Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T07:45:57.979Z Has data issue: false hasContentIssue false

6 - Combined influences of extraretinal signals, retinal signals, and visual induction on space perception and manual behavior in perisaccadic and steady viewing

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

The locations of stationary objects appear invariant, although saccadic eye movements shift the images of physically stationary objects on the retina. Two features of this perceptual stability related to saccades are that postsaccadic locations of objects appear invariant relative to their appearance in the presaccadic view, and perception of postsaccadic stimulation is free from interference by remnants of presaccadic stimulation. To generate stability, quantitatively accurate cancellation between retinal input (RI) and extraretinal eye position information (EEPI) must occur, and persisting influences from the presaccadic view must be eliminated. We describe experiments with briefly flashed visual stimuli that have measured (1) the time course of perisaccadic spatial localization, (2) the interfering effects of persisting stimulation prior to the postsaccadic period, (3) the achievement of perceptual stability by removing visual persistence early, and (4) the influence of metacontrast utilizing the normal perisaccadic spatiotemporal distribution of retinal input to prevent interference from visual persistence.

For the steady eye, a generalized cancellation mechanism is analyzed through studying mislocalizations in perceptual orientation and visually guided manual behavior produced by (1) modifying EEPI in observers with experimental partial paralysis (curare) of the extraocular muscles and/or (2) modifying RI by varying visual field orientation (i.e., its pitch and/or roll). The influences of visual pitch and roll derive from the retinal orientations of individual straight lines and their combinations, with the identical lines influencing perceived verticality and elevation. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglioti, S., DeSouza, J. F. X., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Curr Biol 5: 679–685.CrossRefGoogle Scholar
Alpern, M. (1952). Metacontrast: historical introduction. Am J Optometry 29: 631–646.CrossRefGoogle ScholarPubMed
Alpern, M. (1953). Metacontrast. J Opt Soc Am 43: 648–657.CrossRefGoogle ScholarPubMed
Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann Rev Neurosci 20: 303–330.CrossRefGoogle ScholarPubMed
Asch, S. E., & Witkin, H. A. (1948a). Studies in space orientation. I. Perception of the upright with displaced visual fields. J Exp Psychol 38: 325–337.CrossRefGoogle Scholar
Asch, S. E., & Witkin, H. A. (1948b). Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol 38: 455–477.CrossRefGoogle Scholar
Awater, H., & Lappe, M. (2004). Perception of visual space at the time of pro- and anti-saccades. J Neurophysiol 91: 2457–2464.CrossRefGoogle ScholarPubMed
Bockisch, C. J., & Miller, J. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Res 39: 1025–1038.CrossRefGoogle ScholarPubMed
Boucher, L., Groh, J. M., & Hughes, H. C. (2001). Afferent delays and the mislocalization of perisaccadic stimuli. Vision Res 41: 2631–2644.CrossRefGoogle ScholarPubMed
Bowen, R. (1981). Latencies for chromatic and achromatic visual mechanisms. Vision Res 21: 1483–1499.CrossRefGoogle ScholarPubMed
Bowen, R., Pola, J., & Matin, L. (1974). Visual persistence: effects of flash luminance, duration, and energy. Vision Res 14: 295–303.CrossRefGoogle Scholar
Breitmeyer, B. G., & Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing. Psychol Rev 83: 1–36.CrossRefGoogle ScholarPubMed
Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15: 719–722.CrossRefGoogle ScholarPubMed
Bridgeman, B., & Stark, L. (1991). Ocular proprioception and efference copy in registering visual direction. Vision Res 31: 1903–1913.CrossRefGoogle ScholarPubMed
Brown, J. L. (1965). Flicker and intermittant stimulation. In C. H., Graham (ed.), Vision and Visual Perception (251–320). New York: Wiley & Sons.Google Scholar
Cai, R. H., Pouget, A., Schlag-Rey, M., & Schlag, J. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.CrossRefGoogle ScholarPubMed
Campbell, F. W., & Wurtz, R. H. (1978). Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision Res 18: 1297–1303.CrossRefGoogle ScholarPubMed
