Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: March 2015

Chapter 2 - General and special techniques in surgical pathology and cytopathology

References

1. Pearse AGE. The chemistry and practice of fixation. In: Histochemistry. Theoretical and Applied, 4th edn. Vol. 1. Edinburgh: Churchill Livingstone; 1980: 97–158.
2. Hopwood D. Fixation and fixatives. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 21–42.
3. Kiernan JA. Histological and Histochemical Methods. Theory and Practice. Oxford: Pergamon; 1981.
4. Baker JR. Introduction to fixation. In: Cytological Technique: The Principles Underlying Routine Methods, 5th edn. London: Science Paperbacks and Methuen; 1966: 14–30.
5. Banks PM. Technical aspects of specimen preparation and introduction to special studies. In: Jaffe ES, ed. Surgical Pathology of the Lymph Nodes and Related Organs. Philadelphia: WB Saunders; 1995: 1–21.
6. Pearse AGE. Freeze drying of biological tissues. In: Histochemistry. Theoretical and Applied, 4th edn. Vol. 1. Edinburgh: Churchill Livingstone; 1980.
7. Leong ASY, Daymon ME, Milios J. Microwave irradiation as a form of fixation for light and electron microscopy. J Pathol 1985; 146: 313–332.
8. Hopwood D. Cell and tissue fixation, 1972–1982. Histochem J 1985; 17: 389–442.
9. Morales AR, Essenfield H, Essenfield E, et al. Continuous-specimen-flow, high-throughput, 1-hour tissue processing. A system for rapid diagnostic tissue preparation. Arch Pathol Lab Med 2002; 126: 583–590.
10. Bancroft JD, Cook HD. Manual of Histochemical Techniques and Their Diagnostic Applications. Edinburgh: Churchill Livingstone; 1994.
11. Horobin RW. An overview of the theory of staining. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 93–105.
12. Stevens A, Bancroft JD. Proteins and nucleic acids. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 143–153.
13. Pearse AGE. Nucleic Acids and Nucleoproteins. Histochemistry. Theoretical and Applied. 3rd edn. Vol. 1. Boston: Little, Brown; 1968: 248–293.
14. Ploton D, Menager M, Jeannesson P, et al. Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizing regions at the optical level. Histochem J 1986; 18: 5–14.
15. Bradbury P, Gordon KC. Connective tissues and stains. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Churchill Livingstone; Edinburgh: 1990: 119–142.
16. Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem 1962; 10: 355.
17. Vassar PS, Culling FA. Fluorescent stains with special reference to amyloid and connective tissue. Arch Pathol 1959; 68: 487–498.
18. Cooke HC. Carbohydrates. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 1177–1213.
19. Sorvari TE. Histochemical observations on the role of ferric chloride in the high iron diamine technique for localizing sulphated mucosubstances. Histochem J 1972; 4: 193–204.
20. Bayliss-High OB. Lipids. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 215–244.
21. Grimelius LA. A silver nitrate stain for A2 cells of human pancreatic islets. Acta Soc Med Upsal 1968; 73: 243–270.
22. Stevens A. Microorganisms. In: Bancroft, JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 289–308.
23. Noda Y, Toei K. A new bacterial staining method involving Gram stain with theoretical considerations of the staining mechanism. Microbios 1992; 70: 49–55.
24. Glynn JH. The application of the Gram stain to paraffin sections. Arch Pathol 1935; 20: 896–899.
25. Shikata T, Uzawa T, Yoshiwara N, et al. Staining methods for Australian antigen in paraffin sections – detection of cytoplasmic inclusion bodies. Jpn J Exp Med 1974; 44: 25–36.
26. Stevens A. Pigments and minerals. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 245–267.
27. Bancroft JD, Cook HC. Enzyme Histochemistry. Manual of Histological Techniques and Their Diagnostic Application. Edinburgh: Churchill Livingstone; 1994: 289–322.
28. Leder LD. Uber die selektive fermentcytochemicsche Darstellung von neutrophilen myeloischen Zellen Gewebsmastzellen in Parafinschnit. Kurze wissenschaftliche Mitteilungen. Klin Wochenschr 1964: 42: 553.
29. Stevens A. Enzyme histochemistry. Diagnostic applications. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. Edinburgh: Churchill Livingstone; 1990: 401–412.
30. Dubowitz V. Muscle Biopsy: A Practical Approach. London: Baillière Tindall; 1985.
31. Keebler CM, Somark TM. Cytopreparative techniques. In: The Manual of Cytotechnology. 7th edn. Chicago: ASCP; 1993: 412–447.
