ReferencesGidaspow, D.. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (London: Academic Press, 1994).
Krzywanski, R. S., Epstein, N., and Bowen, B. D.. Multi-dimensional model of a spouted bed. Can. J. Chem. Eng., 70 (1992), 858–872.
He, Y., Zhao, G., Bouillard, J., and Lu, H.. Numerical simulations of the effect of conical dimension on the hydrodynamic behaviour in spouted beds. Can. J. Chem. Eng., 82 (2004), 20–29.
Lu, H., He, Y., Liu, W., Ding, J., Gidaspow, D., and Bouillard, J.. Computer simulations of gas-solid flow in spouted beds using kinetic-frictional stress model of granular flow. Chem. Eng. Sci., 59 (2004), 865–878.
H. Lu, Y. Song, Y. Li, Y. He, , J. Bouillard. Numerical simulations of hydrodynamic behaviour in spouted beds. Chem. Eng. Res. Des., 79 (2001), 593–599.
Wang, S. Y., He, Y. R., Lu, H. L., Zheng, J. X., Liu, G. D., and Ding, Y. L.. Numerical simulations of flow behaviour of agglomerates of nano-size particles in bubbling and spouted beds with an agglomerate-based approach. Food and Bioprod. Proc., 85 (2007), 231–240.
Johnson, P. C., Nott, P., and Jackson, R.. Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech., 210 (1990), 501–535.
Syamlal, M., Rogers, W., and O'Brien, T. J.. MFIX Documentation. US Department of Energy, Federal Energy Technology Center, 1993.
Du, W., Bao, X., Xu, J., and Wei, W.. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations. Chem. Eng. Sci., 61 (2006), 1401–1420.
Du, W., Bao, X., Xu, J., and Wei, W.. Computational fluid dynamics (CFD) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles. Chem. Eng. Sci., 61 (2006), 4558–4570.
Du, W., Wei, W., Xu, J., Fan, Y., and Bao, X.. Computational fluid dynamics (CFD) modeling of fine particle spouting. Int. J. Chem. React. Eng., 4 (2006), A21.
Wang, Z. G., Bi, H. T., and Lim, C. J.. Numerical simulations of hydrodynamic behaviors in conical spouted beds. China Particuology, 4 (2006), 194–203.
Shirvanian, P. A., Calo, J. M., and Hradil, G.. Numerical simulation of fluid-particle hydrodynamics in a rectangular spouted vessel. Int. J. Multiph. Flow, 32 (2006), 739–753.
Wu, Z. H. and Mujumdar, A. S.. CFD modeling of the gas-particle flow behavior in spouted beds. Powder Technol., 183 (2008), 260–272.
Gryczka, O., Heinrich, S., and Tomas, J.. CFD-modelling of the fluid dynamics in spouted beds. In Micro-Macro-Interactions, ed, Bertram, A. and Tomas, J. (Berlin: Springer, 2008), pp. 265–275.
Schiller, L. and Naumann, A.. A drag coefficient correlation. Verein Deutscher Ingenieure, 77 (1935), 318–320.
Wen, C. Y. and Yu, Y. H.. Mechanics of fluidization. Chem. Eng. Progr. Symp. Ser., 62 (1966), 100–111.
Syamlal, M. and O'Brien, T.. Computer simulation of bubbles in a fluidized bed. AIChE Symp. Ser., 85 (1989), 22–31.
Gidaspow, D., Bezburuah, R., and Ding, J.. Hydrodynamics of circulating fluidized beds: Kinetic theory approach. In Fluidization VII, ed. Potter, O. E. and Nicklin, D. J. (New York: Engineering Foundation, 1991), pp. 75–82.
Koch, D. L. and Hill, R. J.. Inertial effects in suspension and porous-media flows. Ann. Rev. Fluid Mech., 33 (2001), 619–647.
Hoef, M. A., Beetstra, R., and Kuipers, J. A. M.. Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres. J. Fluid Mech., 528 (2005), 233–254.
Beetstra, R., Hoef, M. A., and Kuipers, J. A. M.. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J., 53 (2007), 489–501.