Chelette, T., Li, W., Esken, R., & Matin, L. (1995). Visual perception of eye level (VPEL) under high g while viewing a pitched visual field. Annual Meeting of Aerospace Medical Association: A55.Google Scholar
Cohen, M. M., Ebenholtz, S. M., & Linder, B. J. (1995). Effects of optical pitch on oculomotor control and the perception of target elevation. Perception & Psychophysics 57: 433–440.CrossRefGoogle ScholarPubMed
Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Ann Rev Neurosci 22: 319–349.CrossRefGoogle ScholarPubMed
Dassonville, P., Schlag, J., & Schlag-Rey, M. (1992). Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Vis Neurosci 9: 261–269.CrossRefGoogle ScholarPubMed
Dassonville, P., Schlag, J., & Schlag-Rey, M. (1993). Direction constancy in the oculomotor system. Curr Dir Psychol Sci 2: 143–147.CrossRefGoogle Scholar
Dassonville, P., Schlag, J., & Schlag-Rey, M. (1995). The use of egocentric and exocentric location cues in saccadic programming. Vision Res 35: 2191–2199.CrossRefGoogle ScholarPubMed
de Lange, H. (1954). Relationship between critical flicker frequency and a set of low-frequency characteristics of the eye. J Opt Soc Amer 44: 380–389.CrossRefGoogle Scholar
de Lange, H. (1958). Research into the dynamic nature of the human fovea-cortex systems with intermittant and modulated light. I. Attenuation characteristics with white and coloured light. J Opt Soc Amer 48: 777–784.CrossRefGoogle Scholar
Donaldson, I. M. L. (2000). The functions of the proprioceptors of the eye muscles. Philos Trans R Soc Lond B 355: 1685–1754.CrossRefGoogle ScholarPubMed
Efron, R. (1970). Effect of stimulus duration on perceptual onset and offset latencies. Perception & Psychophysics 8: 231–234.CrossRefGoogle Scholar
Gibson, J. J., & Mowrer, O. H. (1938). Determinants of the perceived vertical and horizontal. Psychol Rev 45: 300–323.CrossRefGoogle Scholar
Graham, C. H., & Kemp, E. H. (1938). Brightness discrimination as a function of the duration of the increment in intensity. J Gen Physiol 21: 635–650.CrossRefGoogle ScholarPubMed
Greenhouse, D. S., & Cohn, T. E. (1991). Saccadic suppression and stimulus uncertainty. J Opt Soc Amer 8: 587–595.CrossRefGoogle ScholarPubMed
Haffenden, A. M., & Goodale, M. A. (2000). Independent effects of pictorial displays on perception and action. Vision Res 40: 1597–1607.CrossRefGoogle ScholarPubMed
Hallett, P. E., & Lightstone, A. D. (1976a). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res 16: 99–106.CrossRefGoogle ScholarPubMed
Hallett, P. E., & Lightstone, A. D. (1976b). Saccadic eye movements to flashed targets. Vision Res 16: 107–114.CrossRefGoogle ScholarPubMed
Hansen, R. M., & Skavenski, A. A. (1985). Accuracy of spatial localization near the time of saccadic eye movements. Vision Res 25: 1077–1082.CrossRefGoogle Scholar
Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics 45: 162–174.CrossRefGoogle ScholarPubMed
Honda, H. (1990). Eye movements to a visual stimulus flashed before, during, or after a saccade. In M., Jeannerod (ed.), Attention and Performance, vol. 13. Hillsdale, NJ: Erlbaum.Google Scholar
Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31: 1915–1921.CrossRefGoogle ScholarPubMed
Honda, H. (1993). Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res 33: 709–716.CrossRefGoogle ScholarPubMed
Honda, H. (1999). Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference. Vision Res 39: 51–57.CrossRefGoogle ScholarPubMed
Hood, D. C., & Finkelstein, M. A. (1986). Sensitivity to light. In K., Boff, L., Kaufman, & J., Thomas (eds.), Handbook of Perception and Human Performance (vol. I, ch. 5, 5–1–5-66). New York: Wiley.Google Scholar
Kahneman, D. (1968). Methods, findings, and theory in studies of visual backward masking. Psychol Bull 70: 404–425.CrossRefGoogle Scholar
Koffka, K. (1935). Principles of Gestalt Psychology. New York: Harcourt Brace.Google Scholar
Kolers, P. A. (1962). Intensity and contour effects in visual masking. Vision Res 2: 277–294.CrossRefGoogle Scholar
Kolers, P. A., & Rosner, B. (1960). On visual masking (metacontrast): dichoptic observation. Am J Psychol 73: 2–21.CrossRefGoogle ScholarPubMed
Li, W. (1989). A quantitative study of the accuracy and the precision of the visual perception of direction immediately after voluntary saccades. Ph.D. dissertation, Columbia University.
