Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T05:19:52.888Z Has data issue: false hasContentIssue false

7 - Observing Dynamic States of Single-Molecule DNA and Proteins Using Atomic Force Microscope

from Part III - Mapping DNA Molecules at the Single-Molecule Level

Published online by Cambridge University Press:  05 May 2022

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Raghu Kiran Appasani
Affiliation:
Psychiatrist, Neuroscientist, & Mental Health Advocate
Get access

Summary

Biomolecules and biopolymers undergo conformational transitions during many biological processes. For example, some proteins are observed to have multiple intermediate states in the folding/unfolding pathways (Stigler et al., 2011; Yu et al., 2012); intrinsically disordered proteins can form diverse metastable structures (Neupane et al., 2014); functional proteins can often be switched between active and inactive states through conformational transitions (Yang et al., 2003; Hanson et al., 2007; Wijeratne et al., 2013); nucleosomes are able to regulate DNA unwrapping through their conformational transitions (Ngo et al., 2015). These dynamic states of DNA and proteins control their biological functions. Since force plays a fundamental role in many, if not all, biological systems, one way to reveal the dynamics of the molecules is to elucidate its intra- and intermolecular force, which can be used as a marker to capture information about their conformational changes.

Type
Chapter
Information
Single-Molecule Science
From Super-Resolution Microscopy to DNA Mapping and Diagnostics
, pp. 97 - 110
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Mossa, A., Junier, I., and Ritort, F. (2012). Experimental Free-Energy Measurements of Kinetic Molecular States Using Fluctuation Theorems. Nature Physics, 8(9), 688694.Google Scholar
Baldauf, C., Schneppenheim, R., Stacklies, W., et al. (2009). Shear-Induced Unfolding Activates von Willebrand Factor A2 Domain for Proteolysis. Journal of Thrombosis and Haemostasis, 7(12), 20962105.Google Scholar
Bennett, C. H. (1976). Efficient Estimation of Free-Energy Differences from Monte-Carlo Data. Journal of Computational Physics, 22(2), 245268.CrossRefGoogle Scholar
Botello, E., Harris, N. C., Sargent, J., Chen, W. H., Lin, K. J., and Kiang, C. H. (2009). Temperature and Chemical Denaturant Dependence of Forced Unfolding of Titin I27. Journal of Physical Chemistry B,. 113(31), 1084510848.Google Scholar
Bouchiat, C., Wang, M. D., Allemand, J. F., Strick, T., Block, S. M., and Croquette, V. (1999). Estimating the Persistence Length of a Worm-Like Chain Molecule from Force-Extension Measurements. Biophysical Journal, 76(1), 409413.Google Scholar
Borgia, A., Williams, P. M., and Clarke, J. (2008). Single-Molecule Studies of Protein Folding. Annual Review of Biochemistry, 77, 101125.Google Scholar
Bryant, Z., Stone, M. D., Gore, J., Smith, S.B., Cozzarelli, N. R., and Bustamante, C. (2003). Structural Transitions and Elasticity from Torque Measurements on DNA. Nature, 424(6946), 338341.CrossRefGoogle ScholarPubMed
Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. (1994). Entropic Elasticity of Lambda-Phage DNA. Science, 265(5178), 15991600.Google Scholar
Bustamante, C., Bryant, Z., and Smith, S. B. (2003). Ten Years of Tension: Single-Molecule DNA Mechanics. Nature, 421(6921), 423427.CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M., Oberhauser, A. F., Fowler, S. B., et al. (1999). Mechanical and Chemical Unfolding of a Single Protein: A Comparison. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 36943699.CrossRefGoogle ScholarPubMed
Chen, W. H., Wilson, J. D., Wijeratne, S. S., Southmayd, S. A., Lin, K. J., and Kiang, C. H. (2012). Principles of Single-Molecule Manipulation and Its Application in Biological Physics. International Journal of Modern Physics B, 26(13), 16.CrossRefGoogle Scholar
Chen, W. S., Chen, W. H., Chen, Z. P., Gooding, A. A., Lin, K. J., and Kiang, C. H. (2010). Direct Observation of Multiple Pathways of Single-Stranded DNA Stretching. Physical Review Letters, 105(21), 218104.Google Scholar
Choi, H., Aboulfatova, K., Pownall, H. J., Cook, R., and Dong, J. F. (2007). Shear-Induced Disulfide Bond Formation Regulates Adhesion Activity of von Willebrand Factor. Journal of Biological Chemistry, 282(49), 3560435611.Google Scholar
Cluzel, P., Lebrun, A., Heller, C., et al. (1996). DNA: An Extensible Molecule. Science, 271(5250), 792794.Google Scholar
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I., and Bustamante, C. (2005). Verification of the Crooks Fluctuation Theorem and Recovery of RNA Folding Free Energies. Nature, 437(7056), 231234.Google Scholar