32. Woronzoff-Dashkoff KP. The Ehrlick–Chenzinsky–Plehn–Malachowski–Romanowsky–Nocht–Jenner–May–Grünwald–Leishman–Reuter–Wright–Giemsa–Lillie–Roe, Wilcox stain. The mystery unfolds. Clin Lab Med 1993; 13: 759–771.
33. Wilbur DC, Cibas ES, Meritt S, et al. ThinPrep processor. Clinical trials demonstrate an increased detection rate of abnormal cervical cytologic specimens. Am J Clin Pathol 1994; 101: 209–214.
34. Hutchinson ML, Agarwal P, Denault T. A new look at cervical cytology: ThinPrep multicenter trial results. Acta Cytol 1992; 36: 499–504.
35. Hutchinson ML, Isenstein LM, Goodman AK, et al. Homogeneous sampling accounts for the increased diagnostic accuracy using the ThinPrep processor. Am J Clin Pathol 1994: 101: 215–219.
36. Ro JY, Staerkel GA, Ayala AG. Cytologic and histologic features of superficial bladder cancer. Urol Clin North Am 1992; 19: 435–453.
37. Hossein M, Yazdi MB. Genitourinary cytology. Clin Lab Med 1991; 11: 369–377.
38. Koss LG. Diagnostic Cytology and its Histopathologic Bases. 4th edn. Philadelphia: Lippincott-Raven; 1992.
39. Frable WJ. Needle aspiration biopsy: past, present, and future. Hum Pathol 1989; 20: 504–517.
40. Stanley MW, Lowhagen T. Fine Needle Aspiration of Palpable Masses. Boston: Butterworth-Heinemann; 1993: 3–5.
41. Koss LG, Woyke S, Olxzewski W. Aspiration Biopsy. Cytologic Interpretation and Histologic Bases. 2nd edn. New York: Igaku Shoin; 1992: 12–53; 193–196.
42. Helbich TH, Matzek W, Fuchsjager MH. Stereotactic and ultrasound-guided breast biopsy. Eur Radiol 2004; 14: 383–393.
43. Zhou M, Epstein JI. The reporting of prostate cancer on needle biopsy: prognostic and therapeutic implications and the utility of diagnostic markers: Pathology 2003; 35: 472–479.
44. Martin HE, Ellis EB. Biopsy by needle puncture and aspiration. Ann Surg 1930; 92: 169–181.
45. Lopes Cardozo P. Clinical Cytology. Leiden: Stafleu; 1954.
46. Zajicek J. Aspiration Biopsy Cytology. Part 1. Cytology of Supradiaphragmatic Organs. Vol. 4. Monographs in Clinical Cytology. New York: S. Karger; 1974: 1–15, 20–26.
47. Soderstrom N. Fine Needle Aspiration Biopsy. Stockholm: Almqvist & Wiksell; 1966: 13–18.
48. Dahlgren SE, Nordenstrom B. Transthoracic Needle Biopsy. Stockholm: Almqvist & Wiksell; 1966.
49. Frable WJ. The history of fine needle aspiration biopsy: The American experience. In: Schmidt W, ed. Cytopathology Annual 1994. Chicago: ASCP Press; 1994: 91–100.
50. Frable WJ. Thin-needle aspiration biopsy. Vol. 14. In: Bennington JL, ed. Major Problems in Pathology. Philadelphia: WB Saunders; 1983: 184, 231, 232.
51. Stewart FW. The diagnosis of tumors by aspiration biopsy. Am J Pathol 1933; 9: 801–812.
52. Abele JS, Miller TR. Implementation of an outpatient needle aspiration biopsy service and clinic: a personal perspective. In: Schmidt W, ed. Cytopathology Annual 1993. Chicago: ASCP Press; 1993: 43–71.
53. Frable WJ. Fine needle aspiration biopsy. In: Banks P, Kraybill WB, eds. Pathology for the Surgeon. Philadelphia: WB Saunders; 1996: 33–45.
54. Orell SR. The two faces of fine-needle biopsy: its role in the teaching hospital and in the community. Diagn Cytopathol 1992; 8: 557–558.
55. Dabbs DJ. Immunocytology. In: Dabbs DJ, ed. Diagnostic Immunohistochemistry. Philadelphia: Churchill Livingston; 2002: 625–639.
56. Akhtar M, Iqbal MA, Mourad W, et al. Fine-needle aspiration biopsy diagnosis of small round cell tumors of childhood: a comprehensive approach. Diagn Cytopathol 1999; 81–91.
57. Johnson DE, Powers CN, Rupp GN, et al. Immunocytochemical staining of fine-needle aspiration biopsies of the liver as a diagnostic tool for hepatocellular carcinoma. Mod Pathol 1991; 5: 117–123.