Li, W., Dallal, N., & Matin, L. (2001). Influences of visual pitch and yaw on visually perceived eye level (VPEL) and straight ahead (VPSA) for erect and rolled-to-horizontal observers. Vision Res 41: 2873–2894.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (1992a). Visual direction is corrected by a hybrid extraretinal eye position signal. Ann New York Acad Sci 656: 865–867.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (1992b). Rotation in depth of linear arrays of points systematically influences egocentric localization. Bull of the Psychonomic Soc 30: 453.Google Scholar
Li, W., & Matin, L. (1993). Eye and head position, visual pitch, and perceived eye level. Inv Ophth & Vis Sci 34: 1311.Google Scholar
Li, W., & Matin, L. (1996). Visually perceived eye level is influenced identically by lines from erect and pitched planes. Perception 25: 831–852.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (1997). Saccadic suppression of displacement: separate influences of saccade size and of target retinal eccentricity. Vision Res 37: 1779–1797.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (2005a). Two wrongs make a right: linear increase of accuracy of visually-guided manual pointing, reaching, and height-matching with increase in hand-to-body distance. Vision Res 45: 533–550.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (2005b). Visual induction of visually perceived vertical (VPV) by 1-line and 2-line roll-tilted and pitched visual fields. Vision Res 45: 2037–2057.CrossRefGoogle ScholarPubMed
Li, W., & Matin, L. (2005c). The rod-and-frame effect: the whole is less than the sum of its parts. Perception 34: 699–716.CrossRefGoogle Scholar
Li, W., Matin, E., Bertz, J., & Matin, L. (2008). A tilted frame deceives the eye and the hand. J Vision 8(16): 18, 1–16.CrossRefGoogle ScholarPubMed
Lotze, H. (1886). Outline of Psychology. Translated and edited by Ladd, G. T.Boston: Ginn.Google Scholar
Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychol Bull 81: 899–917.CrossRefGoogle ScholarPubMed
Matin, E. (1976). Saccadic suppression and the stable world. In R. A., Monty & J. W., Senders (eds.), Eye Movements and Psychological Processes (113–119). New York: Erlbaum.Google Scholar
Matin, E. (1982). Saccadic suppression and the dual mechanism theory of direction constancy. Vision Res 22: 335–336.CrossRefGoogle ScholarPubMed
Matin, E., Clymer, A., & Matin, L. (1972). Metacontrast and saccadic suppression. Science 178: 179–182.CrossRefGoogle ScholarPubMed
Matin, E., Matin, L., & Pola, J. (1969). The intermittant light illusion and constancy of visual direction during voluntary saccadic eye movements. Psychonomic Society (Abstract).
