Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: July 2013

Part 1 - Female gamete

References

1. Matova, N., Cooley, L.Comparative aspects of animal oogenesis. Developmental Biology. 2001; 231(2): 291–320.
2. Witschi, E.Migration of germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contributions to Embryology Carnegie Institution. 1948; 32(32): 67–80.
3. Chiquoine, A.D.The identification, origin, and migration of the primordial germ cells in the mouse embryo. The Anatomical Record. 1954; 118(2): 135–146.
4. Ginsburg, M., Snow, M.H., McLaren, A.Primordial germ cells in the mouse embryo during gastrulation. Development. 1990; 110(2): 521–528.
5. Lawson, K.A., Dunn, N.R., Roelen, B.A., et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes and Development. 1999; 13(4): 424–436.
6. Ying, Y., Liu, X.M., Marble, A., Lawson, K.A., Zhao, G.Q.Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Molecular Endocrinology. 2000; 14(7): 1053–1063.
7. Ying, Y., Qi, X., Zhao, G.Q.Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(14): 7858–7862.
8. Coucouvanis, E., Martin, G.R.BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development. 1999; 126(3): 535–546.
9. Ying, Y., Zhao, G.Q.Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Developmental Biology. 2001; 232(2): 484–492.
10. Saitou, M., Barton, S.C., Surani, M.A.A molecular programme for the specification of germ cell fate in mice. Nature. 2002; 418(6895): 293–300.
11. Lange, U.C., Saitou, M., Western, P.S., Barton, S.C., Surani, M.A.The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Developmental Biology. 2003; 3: 1.
12. Lange, U.C., Adams, D.J., Lee, C.et al. Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Molecular and Cellular Biology. 2008; 28(15): 4688–4696.
13. Payer, B., Saitou, M., Barton, S.C.et al. Stella is a maternal effect gene required for normal early development in mice. Current Biology. 2003; 13(23): 2110–2117.
14. Bortvin, A., Goodheart, M., Liao, M., Page, D.C.Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Developmental Biology. 2004; 4: 2.
15. Shaffer, A.L., Lin, K.I., Kuo, T.C.et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002; 17(1): 51–62.
16. Ohinata, Y., Payer, B., O’Carroll, D.et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005; 436(7048): 207–13.
17. Saitou, M., Payer, B., O’Carroll, D., Ohinata, Y., Surani, M.A.Blimp1 and the emergence of the germ line during development in the mouse. Cell Cycle. 2005; 4(12): 1736–1740.
18. Yamaji, M., Seki, Y., Kurimoto, K.et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genetics. 2008; 40(8): 1016–1022.
19. Anderson, R., Copeland, T.K., Scholer, H., Heasman, J., Wylie, C.The onset of germ cell migration in the mouse embryo. Mechanisms of Development. 2000; 91(1–2): 61–68.
20. Molyneaux, K.A., Stallock, J., Schaible, K., Wylie, C.Time-lapse analysis of living mouse germ cell migration. Developmental Biology. 2001; 240(2): 488–498.
21. Fujimoto, T., Miyayama, Y., Fuyuta, M.The origin, migration and fine morphology of human primordial germ cells. The Anatomical Record. 1977; 188(3): 315–330.
22. Tanaka, S.S., Yamaguchi, Y.L., Tsoi, B., Lickert, H., Tam, P.P.IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Developmental Cell. 2005; 9(6): 745–756.
23. Mahakali Zama, A., Hudson, F.P. III, Bedell, M.A.Analysis of hypomorphic KitlSl mutants suggests different requirements for KITL in proliferation and migration of mouse primordial germ cells. Biology of Reproduction. 2005; 73(4): 639–647.
24. Runyan, C., Schaible, K., Molyneaux, K.et al. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development. 2006; 133(24): 4861–4869.
25. Gu, Y., Runyan, C., Shoemaker, A., Surani, A., Wylie, C.Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development. 2009; 136(8): 1295–1303.
26. Molyneaux, K.A., Zinszner, H., Kunwar, P.S.et al. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development. 2003; 130(18): 4279–4286.
