E.A.et al. A gene map of the human genome. Science. 1996; 274(5287): 540–546.
32. Matise, T.C., Chen, F., Chen, W.et al. A second-generation combined linkage physical map of the human genome. Genome Research. 2007; 17(12): 1783–1786.
33. Jorgenson, E., Tang, H., Gadde, M.et al. Ethnicity and human genetic linkage maps. American Journal of Human Genetics. 2005; 76(2): 276–290.
34. Ju, Y.S., Park, H., Lee, M.K.et al. A genome-wide Asian genetic map and ethnic comparison: the GENDISCAN study. BMC Genomics. 2008; 9: 554.
35. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L., Weber, J.L.Comprehensive human genetic maps: individual and sex-specific variation in recombination. American Journal of Human Genetics. 1998; 63(3): 861–869.
36. Hussin, J., Roy-Gagnon, M.H., Gendron, R., Andelfinger, G., Awadalla, P.Age-dependent recombination rates in human pedigrees. PLoS Genetics. 2011; 7(9): e1002251.
37. Cheung, V.G., Burdick, J.T., Hirschmann, D., Morley, M.Polymorphic variation in human meiotic recombination. American Journal of Human Genetics. 2007; 80(3): 526–530.
38. Kong, A., Gudbjartsson, D.F., Sainz, J.et al. A high-resolution recombination map of the human genome. Nature Genetics. 2002; 31(3): 241–247.
39. Kong, X., Murphy, K., Raj, T.et al. A combined linkage-physical map of the human genome. American Journal of Human Genetics. 2004; 75(6): 1143–1148.
40. Henderson, S.A., Edwards, R.G.Chiasma frequency and maternal age in mammals. Nature. 1968; 218(5136): 22–28.
41. Stefansson, H., Helgason, A., Thorleifsson, G.et al. A common inversion under selection in Europeans. Nature Genetics. 2005; 37(2): 129–137.
42. Chowdhury, R., Bois, P.R., Feingold, E.et al. Genetic analysis of variation in human meiotic recombination. PLoS Genetics. 2009; 5(9): e1000648.
43. Fledel-Alon, A., Leffler, E.M., Guan, Y.et al. Variation in human recombination rates and its genetic determinants. PLoS One 2011; 6(6): e20321.
44. Kong, A., Thorleifsson, G., Stefansson, H.et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science. 2008; 319(5868): 1398–1401.
45. Borde, V., Robine, N., Lin, W.et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO Journal. 2009; 28(2): 99–111.
46. Buard, J., Barthes, P., Grey, C., de Massy, B.Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO Journal. 2009; 28(17): 2616–2624.
47. Hayashi, K., Yoshida, K., Matsui, Y. Ahistone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005; 438(7066): 374–378.
48. Hayashi, K., Matsui, Y.Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis. Cell Cycle. 2006; 5(6): 615–620.
49. Barlow, A.L., Hulten, M.A.Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I oocytes from normal human females. Zygote. 1998; 6(1): 27–38.
50. Tease, C., Hartshorne, G.M., Hulten, M.A.Patterns of meiotic recombination in human fetal oocytes. American Journal of Human Genetics. 2002; 70(6): 1469–1479.
51. Robles, P., Roig, I., Garcia, R.et al. Pairing and synapsis in oocytes from female fetuses with euploid and aneuploid chromosome complements. Reproduction. 2007; 133(5): 899–907.
52. Lynn, A., Ashley, T., Hassold, T.Variation in human meiotic recombination. Annual Review of Genomics and Human Genetics. 2004; 5: 317–349.
53. Warren, A.C., Chakravarti, A., Wong, C.et al. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science. 1987; 237(4815): 652–654.
54. Peterson, M.B., Frantzen, M., Antonarakis, S.E.et al. Comparative study of microsatellite and cytogenetic markers for detecting the origin of the nondisjoined chromosome 21 in Down syndrome. American Journal of Human Genetics. 1992; 51(3): 516–525.
55. Lamb, N.E., Freeman, S.B., Savage-Austin, A.et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nature Genetics. 1996; 14(4): 400–405.
56. Ghosh, S., Bhaumik, P., Ghosh, P., Dey, S.K.Chromosome 21 non-disjunction and Down syndrome birth in an Indian cohort: analysis of incidence and aetiology from family linkage data. Genetic Research (Cambridge). 2010; 92(3): 189–197.
57. Lamb, N.E., Feingold, E., Savage, A.et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Human Molecuar Genetics. 1997; 6(9): 1391–1399.
58. Oliver, T.R., Feingold, E., Yu, K.et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genetics. 2008; 4(3): e1000033.
59. Molnar, M., Parisi, S., Kakihara, Y.et al. Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics. 2001; 157(2): 519–532.
60. Roeder, G.S. Meiotic chromosomes: it takes two to tango. Genes and Development. 1997; 11(20): 2600–2621.
61. Sears, D.D., Hegemann, J.H., Hieter, P.Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(12): 5296–5300.
62. Sears, D.D., Hieter, P., Simchen, G.An implanted recombination hot spot stimulates recombination and enhances sister chromatid cohesion of heterologous YACs during yeast meiosis. Genetics. 1994; 138(4): 1055–1065.
63. Koehler, K.E., Boulton, C.L., Collins, H.E.et al. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nature Genetics. 1996; 14(4): 406–414.
64. Rockmill, B., Voelkel-Meimau, K., Roeder, G.S.Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics. 2006; 174(4): 1745–1754.
65. Barlow, A.L., Hulten, M.A.Crossing over analysis at pachytene in man. European Journal of Human Genetics. 1998; 6(4): 350–358.
66. Matise, T.C., Perlin, M., Chakravarti, A.Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nature Genetics. 1994; 6(4): 384–390.
67. Matise, T.C., Sachidanandam, R., Clark, A.G.et al. A 3.9-centimorgan-resolution human single-nucleotide polymorphism linkage map and screening set. American Journal of Human Genetics. 2003; 73(2): 271–284.
68. Hassold, T., Sherman, S., Hunt, P.Counting cross-overs: characterizing meiotic recombination in mammals. Human Molecular Genetics. 2000; 9(16): 2409–2419.