Matin, L. (1962). Fourier treatment of some experiments in visual flicker. Science 136: 983–985.CrossRefGoogle ScholarPubMed
Matin, L. (1964). Measurement of eye movements by contact lens techniques: analysis of measuring systems and some new methodology for three-dimensional recording. J Opt Soc Am 54: 1008–1018.CrossRefGoogle ScholarPubMed
Matin, L. (1968). Critical duration, the differential luminance threshold, critical flicker frequency, and visual adaptation: a theoretical treatment. J Opt Soc Am 58: 404–415.CrossRefGoogle ScholarPubMed
Matin, L. (1972). Eye movements and perceived visual direction. In D., Jameson & L., Hurvich (eds.), Handbook of Sensory Physiology (331–380). Heidelberg: Springer.Google Scholar
Matin, L. (1976a). A possible hybrid mechanism for modification of visual direction associated with eye movements – the paralyzed-eye experiment reconsidered. Perception 5: 233–239.CrossRefGoogle Scholar
Matin, L. (1976b). Saccades and extraretinal signal for visual direction. In R. A., Monty & J. W., Senders (eds.), Eye Movements and Psychological Processes (203–204). New York: Erlbaum.Google Scholar
Matin, L. (1982). Visual localization and eye movements. In A., Wertheim, W. A., Wagenaar, & H., Leibowitz (eds.), Tutorials on Motion Perception (101–156). New York: Plenum.CrossRefGoogle Scholar
Matin, L. (1986). Visual localization & eye movements. In K., Boff, L., Kaufman, & J., Thomas (eds.), Handbook of Perception and Human Performance (vol. I, ch. 20, 20-1–20-45). New York: Wiley.Google Scholar
Matin, L., & Bowen, R. W. (1976). Measuring the duration of perception. Perception & Psychophysics 20: 66–76.CrossRefGoogle Scholar
Matin, L., & Fox, C. R. (1986). Perceived eye level: elevation jointly determined by visual pitch, EEPI, and gravity. Invest Ophthalmol Vis Sci (Suppl.) 27: 333.Google Scholar
Matin, L., & Fox, C. R. (1989). Visually perceived eye level and perceived elevation of objects: linearly additive influences from visual field pitch and from gravity. Vision Res 29: 315–324.CrossRefGoogle ScholarPubMed
Matin, L., & Fox, C. R. (1990). Erratum: Visually perceived eye level and perceived elevation of objects: linearly additive influences from visual field pitch and from gravity. Vision Res 30: I.Google Scholar
Matin, L., & Kibler, G. (1966). Acuity of visual perception of direction in the dark for various positions of the eye in the orbit. Percept Mot Skills 22: 407–420.CrossRefGoogle Scholar
Matin, L., & Li, W. (1992). Visually perceived eye level: changes induced by a pitched-from-vertical 2-line visual field. J Exp Psychol Hum Percept Perform 18: 257–289.CrossRefGoogle ScholarPubMed
Matin, L., & Li, W. (1994a). The influence of the orientation of a stationary single line in darkness on the visual perception of eye level. Vision Res 34: 311–330.CrossRefGoogle ScholarPubMed
Matin, L., & Li, W. (1994b). Spatial summation among parallel lines across wide separations (50°): spatial localization and the great circle model. Vision Res 34: 2577–2598.CrossRefGoogle ScholarPubMed
Matin, L., & Li, W. (1994c). Mirror symmetry and parallelism: two opposite rules for the identity transform in space perception and their unified treatment by the Great Circle Model. Spat Vis 8: 469–489.CrossRefGoogle ScholarPubMed
Matin, L., & Li, W. (1995). Multimodal basis for egocentric spatial localization and orientation. J Vestib Res 5: 499–518.CrossRefGoogle ScholarPubMed
Matin, L., & Li, W. (1996). Similarities between 3D color and egocentric orientation spaces. Inv Ophth & Vis Sci 37/3: S519.Google Scholar
Matin, L., & Li, W. (2001). Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL). Vision Res 41: 2845–2872.CrossRefGoogle Scholar
Matin, L., Li, W., & Bertz, J. W. (2004). Distance-contingent accuracy of manual matches to line orientations misperceived under the 2-line rod-and-frame illusion. J Vis 4(8): 380a.CrossRefGoogle Scholar
Matin, L., Li, W., Li, L., & Shavit, A. Y. (2006). Influence of roll-tilt, interpoint separation, and length of linear points-arrays on a frontoparallel plane on visually perceived eye level (VPEL) [Abstract]. J Vis 6: 972.CrossRefGoogle Scholar
Matin, L., & Matin, E. (1972). Visual perception of direction and voluntary saccadic eye movements. In J., Dichgans & H., Bizzi (eds.), Cerebral Control of Eye Movements and Motion Perception (358–368). Basel, Switzerland: Karger.Google Scholar
Matin, L., Matin, E., & Pearce, D. G. (1969). Visual perception of direction when voluntary saccades occur. I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perception & Psychophysics 5: 65–80.CrossRefGoogle Scholar
Matin, L., Matin, E., & Pola, J. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception & Psychophysics 8: 9–14.CrossRefGoogle Scholar
Matin, L., Matin, E., Pola, J., & Bowen, R. (1971). Relative visual direction of two flashes presented at different times or intensities during a voluntary saccade – retinal constraints in the operation of extraretinal signals. Presented at EPA.