Crooks, G. E. (1999). Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences. Physical Review E, 60(3), 27212726.CrossRefGoogle ScholarPubMed
Dobson, C. M., Sali, A., and Karplus, M. (1998). Protein Folding: A Perspective from Theory and Experiment. Angewandte Chemie-International Edition, 37(7), 868893.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Dong, J. F., Moake, J. L., Nolasco, L., et al. (2002). ADAMTS-13 Rapidly Cleaves Newly Secreted Ultralarge von Willebrand Factor Multimers on the Endothelial Surface under Flowing Conditions. Blood, 100(12), 40334039.Google Scholar
Fowler, W. E., Fretto, L. J., Hamilton, K. K., Erickson, H. P., and McKee, P. A. (1985). Substructure of Human von Willebrand Factor. Journal of Clinical Investigation. 76(4), 1491–500.Google Scholar
Frey, E. W., Li, J. Q., Wijeratne, S. S., and Kiang, C. H. (2015). Reconstructing Multiple Free Energy Pathways of DNA Stretching from Single Molecule Experiments. Journal of Physical Chemistry B, 119(16), 51325135.Google Scholar
Goddard, N. L., Bonnet, G., Krichevsky, O., and Libchaber, A. (2000). Sequence Dependent Rigidity of Single Stranded DNA. Physical Review Letters, 85(11), 24002403.Google Scholar
Grantcharova, V., Alm, E. J., Baker, D., and Horwich, A. L. (2001). Mechanisms of Protein Folding. Current Opinion in Structural Biology, 11(1), 7082.CrossRefGoogle ScholarPubMed
Gupta, A. N., Vincent, A., Neupane, K., Yu, H., Wang, F., and Woodside, M. T. (2011). Experimental Validation of Free-Energy-Landscape Reconstruction from Non-Equilibrium Single-Molecule Force Spectroscopy Measurements. Nature Physics, 7(8), 631634.Google Scholar
Hanson, J. A., Duderstadt, K., Watkins, L. P., et al. ( 2007). Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 1805518060.Google Scholar
Harris, N. C., Song, Y., and Kiang, C. H. (2007). Experimental Free Energy Surface Reconstruction from Single-Molecule Force Spectroscopy Using Jarzynski's Equality. Physical Review Letters, 99(6), 068101068104.Google Scholar
Hummer, G. and Szabo, A. (2005). Free Energy Surfaces from Single-Molecule Force Spectroscopy. Accounts of Chemical Research, 38(7), 504513.Google Scholar
Jakobi, A. J., Mashaghi, A., Tans, S. J., and Huizinga, E. G. (2011). Calcium Modulates Force Sensing by the von Willebrand Factor A2 Domain. Nature Communications, 2, 385.Google Scholar
Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letters, 78(14), 26902693.Google Scholar
Ke, C., Humeniuk, M., S-Gracz, H., and Marszalek, P. E. (2007). Direct Measurements of Base Stacking Interactions in DNA by Single-Molecule Atomic-Force Spectroscopy. Physical Review Letters, 99(1), 018302.CrossRefGoogle ScholarPubMed
Kellermayer, M. S. Z. and Grama, L. (2002). Stretching and Visualizing Titin Molecules: Combining Structure, Dynamics and Mechanics. Journal of Muscle Research and Cell Motility, 23(5–6), 499511.CrossRefGoogle ScholarPubMed
Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L., and Bustamante, C. (1997). Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science, 276(5315), 11121116.CrossRefGoogle ScholarPubMed
King, G. A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G. J. L., and Peterman, E. J. G. (2013). Revealing the Competition between Peeled ssDNA, Melting Bubbles, and S-DNA during DNA Overstretching Using Fluorescence Microscopy. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3859–3864.Google Scholar
Kosynkin, D. V., Higginbotham, A. L, Sinitskii, A., et al. (2009). Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature, 458(7240), 872876.CrossRefGoogle ScholarPubMed
Leger, J. F., Robert, J., Bourdieu, L., Chatenay, D., and Marko, J. F. (1998). RecA Binding to a Single Double-Stranded DNA Molecule: A Possible Role of DNA Conformational Fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12295–12299.Google Scholar
Li, J. Q., Wijeratne, S. S., Qiu, X. Y., and Kiang, C. H. (2015). DNA under Force: Mechanics, Electrostatics, and Hydration. Nanomaterials, 5(1), 246267.Google Scholar
Liang, Y., van der Valk, R. A., Dame, R. T., Roos, W. H., and Wuite, G. J. L. (2017). Probing the Mechanical Stability of Bridged DNA-H-NS Protein Complexes by Single-Molecule AFM Pulling. Scientific Reports, 7(1), 15275.Google Scholar
Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I., and Bustamante, C. (2002). Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality. Science, 296(5574), 18321835.CrossRefGoogle Scholar
Lippok, S., Obser, T., Muller, J. P., et al. (2013). Exponential Size Distribution of von Willebrand Factor. Biophysical Journal, 105(5), 12081216.Google Scholar
Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999). Energy Landscapes of Receptor-Ligand Bonds Explored with Dynamic Force Spectroscopy. Nature, 397(6714), 5053.Google Scholar
Neuman, K. C. and Nagy, A. (2008). Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nature Methods, 5(6), 491505.Google Scholar
Neupane, K., Solanki, A., Sosova, I., Belov, M., and Woodside, M.T. (2014). Diverse Metastable Structures Formed by Small Oligomers of Alpha-Synuclein Probed by Force Spectroscopy. Plos One, 9(1), e86495.Google Scholar
Ngo, T. T. M., Zhang, Q. C., Zhou, R. B., Yodh, J. G., and Ha, T. (2015). Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility. Cell, 160(6), 1135–1144.Google Scholar
Onuchic, J. N., LutheySchulten, Z., and Wolynes, P. G. (1997). Theory of Protein Folding: The Energy Landscape Perspective. Annual Review of Physical Chemistry, 48, 545600.Google Scholar
Prevost, C. and Takahashi, M. (2003). Geometry of the DNA Strands within the RecA Nucleofilament: Role in Homologous Recombination. Quarterly Reviews of Biophysics, 36(4), 429453.Google Scholar
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997). Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science, 276(5315), 11091112.CrossRefGoogle ScholarPubMed
Rief, M., Clausen-Schaumann, H., and Gaub, H. E. (1999). Sequence-Dependent Mechanics of Single DNA Molecules. Nature Structural Biology, 6(4), 346349.Google Scholar
Ruggeri, Z. M. and Zimmerman, T. S. (1987). von Willebrand Factor and von Willebrand Disease. Blood, 70(4), 895904.CrossRefGoogle ScholarPubMed
Sadler, J. E. (1998). Biochemistry and Genetics of von Willebrand Factor. Annual Review of Biochemistry, 67, 395424.Google Scholar
Sadler, J. E. (2005). New Concepts in von Willebrand Disease. Annual Review of Medicine, 56, 173–191.Google Scholar
Schneider, S. W., Nuschele, S., Wixforth, A., et al. (2007). Shear-Induced Unfolding Triggers Adhesion of von Willebrand Factor Fibers. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 78997903.Google Scholar
Siedlecki, C. A., Lestini, B. J., Kottke-Marchant, K., Eppell, S. J., Wilson, D. L. and Marchant, R. E. (1996). Shear-Dependent Changes in the Three-Dimensional Structure of Human von Willebrand Factor. Blood, 88(8), 29392950.Google Scholar
Sing, C. E. and Alexander-Katz, A. (2010). Elongational Flow Induces the Unfolding of von Willebrand Factor at Physiological Flow Rates. Biophysical Journal, 98(9), L35L37.Google Scholar
Smith, B. L., Schaffer, T. E., Viani, M., et al. (1999). Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites. Nature, 399(6738), 761763.Google Scholar
Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. M., and Rief, M. (2011). The Complex Folding Network of Single Calmodulin Molecules. Science, 334(6055), 512516.Google Scholar
Wijeratne, S. S., Botello, E., Yeh, H. C., et al. (2013). Mechanical Activation of a Multimeric Adhesive Protein through Domain Conformational Change. Physical Review Letters, 110(10), 108102.Google Scholar
Wijeratne, S. S., Li, J. Q., Yeh, H. C., et al. (2016). Single-Molecule Force Measurements of the Polymerizing Dimeric Subunit of von Willebrand Factor. Physical Review E, 93(1), 012410.CrossRefGoogle ScholarPubMed
Woodside, M. T. and Block, S. M. (2014). Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy. Annual Review of Biophysics, 43, 1939.Google Scholar
Yang, H., Luo, G. B., Karnchanaphanurach, P., et al. (2003). Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science, 302(5643), 262266.Google Scholar
Yi, L. J., Zhang, Y. Y., Wang, C. M., and Chang, T. C. (2014). Temperature-Induced Unfolding of Scrolled Graphene and Folded Graphene. Journal of Applied Physics, 115(20), 204307.CrossRefGoogle Scholar
Yu, H., Liu, X., Neupane, K., et al. (2012). Direct Observation of Multiple Misfolding Pathways in a Single Prion Protein Molecule. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 52835288.Google Scholar
Zang, J. F., Ryu, S., Pugno, N., et al. (2013). Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene. Nature Materials, 12(4), 321325.Google Scholar
Zhang, X. H., Halvorsen, K., Zhang, C. Z., Wong, W. P., and Springer, T. A. (2009). Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor. Science, 324(5932), 13301334.Google Scholar
Zhang, X. H., Chen, H., Fu, H. X., Doyle, P. S., and Yan, J. (2012). Two Distinct Overstretched DNA Structures Revealed by Single-Molecule Thermodynamics Measurements. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 81038108.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×