Gryczka, O., Heinrich, S., Deen, N. G., Annaland, M. v. S., Kuipers, J. A. M., and Mörl, L.. CFD modeling of a prismatic spouted bed with two adjustable gas inlets. Can. J. Chem. Eng., 87 (2009), 318–328.
Béttega, R., Corrêa, R. G., and Freire, J. T.. Scale-up study of spouted beds using computational fluid dynamics. Can. J. Chem. Eng., 87 (2009), 193–203.
Béttega, R., Almeida, A. R. F., Corrêa, R. G., and Freire, J. T.. CFD modelling of a semi-cylindrical spouted bed: Numerical simulation and experimental verification. Can. J. Chem. Eng., 87 (2009), 177–184.
He, Y. L., Lim, C. J., and Grace, J. R.. Scale-up studies of spouted beds. Chem. Eng. Sci., 52 (1997), 329–339.
Santos, K. G., Murata, V. V., and Barrozo, M. A. S.. Three-dimensional computational fluid dynamics modelling of spouted bed. Can. J. Chem. Eng., 87 (2009), 211–219.
Duarte, C. R., Olazar, M., Murata, V. V., and Barrozo, M. A. S.. Numerical simulation and experimental study of fluid-particle flows in a spouted bed. Powder Technol., 188 (2009), 195–205.
Ding, J. and Gidaspow, D.. A bubbling fluidization model using kinetic theory of granular flow. AIChE J., 36 (1990), 523–538.
Ergun, S.. Fluid flow through packed columns. Chem. Eng. Progr., 48:2 (1952), 89–94.
Campbell, C. S.. Granular material flows – an overview. Powder Technol., 162 (2006), 208–229.
Sundaresan, S.. Some outstanding questions in handling of cohesionless particles. Powder Technol., 115 (2001), 2–7.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., and Chepurniy, N.. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140 (1984), 223–256.
Bagnold, R. A.. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Soc. London Ser. A, Math. and Phys. Sci., A225 (1954), 49–63.
Jenkins, J. T. and Savage, S. B.. A theory for rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech., 130 (1983), 187–202.
Schaeffer, D. G.. Instability in the evolution equations describing incompressible granular flow. J. Diff. Eqns, 66 (1987), 19–50.
Ferziger, J. H. and Peric, M.. Computational Methods for Fluid Dynamics, 3rd ed. (Berlin: Springer, 1999).
Fletcher, C. A. J. and Srinivas, K.. Computational Techniques for Fluid Dynamics Vol. 1, Fundamental and General Techniques, 2nd ed. (Berlin: Springer-Verlag, 1991).
Freitas, C. J.. Perspective, : Selected benchmarks from commercial CFD codes. ASME J. Fluids Eng., 117 (1995), 208–218.
LeVeque, R. J.. Finite Volume Methods for Hyperbolic Problems (Cambridge, UK: Cambridge University Press, 2002).
Patankar, S. V.. Numerical Heat Transfer and Fluid Flow (Washington, DC: Taylor and Francis, 1980).
Grace, J. R. and Taghipour, F.. Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol., 139 (2004), 99–110.
He, Y. L., Lim, C. J., Grace, J. R., Zhu, J. X., and Qin, S. Z.. Measurements of voidage profiles in spouted beds. Can. J. Chem. Eng., 72 (1994), 229–234.
He, Y. L., Qin, S. Z., Lim, C. J., and Grace, J. R.. Particle velocity profiles and solid flow patterns in spouted beds. Can. J. Chem. Eng., 72 (1994), 561–568.
José, M. J. San, Olazar, M., Alvarez, S., Izquierdo, M. A., and Bilbao, J.. Solid cross-flow into the spout and particle trajectories in conical spouted beds. Chem. Eng. Sci., 53 (1998), 3561–3570.
Cundall, P. A. and Strack, O. D. L.. A discrete numerical model for granular assemblies. Geotechnique, 29 (1979), 47–65.