Matin, L., & Pearce, D. G. (1964). Three-dimensional recording of rotational eye movements by a new contact-lens technique. In W. E., Murry & P. F., Salisbury (eds.), Biomedical Sciences Instrumentation (79–95). New York: Plenum Press.Google Scholar
Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1488.CrossRefGoogle ScholarPubMed
Matin, L., Pearce, D. G., Matin, E., & Kibler, G. (1966). Visual perception of direction in the dark: roles of local sign, eye movements and ocular proprioception. Vision Res 6: 453–469.CrossRefGoogle ScholarPubMed
Matin, L., Picoult, E., Stevens, J. K., Edwards, M. W. Jr., Young, D., & MacArthur, R. (1982). Oculoparalytic illusion: visual-field dependent mislocalizations by humans partially paralyzed with curare. Science 216: 198–201.CrossRefGoogle ScholarPubMed
Matin, L., Stevens, J. K., & Picoult, E. (1983). Perceptual consequences of experimental extraocular muscle paralysis. In A., Hein & M., Jeannerod (eds.), Spatially Oriented Behavior (243–262). New York: Springer.CrossRefGoogle Scholar
Miller, J. M. (1996). Egocentric localization of a perisaccadic flash by manual pointing. Vision Res 36: 837–851.CrossRefGoogle ScholarPubMed
Miller, J. M., & Bockisch, C. J. (1997). Where are the things we see? Nature 386: 550–551.CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. New York: Oxford University Press.Google Scholar
Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17(20): 7941–7953.CrossRefGoogle ScholarPubMed
Pola, J. (1973). The relation of the perception of visual direction to eye position during and following a voluntary saccade. Ph.D. dissertation, Columbia University.
Pola, J. (1976). Voluntary saccades, eye position, and perceived visual direction. In R. A., Monty & J. W., Senders (eds.), Eye Movements and Psychological Processes (245–254). New York: Erlbaum.Google Scholar
Pola, J. (2004). Models of the mechanism underlying perceived location of a perisaccadic flash. Vision Res 44: 2799–2813.CrossRefGoogle ScholarPubMed
Pola, J. (2007). A model of the mechanism for the perceived location of a single flash and two successive flashes presented around the time of the saccade. Vision Res 47: 2798–2813.CrossRefGoogle ScholarPubMed
Raab, D. H. (1963). Backward masking. Psychol Bull 60: 118–129.CrossRefGoogle ScholarPubMed
Ratliff, F. (1965). MACK BANDS: Quantitative studies on neural networks in the retina. San Francisco, CA: Holden-Day, Inc.Google Scholar
Ratliff, F., Miller, W. H., & Hartline, H. K. (1958). Neural interaction in the eye and the integration of receptor activity. Ann NY Acad Sci 74: 210–222.CrossRefGoogle Scholar
Riggs, L. A., Volkmann, F. C., Moore, R. K., & Ellicott, A. G. (1982). Perception of suprathreshold stimuli during saccadic eye movement. Vision Res 22: 423–428.CrossRefGoogle Scholar
Ross, L., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature 386: 598–601.CrossRefGoogle ScholarPubMed
Schlag, J., & Schlag-Rey, M. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–215.CrossRefGoogle ScholarPubMed
Shavit, A. Y., Li, W., & Matin, L. (2004). Influences of global and local orientations of line segments on perceived eye level. 45th Annual Meeting of the Psychonomic Society, 9: 112.