58. Young NA, Al-Saleem T. Diagnosis of lymphoma by fine-needle aspiration cytology using the revised European–American classification of lymphoid neoplasms. Cancer 1999; 87: 325–345.
59. Katz RI, Hirsch-Ginsberg C, Childs C, et al. The role of gene rearrangements for antigen receptors in the diagnosis of lymphoma obtained by fine needle aspiration: a study of 63 cases with concomitant immunophenotyping. Am J Clin Pathol 1991; 96: 479–490.
60. Saboorian MH, Ashfaq R. The use of fine needle aspiration biopsy in the evaluation of lymphadenopathy. Semin Diagn Pathol 2001; 18: 110–123.
61. Dabbs DJ, Silverman JF. Selective use of electron microscopy in fine needle aspiration cytology. Acta Cytol 1988; 32: 880–884.
62. Boon ME, Schut JJ, Suurmeijer AJH, et al. Confocal microscopy of false-negative breast aspirates. Diagn Cytopathol 1995; 12: 42–50.
63. Masood S, Bui MM. Prognostic and predictive value of HER2/neu oncogene in breast cancer. Microsc Res Tech 2002; 59: 102–108.
64. Kube MJ, McDonald DA, Quin JW, et al. Use of archival and fresh cytologic material for the polymerase chain reaction. Analyt Quant Cytol Histol 1994; 16: 174–182.
65. Udayakumar AM, Sundareshan TS, Goud TM, et al. Cytogenetic characterization of Ewing tumors using fine needle aspiration samples. A 10-year experience and review of the literature. Cancer Genet Cytogenet 2001; 127: 42–48.
66. Cajulis RS, Frias-Hidvegi D. Detection of numerical chromosomal abnormalities in malignant cells in fine needle aspirates by fluorescent in situ hybridization of interphase cell nuclei with chromosome-specific probes. Acta Cytol 1993; 37: 391–396.
67. Jhala NC, Jhala D, Eltoum I, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy: a powerful tool to obtain samples from small lesions. Cancer Cytopathol 2004; 102: 239–246.
68. Schwartz MR. Endoscopic ultrasound-guided fine-needle aspiration: time, diagnostic challenges, and clinical impact. Cancer Cytopathol 2004; 102: 203–206.
69. Zajdela A, Zillhardt P, Voillemot N. Cytological diagnosis by fine needle sampling without aspiration. Cancer 1987; 59: 1201–1205.
70. Kinney TB, Lee MJ, Filomena CA, et al. Fine-needle biopsy: prospective comparison of aspiration versus non-aspiration techniques in the abdomen. Radiology 1993; 186: 549–552.
71. Ljung B. Thin Needle Aspiration Biopsy: An Instructional Video. San Francisco: Department of Cytopathology, University of California, San Francisco; 1992.
72. Grohs HK. Fine Needle Aspiration and Smear Making Techniques: An Instructional Video. Manchester: International Institute for Applied CytoScience; 1992.
73. Yang GCH, Alvarez II. Ultra-fast Papanicolaou stain: an alternative preparation for fine-needle aspiration cytology. Acta Cytol 1995; 39: 55–60.
74. Shield PW, Perkins G, Wright RG. Immunocytochemical staining of cytologic specimens. How helpful is it? Am J Clin Pathol 1996; 105: 157–162.
75. Silverman JF, Khazanic PG, Norris HT, et al. Parathyroid hormone (PTH) assay of parathyroid cysts examined by fine needle aspiration biopsy. Am J Clin Pathol 1986; 86: 776–780.
76. Davidson HG, Campora RG. Thyroid. In: Bibbo M, ed. Comprehensive Cytopathology. Philadelphia: WB Saunders; 1991: 660–662.
77. Hadju SI. The value and limitations of aspiration cytology in the diagnosis of primary tumors. Acta Cytol 1989; 33: 741–790.
78. Orell SR, Sterrett GF, Walters Max N-I, et al. Manual and Atlas of fine Needle Aspiration Cytology. 2nd edn. New York: Churchill Livingstone; 1992: 8–32.
79. Powers CN. Fine needle aspiration biopsy: perspectives on complications. The reality behind the myths. In: Schmidt W, ed. Cytopathology Annual 1996. Chicago: ASCP Press; 1996: 71–98.
80. Lee KC, Chan JKC, Ho LC. Histologic changes in the breast after fine-needle aspiration. Am J Surg Pathol 1994; 18: 1039–1047.
