Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: July 2013

7 - Gene expression dynamics during human embryonic development

from Part 3 - The embryo/blastomere

References

1. Niakan, K., Han, J., Pedersen, R., Simón, C., Reijo Pera, R.A.Human pre-implantation embryo development. Development. 2012; 139: 829–841.
2. Braude, P., Bolton, V., Moore, S.Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988; 332(6163). 459–461.
3. Dobson, A.T., Raja, R., Abeyta, M.J.et al. The unique transcriptome through day 3 of human preimplantation development. Human Molecular Genetics. 2004; 13: 1461–1470.
4. Zhang, P., Zucchelli, M., Bruce, S.et al. Transcriptome profiling of human preimplantation development. PLoS One. 2009; 4: e7844.
5. Vassena, R., Boué, S., González-Roca, E.et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011; 138: 3699–3709.
6. Wong, C., Loewke, K., Bossert, N.et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology. 2010; 28: 1115–1121.
7. Takahashi, K., Tanabe, K., Ohnuki, M.et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861–872.
8. Yu, J., Vodyanik, M., Smuga-Otto, K.et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318: 1917–1920.
9. Nakagawa, M., Koyanagi, M., Tanabe, K.et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology. 2008; 26(1): 101–106.
10. Sommer, C., Stadtfeld, M., Murphy, G.et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 2009; 27: 543–549.
11. Sommer, C., Sommer, A., Longmire, T.et al. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells. 2010; 28: 64–74.
12. Warren, L., Manos, P., Ahfeldt, T.et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010; 7: 618–630.
13. Chambers, G., Chapman, M., Grayson, N., Shanahan, M., Sullivan, E.Babies born after ART treatment cost more than non-ART babies: a cost analysis of inpatient birth-admission costs of singleton and multiple gestation pregnancies. Human Reproduction. 2007; 22: 3108–3115.
14. Gore, A., Li, Z., Fung, H.et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011; 471: 63–67.
15. Hussein, S., Batada, N., Vuoristo, S.et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011; 471: 58–62.
16. Laurent, L., Ulitsky, I., Slavin, I.et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011; 8: 106–118.
17. Lister, R., Pelizzola, M., Kida, Y.et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011; 471: 68–73.
18. Peterson, S.E., Westra. W.J., Rehen, S.K.et al. Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One. 2011; 6: e23018.
19. Kearns, W., Pen, R., Richter, K.et al. Aneuploidy rates of human preimplantation embryos in relation to morphology and development. Fertility and Sterility. 2006; 86: S474.
20. Mantzouratou, A., Mania, A., Fragouli, E.et al. Variable aneuploidy mechanisms in embryos from couples with poor reproductive histories undergoing preimplantation genetic screening. Human Reproduction. 2007; 22: 1844–1853.
21. Lathi, R., Westphal, L., Milki, A.Aneuploidy in the miscarriages of infertile women and the potential benefit of preimplanation genetic diagnosis. Fertility and Sterility. 2008; 89: 353–357.
22. Vanneste, E., Voet, T., Caignec, C.L.et al. Chromosome instability is common in human cleavage-stage embryos. Nature Medicine. 2009; 15: 577–583.
23. Gabriel, A., Thornhill, A., Ottolini, C.et al. Array comparative genomic hybridisation on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. Journal of Medical Genetics. 2011; 48: 433–437.
24. Kuliev, A., Zlatopolsky, Z., Kirillova, I., Spivakova, J., Janzen, J. C.Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reproductive Biomedicine Online. 2011; 22: 2–8.
25. Selesniemi, K., Lee, H., Muhlhauser, A., Tilly, J.Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 12319–12324.
26. Vialard, F., Boitrelle, F., Molina-Gomes, D., Selva, J.Predisposition to aneuploidy in the oocyte. Cytogenetic and Genome Research. 2011; 133: 127–135.
27. Schultz, R.M.The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update. 2002; 8: 323–331.
28. Kocabas, A. M., Crosby, J., Ross, P. J.et al. The transcriptome of human oocytes. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103: 14027–14032.
29. Kiessling, A., Bletsa, R., Desmarais, B.et al. Evidence that human blastomere cleavage is under unique cell cycle control. Journal of Assisted Reproduction and Genetics. 2009; 26: 187–195.
30. Swanson, W.J., Vacquier, V. D.The rapid evolution of reproductive proteins. Nature Reviews Genetics. 2002; 3: 137–144.
31. Galan, A., Montaner, D., Poo, M.et al. Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS One. 2010; 5: e13615.
32. Meseguer, M., Herrero, J., Tejera, A.et al. The use of morphokinetics as a predictor of embryo implantation. Human Reproduction. 2011; 26: 2658–2671.
33. Sahoo, D., Dill, D., Gentles, A., Tibshirani, R., Plevritis, S.Boolean implication networks derived from large scale, whole genome microarray datasets. Genome Biology. 2008; 9: R157.
34. Sahoo, D., Seita, J., Bhattacharya, D.et al. MiDReG: a method of mining developmentally regulated genes using Boolean implications. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107: 5732–5737.
35. Seita, J., Sahoo, D., Rossi, D.et al. Gene expression commons: an open platform for absolute gene expression profiling. PLoS One. 2012; 7: e40321.