Link, J., Zeilstra, C., Deen, N., and Kuipers, H.. Validation of a discrete particle model in a 2D spout-fluid bed using non-intrusive optical measuring techniques. Can. J. Chem. Eng., 82 (2004), 30–36.
Link, J. M., Cuypers, L. A., Deen, N. G., and Kuipers, J. A. M.. Flow regimes in a spout-fluid bed: A combined experimental and simulation study. Chem. Eng. Sci., 60 (2005), 3425–3442.
Takeuchi, S., Wang, S., and Rhodes, M.. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system. Chem. Eng. Sci., 59 (2004), 3495–3504.
Kawaguchi, T., Sakamoto, M., Tanaka, T., and Tsuji, Y.. Quasi-three-dimensional numerical simulation of spouted beds in cylinder. Powder Technol., 109 (2000), 3–12.
Kawaguchi, T., Tanaka, T., and Tsuji, Y.. Numerical simulation of two-dimensional fluidized beds using the discrete element method. Powder Technol., 96 (1998), 129–138.
Takeuchi, S., Wang, X. S., and Rhodes, M. J.. Discrete element study of particle circulation in a 3-D spouted bed. Chem. Eng. Sci., 60 (2005), 1267–1276.
Takeuchi, S., Wang, S., and Rhodes, M.. Discrete element method simulation of three-dimensional conical-base spouted beds. Powder Technol., 184 (2008), 141–150.
Zhong, W., Xiong, Y., Yuan, Z., and Zhang, M.. DEM simulation of gas-solid flow behaviors in spout-fluid bed. Chem. Eng. Sci., 61 (2006), 1571–1584.
Zhao, X.-L., Li, S.-Q., Liu, G.-Q., Song, Q., and Yao, Q.. Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations. Powder Technol., 183 (2008), 79–87.
Zhao, X.-L., Li, S.-Q., Liu, G.-Q., Yao, Q., and Marshall, J. S.. DEM simulation of the particle dynamics in two-dimensional spouted beds. Powder Technol., 184 (2008), 205–213.
Swasdisevi, T., Tanthapanichakoon, W., Charinpanitkul, T., Kawaguchi, T., Tanaka, T., and Tsuji, Y.. Investigation of fluid and coarse-particle dynamics in a two-dimensional spouted bed. Chem. Eng. Technol., 27 (2004), 971–981.
Kalwar, M. I., Raghavan, G. S., and Mujumdar, A. S.. Circulation of particles in two-dimensional spouted beds with draft plates. Powder Technol., 77 (1993), 233–242.
Limtrakul, S., Boonsrirat, A., and Vatanatham, T.. DEM modeling and simulation of a catalytic gas-solid fluidized bed reactor: A spouted bed as a case study. Chem. Eng. Sci., 59 (2004), 5225–5231.
Rovero, G., Epstein, N., Grace, J. R., Piccinini, N., and Brereton, C. M. H.. Gas phase solid-catalysed chemical reaction in spouted beds. Chem. Eng. Sci., 38 (1983), 557–566.
Brilliantov, N. V. and Poeschel, T.. Rolling friction of a viscous sphere on a hard plane. Europhysics Letters, 42 (1998), 511–516.
Miller, T. F. and Schmidt, F. W.. Use of a pressure-weighted interpolation method for the solution of the incompressible Navier-Stokes equations on a nonstaggered grid system. Num. Heat Transf., Part B: Fund., 14 (1988), 213–233.
Amsden, A. A. and Harlow, F. H.. A simplified MAC technique for incompressible fluid flow calculations. J. Comp. Phys., 6 (1970), 322–325.
Mathur, K. B. and Epstein, N.. Spouted Beds (New York: Academic Press, 1974).
Tsuji, T., Hirose, M., Shibata, T., Uemaki, O., and Itoh, H.. Particle flow in annular region of a flat-bottomed spouted bed. Trans. Soc. Chem. Engrs, Japan, 23 (1997), 604–605.
Roy, D., Larachi, F., Legros, R., and Chaouki, J.. A study of solid behavior in spouted beds using 3-D particle tracking. Can. J. Chem. Eng., 72, (1994), 945–952.