27. Ara, T., Nakamura, Y., Egawa, T.et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(9): 5319–5323.
28. Bendel-Stenzel, M.R., Gomperts, M., Anderson, R., Heasman, J., Wylie, C. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mechanisms of Development. 2000; 91(1–2): 143–152.
29. Hilscher, B., Hilscher, W., Bulthoff-Ohnolz, B.et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell and Tissue Research. 1974; 154(4): 443–470.
30. Enders, G.C., May, J.J. II. Developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Developmental Biology. 1994; 163(2): 331–340.
31. Toyooka, Y., Tsunekawa, N., Takahashi, Y.et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mechanisms of Development. 2000; 93(1–2): 139–149.
32. Seligman, J., Page, D.C.The Dazh gene is expressed in male and female embryonic gonads before germ cell sex differentiation. Biochemical and Biophysical Research Communications. 1998; 245(3): 878–882.
33. Adams, I.R., McLaren, A.Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development. 2002; 129(5): 1155–1164.
34. Swain, A., Lovell-Badge, R.Mammalian sex determination: a molecular drama. Genes and Development. 1999; 13(7): 755–767.
35. Gubbay, J., Collignon, J., Koopman, P.et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990; 346(6281): 245–250.
36. Sinclair, A.H., Berta, P., Palmer, M.S.et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990; 346(6281): 240–244.
37. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., Lovell-Badge, R.Male development of chromosomally female mice transgenic for Sry. Nature. 1991; 351(6322): 117–121.
38. Lovell-Badge, R., Robertson, E.XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development. 1990; 109(3): 635–646.
39. Harley, V.R., Goodfellow, P.N.The biochemical role of SRY in sex determination. Molecular Reproduction and Development. 1994; 39(2): 184–193.
40. Bullejos, M., Koopman, P.Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Developmental Biology. 2005; 278(2): 473–481.
41. Hiramatsu, R., Matoba, S., Kanai-Azuma, M.et al. A critical time window of Sry action in gonadal sex determination in mice. Development. 2009; 136(1): 129–138.
42. Morais da Silva, S., Hacker, A., Harley, V.et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetics. 1996; 14(1): 62–68.
43. Sekido, R., Bar, I., Narvaez, V., Penny, G., Lovell-Badge, R.SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Developmental Biology. 2004; 274(2): 271–279.
44. Mansour, S., Hall, C.M., Pembrey, M.E., Young, I.D.A clinical and genetic study of campomelic dysplasia. Journal of Medical Genetics. 1995; 32(6): 415–420.
45. Huang, B., Wang, S., Ning, Y., Lamb, A.N., Bartley, J.Autosomal XX sex reversal caused by duplication of SOX9. American Journal of Medical Genetics. 1999; 87(4): 349–353.
46. Chaboissier, M.C., Kobayashi, A., Vidal, V.I.et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development. 2004; 131(9): 1891–1901.
47. Barrionuevo, F., Bagheri-Fam, S., Klattig, J.et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biology of Reproduction. 2006; 74(1): 195–201.
48. Bishop, C.E., Whitworth, D.J., Qin, Y.et al. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics. 2000; 26(4): 490–494.
49. Sekido, R., Lovell-Badge, R.Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008; 453(7197): 930–934.
50. Kim, Y., Kobayashi, A., Sekido, R.et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biology. 2006; 4(6): e187.
51. Colvin, J.S., Green, R.P., Schmahl, J., Capel, B., Ornitz, D.M.Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell. 2001; 104(6): 875–889.
52. Kim, Y., Bingham, N., Sekido, R.et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(42): 16558–16563.
53. Wilhelm, D., Martinson, F., Bradford, S.et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology. 2005; 287(1): 111–124.
54. Wilhelm, D., Hiramatsu, R., Mizusaki, H.et al. SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. The Journal of Biological Chemistry. 2007; 282(14): 10553–10560.
55. Moniot, B., Declosmenil, F., Barrionuevo, F.et al. The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development. 2009; 136(11): 1813–1821.