81. LiVolsi VA, Merino MJ. Worrisome histologic alterations following fine needle aspiration of thyroid. WHAFFT. Pathol Ann 1994; 29(pt2): 99–120.
82. Powers CN, Frable WJ. Fine Needle Aspiration Biopsy of the Head and Neck. Boston: Butterworth-Heinemann; 1996.
83. Dusenbery D, Frable WJ. Fine needle aspiration cytology of phyllodes tumor. Potential diagnostic pitfalls. Acta Cytol 1992; 36: 215–221.
84. Frable WJ. Fine needle aspiration biopsy. In: Silverberg SG, DeLellis RA, Frable WJ, eds. Principles and Practice of Surgical Pathology and Cytopathology, 3rd edn. New York: Churchill Livingstone; 1997: 137–154.
85. Gurley AM, Cluroe AD, Roberts EC. Electron microscopy. In: Silverberg SG, DeLellis RA, Frable WJ, eds. Principles and Practice of Surgical Pathology and Cytopathology, 3rd edn. New York: Churchill Livingstone; 1997: 127–135.
86. Dardick I, Herrera GA. Diagnostic electron microscopy of neoplasms. Hum Pathol 1998; 29: 1335–1338.
87. Llombart-Bosch A. Introduction (electron microscopy of tumors). Seminars Diagn Pathol 2003; 20: 21–24.
88. Hyatt MA. Principles and Techniques of Electron Microscopy. 3rd edn. New York: MacMillan Press; 1989.
89. Willis EJ, Carr S, Philips J. Electron microscopy in the diagnosis of precutaneous fine needle aspiration specimens. Ultrastruct Pathol 1987; 11: 361–387.
90. Dardick I, Yazdi HM, Brosko C, et al. A quantitative comparison of light and electron microscopic diagnoses in specimens obtained by fine needle aspiration biopsy. Ultrastruct Pathol 1991; 15: 105–129.
91. Dabbs DJ, Silverman JF. Selective use of electron microscopy in fine needle aspiration cytology. Acta Cytol 1998; 32: 880–884.
92. Akhtar M, Bakry M, Nash EJ. An improved technique for processing aspiration biopsy for electron microscopy. Am J Clin Pathol 1986; 85: 57–60.
93. Howell DN, Payne CM, Miller SE, et al. Special techniques in diagnostic electron microscopy. Hum Pathol 1998; 29: 1339–1346.
94. Herrea GA. Ultrastructural immunolabeling: a general overview of techniques and application. Ultrastruct Pathol 1992; 16: 37–45.
95. Trembleau A, Bloom FE. Enhanced sensitivity for light and electron microscopic in situ hybridization with multiple simultaneous non-radioactive oligodeoxynucleotide protein. J Histochem Cytochem 1995; 43: 829–841.
96. Coons AH, Creech HJ, Jones RN. Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Bull Med 1941; 47: 200–202.
97. Nakane PK, Pierce GBJ. Enzyme labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol 1967; 33: 307–318.
98. Mason TE, Phifer RF, Spicer SS, et al. An immunoglobulin-enzyme bridge method for localizing tissue antigens. J Histochem Cytochem 1969; 17: 563–569.
99. Sternberger LA, Hardy PH, Cuculis JJ, et al. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase–anti-horseradish peroxidase) and its use in identification of spirochetoses. J Histochem Cytochem 1970; 18: 315–333.
100. Guesdon JL, Ternynck T, Avrameas S. The use of avidin biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 1979; 27: 1131–1139.
101. Hsu S-M, Raine L, Fanger H. Use of avidin biotin peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981; 29: 577.
102. Taylor CR, Shi S-R, Barr NJ, et al. Techniques of immunohistochemistry: principles, pitfalls and standardization. In: DJ Dabbs, ed. Diagnostic Immunohistochemistry. New York: Churchill Livingstone; 2002: 3–44.
103. Vanderloos CM, Naruko T, Becker AE. The use of enhanced polymer one step staining reagents for immunoenzyme double labeling. Histochem J 1996; 28: 709–714.
104. Sabattini E, Bisgaard K, Ascani S, et al. The EnVision++ System: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, Chem Mate, CSA, LABC and SABC techniques. J Clin Pathol 1998; 51: 506–511.
105. Shi S-R, Guo J, Cote RJ, et al. Sensitivity and detection efficiency of a novel two step detection system (Power Vision) for immunohistochemistry. Appl Immunohistochem Mol Morphol 1999; 7: 201.
106. Kammerer U, Kapp M., Gassel AM, et al. A new rapid immunohistochemical staining technique using the EnVision antibody complex. J Histochem Cytochem 2001; 49: 623–630.