Shavit, A. Y., Li, W., & Matin, L. (2005). Spatial induction of changes in perceived elevation and verticality by global and local orientations of sets of lines. 5th Annual Meeting of Vision Sciences Society, 275.CrossRef
Shebilske, W. L. (1977). Visuomotor coordination in visual direction and position constancies. In W., Epstein (ed.), Stability and Constancy in Visual Perception. New York: Wiley.Google Scholar
Sherrington, C. S. (1898). Decerebrate rigidity, and reflex coordination of movements. J Physiol (Lond.) 22: 319–332.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1918). Observation on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles. Brain 41: 332–343.CrossRefGoogle Scholar
Sogo, H., & Osaka, N. (2001). Perception of relation of stimuli locations successively flashed before saccade. Vision Res 41: 935–942.CrossRefGoogle ScholarPubMed
Sogo, H., & Osaka, N. (2002). Effects of inter-stimulus interval on perceived locations of successively flashed perisaccadic stimuli. Vision Res 42: 899–908.CrossRefGoogle ScholarPubMed
Sperry, R. (1950). Neural basis of the spontaneous optokinetic response produced by vision inversion. J Comp Physiol Psychol 43: 482–489.CrossRefGoogle ScholarPubMed
Stark, L., & Bridgeman, B. (1983). Role of corollary discharge in space constancy. Perception & Psychophysics 34: 371–380.CrossRefGoogle ScholarPubMed
Steinbach, M. J. (1987). Proprioceptive knowledge of eye position. Vision Res 27: 1737–1744.CrossRefGoogle ScholarPubMed
Stoper, A., & Cohen, M. M. (1989). Effect of structured visual environments on apparent eye level. Perception & Psychophysics 46: 469–475.CrossRefGoogle ScholarPubMed
von Békésy, G. (1967). Sensory Inhibition. Princeton, NJ: Princeton University Press.Google Scholar
von Békésy, G. (1968). Mach- and Hering-type lateral inhibition in vision. Vision Res 8: 1457–1466.CrossRefGoogle ScholarPubMed
von Helmholtz, H. (1866). Handbuch der Physiologischen Optik, Leipzig: Voss. (English translation from 3rd edition 1925). In J. P. C., Southall (ed.), A Treatise on Physiological Optics (vol. 3). New York: Dover.Google Scholar
von Holst, E. (1954). Relation between the central nervous system and the peripheral organs. British Journal of Animal Behavior 2: 89–94.CrossRefGoogle Scholar
von Holst, E., & Mittelstaedt, H. (1950). Das reafferenz-prinzip: Wechselwirkungen zwischen zentralnervensystem und peripherie (The principle of reafference: interactions between the central nervous system and the peripheral organs). Naturwissenscaften 37: 464–477.CrossRefGoogle Scholar
Weisstein, N. (1972). Metacontrast. In D., Jameson & L., Hurvich. (eds.), Handbook of Sensory Physiology (vol. 7, no. 4, Visual Psychophysics). Berlin: Springer-Verlag.Google Scholar
Wertheimer, M. (1912). Experimentelle studien ü ber das sehen von bewegung, Zeitschrift fur Psychologie und Physiologie der Sinnesorgane 61: 161–265.Google Scholar
Witkin, H. A. (1949). Perception of body position and of the position of the visual field. Psychol Monograph 63(7): 1–46.CrossRefGoogle Scholar
Witkin, H. A., & Asch, S. E. (1948a). Studies in space perception. III. Perception of the upright in the absence of a visual field. J Exp Psychol 38: 603–614.CrossRefGoogle Scholar
Witkin, H. A., & Asch, S. E. (1948b). Studies in space perception. IV. Further experiments on perception of the upright with displaced visual fields. J Exp Psychol 38: 762–782.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×