56. DiNapoli, L., Batchvarov, J., Capel, B.FGF9 promotes survival of germ cells in the fetal testis. Development. 2006; 133(8): 1519–1527.
57. Bowles, J., Feng, C.W., Spiller, C.et al. FGF9 suppresses meiosis and promotes male germ cell fate in mice. Developmental Cell. 2010; 19(3): 440–449.
58. Barrios, F., Filipponi, D., Pellegrini, M.et al. Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. Journal of Cell Science. 2010; 123(6): 871–880.
59. Suzuki, A., Saga, Y.Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes and Development. 2008; 22(4): 430–435.
60. Bowles, J., Knight, D., Smith, C.et al. Retinoid signaling determines germ cell fate in mice. Science. 2006; 312(5773): 596–600.
61. MacLean, G., Li, H., Metzger, D., Chambon, P., Petkovich, M.Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology. 2007; 148(10): 4560–4567.
62. Gondos, B., Westergaard, L., Byskov, A.G.Initiation of oogenesis in the human fetal ovary: ultrastructural and squash preparation study. American Journal of Obstetrics and Gynecology. 1986; 155(1): 189–195.
63. McElreavey, K., Vilain, E., Abbas, N., Herskowitz, I., Fellous, M.A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(8): 3368–3372.
64. Nef, S., Schaad, O., Stallings, N.R.et al. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Developmental Biology. 2005; 287(2): 361–377.
65. Vainio, S., Heikkila, M., Kispert, A., Chin, N., McMahon, A.P.Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999; 397(6718): 405–409.
66. Biason-Lauber, A., Konrad, D., Navratil, F., Schoenle, E.J.A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. The New England Journal of Medicine. 2004; 351(8): 792–798.
67. Yao, H.H., Matzuk, M.M., Jorgez, C.J.et al. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Developmental Dynamics. 2004; 230(2): 210–215.
68. Parma, P., Radi, O., Vidal, V.et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nature Genetics. 2006; 38(11): 1304–1309.
69. Kamata, T., Katsube, K., Michikawa, M.et al. R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biochimica et Biophysica Acta. 2004; 1676(1): 51–62.
70. Chassot, A.A., Ranc, F., Gregoire, E.P.et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Human Molecular Genetics. 2008; 17(9): 1264–1277.
71. Binnerts, M.E., Kim, K.A., Bright, J.M.et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(37): 14700–14705.
72. Liu, C.F., Bingham, N., Parker, K., Yao, H.H.Sex-specific roles of beta-catenin in mouse gonadal development. Human Molecular Genetics. 2009; 18(3): 405–417.
73. Jeays-Ward, K., Hoyle, C., Brennan, J.et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development. 2003; 130(16): 3663–3670.
74. Jordan, B.K., Shen, J.H., Olaso, R., Ingraham, H.A., Vilain, E.Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(19): 10866–10871.
75. Maatouk, D.M., DiNapoli, L., Alvers, A.et al. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Human Molecular Genetics. 2008; 17(19): 2949–2955.
76. Schmidt, D., Ovitt, C.E., Anlag, K.et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004; 131(4): 933–942.
77. Uhlenhaut, N.H., Jakob, S., Anlag, K.et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009; 139(6): 1130–1142.
78. Ottolenghi, C., Omari, S., Garcia-Ortiz, J.E.et al. Foxl2 is required for commitment to ovary differentiation. Human Molecular Genetics. 2005; 14(14): 2053–2062.
79. Couse, J.F., Hewitt, S.C., Bunch, D.O.et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science. 1999; 286(5448): 2328–2331.
80. Swain, A., Zanaria, E., Hacker, A., Lovell-Badge, R., Camerino, G.Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nature Genetics. 1996; 12(4): 404–409.
81. Bardoni, B., Zanaria, E., Guioli, S.et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature genetics. 1994; 7(4): 497–501.
82. Zanaria, E., Bardoni, B., Dabovic, B.et al. Xp duplications and sex reversal. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 1995; 350(1333): 291–296.
83. Swain, A., Narvaez, V., Burgoyne, P., Camerino, G., Lovell-Badge, R.Dax1 antagonizes Sry action in mammalian sex determination. Nature. 1998; 391(6669): 761–767.