107. Vyberg M, Nielsen S. Dextran polymer conjugate two step visualization system for immunohistochemistry. Appl Immunohistochem 1998; 6: 3.
108. Hsu SM, Raine L. Protein A, avidin and biotin in immunohistochemistry. J Histochem Cytochem 1981; 29: 1349–1353.
109. DeLellis RA, May L, Tashjian AJ Jr, et al. C-cell granule heterogenicity in man. An ultrastructural immunocytochemical study. Lab Invest 1978; 38: 263–269.
110. Bobrow MN, Shaughnessy KJ, Litt GJ. Catalyzed reporter desposition: a novel method of signal amplification. II. Application to membrane immunoassay. J Immunol Methods 1991; 137: 103–112.
111. Toda V, Kono K, Abiru H, et al. Application of tyramide signal amplification system to immunohistochemistry: a potent method to localize antigens that are not detectable by ordinary method. Pathol Int 1999; 49: 479–483.
112. Von Wasielewski R, Mengel M, Gignac S, et al. Tyramine amplification technique in routine immunohistochemistry. J Histochem Cytochem 1997; 45: 1455–1459.
113. Cordell JL, Falini B, Erber WN, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 1984; 32: 219–229.
114. Gown AM, Garcia R, Ferguson M, et al. Avidin–biotin immunoglucose oxidase: use in single and double labeling procedures. J Histochem Cytochem 1986; 34: 403–409.
115. Nadji M, Morales A. Immunohistochemical techniques. In: Silverberg SG, DeLellis RA, Frable WJ, eds. Principles and Practice of Surgical Pathology and Cytopathology. 3rd edn. New York: Churchill Livingstone; 1997: 63–75.
116. Mukai K, Yoshimura S, Anzai M. Effects of decalcification on immunoperoxidase staining. Am J Surg Pathol 1986; 10: 413–419.
117. Battifora H, Kopinski M. The influence of protein digestion and duration of fixation on the immunostaining of keratins. A comparison of formalin and ethanol fixatives. J Histochem Cytochem 1986; 34: 1095–1100.
118. Shi S-R, Key M, Kalra KL, et al. Antigen retrieval in formalin fixed paraffin embedded tissue: an enhancement method for immunohistochemical staining based on microwave heating of tissue sections. J Histochem Cytochem 1991; 39: 741–748.
119. Morgan JM, Navabi H, Jasani B. Role of calcium chelation in high temperature antigen retrieval at different pH values. J Pathol 1997; 182: 233–237.
120. Shi S-R, Cote RJ, Taylor CR. Antigen retrieval immunohistochemistry: past, present, future. J Histochem Cytochem 1997; 45: 327–344.
121. Miller RT, Swanson PE, Wick MR. Fixation and epitope retrieval in diagnostic immunohistochemistry: a concise review with practical considerations. Appl Immunohistochem Mol Morph 2000; 8: 228–235.
122. Bussolati G, Gugliotta P, Volante M, et al. Retrieved endogenous biotin: a novel marker and a potential pitfall in diagnostic immunohistochemistry. Histopathology 1997; 31: 400–407.
123. Boenisch T. Handbook of Immunohistochemical Staining Methods. 3rd edn. Dako Corporation: 2001.
124. Abendroth CS, Dabbs DJ. Immunocytochemical staining of unstained versus previously stained cytologic preparations. Acta Cytol 1995; 39: 379–386.
125. Skoog L, Tani E, Svedmyr E, et al. Growth fraction in non-Hodgkin’s lymphomas and reactive lymphadenitis determined by Ki-67 monoclonal antibody in fine needle aspirates. Diagn Cytopathol 1995; 12: 234–239.
126. Young, NA, Al-Saleem T. Diagnosis of lymphoma by fine-needle aspiration cytology using the revised European–American classification of lymphoid neoplasms. Cancer 1999; 87: 325–345.
127. Taylor CR. FDA issues final rule for classification and reclassification of immunohistochemistry reagents and kits. Am J Clin Pathol 1999; 111: 445–448.
128. Swanson PE. Labels, disclaimers and rules (oh, my!). Analyte specific reagent and practice of immunohistochemistry. Am J Clin Pathol 1999; 111: 445–448.
129. Bloom K, Harrington D. Enhanced accuracy and reliability of her-2/neu immunohistochemical scoring using digital microscopy. Am J Clin Pathol 2004; 121: 620–630.
130. Pierga J-Y, Bonneton C, Vincent-Salomon A, et al. Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 2004; 10: 1392–1400.
131. Simon R, Mirlacher M, Sauter G. Tissue microarrays. Bio Techniques 2004; 36: 98–105.
132. Frierson HJ Jr, Linder J. Flow and image cytometry. In: Silverberg SG, DeLellis RA, Frable WJ, eds. Principles and Practice of Surgical Pathology and Cytopathology. 3rd edn. New York: Churchill Livingstone; 1997: 95–111.
133. Frierson HF Jr. Ploidy analysis and S-phase fraction determination by flow cytometry of invasive adenocarcinoma of the breast. Am J Surg Pathol 1991; 15: 358–367.
134. Hedley DW, Shankey TV, Wheeless LL. DNA cytometry consensus conference. Cytometry 1993; 14: 471.
135. Shankey TV, Rabinovitch PS, Bagwell B, et al. Guidelines for implementation of clinical DNA cytometry. Cytometry 1993; 14: 472–477.
136. Hedley DW, Clark GM, Cornelisse CJ, et al. Consensus review of the clinical utility of DNA cytometry in carcinoma of the breast. Cytometry 1993; 14: 482–485.
137. Shankey TV, Kallioniemi O-P, Koslowski JM, et al. Consensus review of the clinical utility of DNA content cytometry in prostate cancer. Cytometry 1993; 14: 457–500.
138. Wheeless LL, Badalament RA, deVere White RW, et al. Consensus review of the clinical utility of DNA cytometry in bladder cancer. Cytometry 1993; 14: 478–481.
139. Bauer KD, Bagwell CB, Giaretti W, et al. Consensus review of the clinical utility of DNA flow cytometry in colorectal cancer. Cytometry 1993; 14: 486–491.
140. Duque RE, Andreeff M, Braylan RC, et al. Consensus review of the clinical utility of DNA flow cytometry in neoplastic hematopathology. Cytometry 1993; 14: 492–496.
141. Vindelov LL, Christensen IJ, Keiding N, et al. Long-term storage of samples for flow cytometric DNA analysis. Cytometry 1983; 3: 317–322.
142. Alanen KA, Klemi PJ, Joensuu H, et al. Comparison of fresh, ethanol-preserved, and paraffin-embedded samples in DNA flow cytometry. Cytometry 1989; 10: 81–85.
143. Alanen KA, Klemi PJ, Taimela S, et al. A simple preservative for flow cytometric DNA analysis. Cytometry 1989; 10: 86–89.
144. Frierson HF Jr. Ploidy and proliferative fraction analysis of cytologic specimens. In: Keren DF, Hanson CA, Hurtubise P, eds. Flow Cytometry and Clinical Diagnosis. Chicago: ASCP Press; 1994: 596–613.
145. Alanen KA, Joensuu H, Klemi PJ. Autolysis is a potential source of false aneuploid peaks in flow cytometric DNA histograms. Cytometry 1989; 10: 417–425.
146. Torres FX, Mackowiak PG, Brown RD, et al. Comparison of two methods of mechanical disaggregation of scirrhous breast adenocarcinomas for DNA flow cytometric analysis of whole cells. Am J Clin Pathol 1995; 103: 8–13.
147. Frankfurt OS, Slocum HK, Rustum YM, et al. Flow cytometric analysis of DNA aneuploidy in primary and metastatic human solid tumors. Cytometry 1984; 5: 71–80.
148. Eliasen CA, Opitz LM, Vamvakas EC, et al. Flow cytometric analysis of DNA ploidy and S-phase fraction in breast cancer using cells obtained by ex vivo fine-needle aspiration: an optimal method for sample collection. Mod Pathol 1991; 4: 196–200.
149. Bach BA, Knape WA, Edinger MG, et al. Improved sensitivity and resolution in the flow cytometric DNA analysis of human solid tumor specimens. Use of in vitro fine-needle aspiration, and uniform staining reagents. Am J Clin Pathol 1991; 96: 615–627.
150. Cornacchiari A, Grigolato PG, Facchetti F, et al. Usefulness of the scraping method for DNA flow cytometry in breast tumors. Cytometry 1995; 19: 263–266.
151. Lee TK, Wiley AL Jr, Esinhart JD, et al. Variations associated with disaggregation methods in DNA flow cytometry. Anal Quant Cytol Histol 1993; 15: 195–200.
152. Crissman JD, Zarbo RJ, Niebylski CD, et al. Flow cytometric DNA analysis of colon adenocarcinomas. A comparative study of preparatory techniques. Mod Pathol 1988; 1: 198–204.
153. Kallioniemi O-P. Comparison of fresh and paraffin-embedded tissue as starting material for DNA flow cytometry and evaluation of intratumor heterogeneity. Cytometry 1988; 9: 164–169.