84. Yu, R.N., Ito, M., Saunders, T.L., Camper, S.A., Jameson, J.L.Role of Ahch in gonadal development and gametogenesis. Nature Genetics. 1998; 20(4): 353–357.
85. Meeks, J.J., Weiss, J., Jameson, J.L.Dax1 is required for testis determination. Nature Genetics. 2003; 34(1): 32–33.
86. Bouma, G.J., Albrecht, K.H., Washburn, L.L.et al. Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development. 2005; 132(13): 3045–3054.
87. Menke, D.B., Koubova, J., Page, D.C.Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Developmental Biology. 2003; 262(2): 303–312.
88. Buehr, M., McLaren, A., Bartley, A., Darling, S.Proliferation and migration of primordial germ cells in We/We mouse embryos. Developmental Dynamics. 1993; 198(3): 182–189.
89. Larue, L., Ohsugi, M., Hirchenhain, J., Kemler, R.E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(17): 8263–8267.
90. Baltus, A.E., Menke, D.B., Hu, Y.C.et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nature Genetics. 2006; 38(12): 1430–1434.

References

1. Adamson, G.D., de Mouzon, J., Lancaster, P.et al. World collaborative report on in vitro fertilization, 2000. Fertility and Sterility. 2006; 85(6): 1586–1622.
2. Marques-Mari, A.I., Lacham-Kaplan, O., Medrano, J.V.et al. Differentiation of germ cells and gametes from stem cells. Human Reproduction Update. 2009; 15(3): 379–390.
3. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S.et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391): 1145–1147.
4. Takahashi, K., Yamanaka, S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663–676.
5. Ancelin, K., Lange, U.C., Hajkova, P.et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biology. 2006; 8(6): 623–630.
6. Wylie, C.C., Stott, D., Donovan, P.J.Primordial germ cell migration. Developmental Biology (New York 1985). 1986; 2: 433–448.
7. Fujimoto, T., Miyayama, Y., Fuyuta, M.The origin, migration and fine morphology of human primordial germ cells. Anatomical Record. 1977; 188(3): 315–330.
8. Castrillon, D.H., Quade, B.J., Wang, T.Y.et al. The human VASA gene is specifically expressed in the germ cell lineage. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97: 9585–9590.
9. Seki, Y., Hayashi, K., Itoh, K.et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Developmental Biology. 2005; 278(2): 440–458.
10. McLaren, A. Germ cells and germ cell sex. Philosophical Transactions of the Royal Society of London B, Biological Science. 1995; 350(1333): 229–233.
11. McLaren, A. Meiosis and differentiation of mouse germ cells. Symposia of the Society for Experimental Biology. 1984; 38: 7–23.
12. Bowles, J., Knight, D., Smith, C.et al. Retinoid signaling determines germ cell fate in mice. Science. 2006; 312(5773): 596–600.
13. Kelly, W.G., Aramayo, R.Meiotic silencing and the epigenetics of sex. Chromosome Research 2007; 15(5): 633–51.
14. Pittman, D.L., Cobb, J., Schimenti, K.J. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Molecular Cell. 1998; 1(5): 697–705.
15. Reynolds, N., Collier, B., Bingham, V.et al. Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA. 2007; 13(7): 974–981.
16. Kota, S.K., Feil, R.Epigenetic transitions in germ cell development and meiosis. Developmental Cell. 2010; 19(5): 675–686.
17. Akimoto, C., Kitagawa, H., Matsumoto, T. et al. Spermatogenesis-specific association of SMCY and MSH5. Genes to Cells. 2008; 13(6): 623–633.
18. Hübner, K., Fuhrmann, G., Christenson, L.K.et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003; 300(5623): 1251–1256.
19. Toyooka, Y., Tsunekawa, N., Akasu, R.et al. Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(20): 11457–11462.
20. Geijsen, N., Horoschak, M., Kim, K.et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004; 427(6970): 148–154.
21. Novak, I., Lightfoot, D.A., Wang, H.et al. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells. 2006; 24(8): 1931–1936.