154. Beerman H, Smit VTHBM, Kluin PM, et al. Flow cytometric analysis of DNA stemline heterogeneity in primary and metastatic breast cancer. Cytometry 1991; 12: 147–154.
155. Kute T. Response to Beerman et al.: flow cytometric analysis of DNA stemline heterogeneity in primary and metastatic breast cancer (letter). Cytometry 1991; 12: 155.
156. Beerman H, Cornelisse CT. Response to Dr. Kute’s letter to the editor (letter). Cytometry 1991; 12: 156.
157. Wersto RP, Liblit RL, Deitch D, et al. Variability in DNA measurements in multiple tumor samples of human colonic carcinoma. Cancer 1991; 67: 106–115.
158. Ferno M, Baldetorp B, Ewers S-B, et al. One or multiple samplings for flow cytometric DNA analyses in breast cancer – prognostic implications? Cytometry 1992; 13: 241–249.
159. Hedley DW, Friedlander ML, Taylor IW, et al. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 1983; 31: 1333–1335.
160. Schutte B, Reynders MMJ, Bosman FT, et al. Flow cytometric determination of DNA ploidy level in nuclei isolated from paraffin-embedded tissue. Cytometry 1985; 6: 26–30.
161. Frierson HF Jr. Flow cytometric analysis of ploidy in solid neoplasms: comparison of fresh tissues with formalin-fixed paraffin-embedded specimens. Hum Pathol 1988; 19: 290–294.
162. Hedley DW. Flow cytometry using paraffin-embedded tissue: five years on. Cytometry 1989; 229–241.
163. Esteban JM, Sheibani K, Owens M, et al. Effects of various fixatives and fixation conditions on DNA ploidy analysis. A need for strict internal DNA standards. Am J Clin Pathol 1991; 460–466.
164. Schmid I, Uittenbogaart CH, Giorgi JV. A gentle fixation and permeabilization method for combined cell surface and intracellular staining with improved precision in DNA quantification. Cytometry 1991; 12: 279–285.
165. Stephenson RA, Gay H, Fair WR, et al. Effect of section thickness on quality of flow cytometric DNA content determinations in paraffin-embedded tissues. Cytometry 1986; 7: 41–44.
166. Sickle-Santanello BJ, Farrar MB, DeCenzo JF, et al. Technical and statistical improvements for flow cytometric DNA analysis of paraffin-embedded tissue. Cytometry 1988; 9: 594–599.
167. Amberson JB, Wersto RP, Agarwal V, et al. Preparation of paraffin-embedded tissue for flow and image cytometric analysis: an improved and more efficient procedure (abstract). Cytometry 1988; Suppl. 2: 34.
168. Babiak J, Poppema S. Automated procedure for dewaxing and rehydration of paraffin-embedded tissue sections for DNA flow cytometric analysis of breast tumors. Am J Clin Pathol 1991; 96: 64–69.
169. Heiden T, Wang N, Tribukait B. An improved Hedley method for preparation of paraffin-embedded tissues for flow cytometric analysis of ploidy and S-phase. Cytometry 1991; 12: 614–621.
170. Wang N, Pan Y, Heiden T, et al. Improved method for release of cell nuclei from paraffin-embedded cell material of squamous cell carcinomas. Cytometry 1993; 14: 931–935.
171. Pollack A, Ciancio G, Terry NHA, et al. Recognition and reduction of artifacts from autolysis in paraffin-embedded tissue using DNA/nuclear protein flow cytometry. Cytometry 1993; 14: 565–568.
172. Ciancio G, Pollack A, Block NL. Flow cytometric analysis of DNA and nuclear protein in paraffin-embedded tissue. Cytometry 1993; 14: 205–209.
173. Zalupski MM, Maciorowski Z, Ryan JR. DNA content parameters of paraffin-embedded soft tissue sarcomas: optimization of retrieval technique and comparison to fresh tissue. Cytometry 1993; 14: 327–333.
174. Albro S, Bauer KD, Hitchcock CL, et al. Improved DNA content histograms from formalin-fixed, paraffin-embedded liver tissue by proteinase K digestion. Cytometry 1993; 14: 673–678.
175. Chassevent A, Daver A, Bertrand G, et al. Comparative flow DNA analysis of different cell suspensions in breast carcinoma. Cytometry 1984; 5: 263–267.
176. Ensley JF, Maciorowski, Z, Hassan M, et al. Variations in DNA aneuploid cell content during tumor dissociation in human colon and head and neck cancers analyzed by flow cytometry. Cytometry 1993; 14: 550–558.