22. Nayernia, K., Nolte, J., Michelmann, H.W.et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 2006; 11(1): 125–132.
23. Clark, A.T., Bodnar, M.S., Fox, M.et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics. 2004; 13: 727–739.
24. Park, T.S., Galic, Z., Conway, A.E.et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009; 27(4): 783–795.
25. Kee, K., Gonsalves, J.M., Clark, A.T.et al. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells and Development. 2006; 15(6): 831–837.
26. Kee, K., Angeles, V., Flores, M. et al. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation. Nature. 2009; 462: 222–225.
27. Panula, S., Medrano, J.V., Kee, K.et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Human Molecular Genetics. 2011; 20(4): 752–762.
28. Medrano, J.V., Ramathal, C., Nguyen, H.N.et al. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells. 2012; 30(3): 441–451.
29. Eguizabal, C., Montserrat, N., Vassena, R.et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells. 2011; 29(8): 1186–1195.
30. Handel, M.A., Schimenti, J.C.Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nature Reviews Genetics. 2010; 11(2): 124–136.
31. Sun, S.C., Kim, N.H.Spindle assembly checkpoint and its regulators in meiosis. Human Reproduction Update. 2012; 18(1): 60–72.
32. Kassir, Y., Adir, N., Boger-Nadjar, E.et al. Transcriptional regulation of meiosis in budding yeast. International Review of Cytology. 2003; 224: 111–171.
33. Gill, M.E., Hu, Y.C., Lin, Y.et al. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(18): 7443–7448.
34. Buchold, G.M., Coarfa, C., Kim, J.et al. Analysis of microRNA expression in the prepubertal testis. PLoS One. 2010; 5(12): e15317.
35. Suh, N., Blelloch, R.Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011; 138(9): 1653–1661.
36. Han, J., Pedersen, J.S., Kwon, S.C.et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell. 2009; 136(1): 75–84.
37. Fabian, M.R., Sonenberg, N., Filipowicz, W.Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry. 2010; 79: 351–379.
38. West, J.A., Viswanathan, S.R., Yabuuchi, A.et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature. 2009; 460(7257): 909–913.
39. Zhong, X., Li, N., Liang, S.et al. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. Journal of Biological Chemistry. 2010; 285(53): 41961–41971.
40. Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M.et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008; 3(3): e1738.
41. Western, P.S., van den Bergen, J.A., Miles, D.C. et al. Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB Journal 2010; 24(8): 3026–3035.
42. Yan, N., Lu, Y., Sun, H. et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction 2007; 134(1): 73–79.
43. Marcon, E., Babak, T., Chua, G.et al. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Research. 2008; 16(2): 243–260.
44. Bouhallier, F., Allioli, N., Lavial, F.et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNAA Publication of the Rna Society. 2010; 16(4): 720–31.
45. Luo, L., Ye, L., Liu, G.et al. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 2010; 5(8): e11744.
46. Aravin, A.A., Sachidanandam, R., Bourc'his, D. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell. 2008; 31(6): 785–799.
47. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K.et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Development. 2010; 24(9): 887–892.
48. Carmell, M.A., Girard, A., van de Kant, H.J. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Development Cell. 2007; 12(4): 503–514.
49. Ruggiu, M., Speed, R., Taggart, M.et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature. 1997; 389(6646): 73–77.
50. Lasko, P.F., Ashburner, M.The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature. 1988; 335(6191): 611–617.
51. Tanaka, S.S., Toyooka, Y., Akasu, R.et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Development. 2000; 14(7): 841–853.
52. Mohr, S., Stryker, J.M., LambowitzA.M.A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell. 2002; 109(6): 769–779.
53. Reynolds, N., Collier, B., Maratou, K.et al. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Human Molecular Genetics. 2005; 14(24): 3899–3909.
54. Becalska, A.N., GavisE.R.Lighting up mRNA localization in Drosophila oogenesis. Development. 2009; 136(15): 2493–2503.
55. Eguizabal, C., Montserrat, N., Vassena, R.et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells. 2011; 29(8): 1186–1195.