177. Zalupski MM, Ryan JR, Ensley JF, et al. Development and optimization of tissue preparative methodology for DNA content analysis of soft tissue neoplasms. Cytometry 1993; 14: 922–930.
178. Konig JJ, van Dongen JW, Schroder FH. Preferential loss of abnormal prostate carcinoma cells by collagenase treatment. Cytometry 1993; 14: 805–810.
179. Vindelov LL, Christensen IJ, Jensen G, et al. Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Results obtained by a set of methods for sample-storage, staining and internal standardization. Cytology 1983; 3: 332–339.
180. Vindelov LL, Christensen IJ. A review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis. Cytometry 1990; 11: 753–770.
181. Slaper-Cortenbach ICM, Admiraal LG, Kerr JM, et al. Flow cytometric detection of terminal deoxynucleotidyl transferase and other intracellular antigens in combination with membrane antigens in acute lymphatic leukemias. Blood 1988; 72: 1639–1644.
182. Lakhanpal S, Gonchoroff NJ, Kazmann JA, et al. A flow cytofluorometric double staining technique for simultaneous determination of human mononuclear cell surface phenotype and cell cycle phase. J Immunol Methods 1987; 96: 35–40.
183. Schroff RW, Bucana CD, Klein RA, et al. Detection of intracytoplasmic antigens by flow cytometry. J Immunol Methods 1984; 70: 167–177.
184. Jacob MC, Favre M, Bensa J-C. Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry 1991; 12: 550–558.
185. Zarbo RJ, Visscher DW, Crissman JD. Two-color multiparametric method for flow cytometric DNA analysis of carcinomas using staining for cytokeratin and leukocyte-common antigen. Anal Quant Cytol Histol 1989; 11: 391–402.
186. Zarbo RJ. Quality control issues and technical considerations in flow cytometric DNA and cell cycle analysis of solid tumors. In: Keren DF, Hanson CA, Hurtubise P, eds. Flow Cytometry and Clinical Diagnosis. Chicago: ASCP Press; 1994: 425–469.
187. Brown RD, Zarbo RJ, Linden MD, et al. Two-color multiparametric method for flow cytometric DNA analysis. Standardization of spectral compensation. Am J Clin Pathol 1994; 101: 630–637.
188. Van der Linden JC, Herman CJ, Boenders JGC, et al. Flow cytometric DNA content of fresh tumor specimens using keratin-antibody as second stain for two-parameter analysis. Cytometry 1992; 13: 163–168.
189. Zarbo RJ, Brown RD, Linden MD, et al. Rapid (one-shot) staining method for two-color multiparametric DNA flow cytometric analysis of carcinomas using staining for cytokeratin and leukocyte common antigen. Am J Clin Pathol 1994; 101: 638–642.
190. Ramaekers FCS, Beck HLM, Fritz WFJ, et al. Application of antibodies to intermediate filament proteins as tissue-specific probes in the flow cytometric analysis of complex tumors. Anal Quant Cytol Histol 1986; 8: 271–280.
191. Myc A, Traganos F, Lara J, et al. DNA stainability in aneuploid breast tumors: comparison of four DNA fluorochromes differing in binding properties. Cytometry 1992; 13: 389–394.
192. Darzynkiewicz Z, Traganos F, Sharpless T, et al. Conformation of RNA in-situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res 1975; 95: 143–153.
193. Heidemann W, Schumann J, Andreeff M, et al. Convention on nomenclature for DNA cytometry. Cytometry 1984; 5: 445–446.
194. Iverson OE, Laerum OD. Trout and salmon erythrocytes and human leukocytes as internal standards for ploidy control in flow cytometry. Cytometry 1987; 8: 190–196.
195. Price J, Herman CJ. Reproducibility of FCM DNA content from replicate paraffin block samples. Cytometry 1990; 11: 845–847.
196. Gonchoroff NJ, Ryan JJ, Kimlinger TK, et al. Effect of sonication on paraffin-embedded tissue preparation for DNA flow cytometry. Cytometry 1990; 11: 642–646.
197. Benson NA, Braylan RC. Evaluation of sensitivity in DNA aneuploidy detection using a mathematical model. Cytometry 1994; 15: 53–58.
198. Joensuu H, Alanen KA, Klemi PJ, et al. Evidence for false aneuploid peaks in flow cytometric analysis of paraffin-embedded tissue. Cytometry 1990; 11: 431–437.
199. Joensuu H, Alanen K, Falkmer UG, et al. Effect of DNA ploidy classification on prognosis in breast cancer. Int J Cancer 1992; 52: 701–706.
200. Joensuu H, Kallioniemi O-P. Different opinions on classification of DNA histograms produced from paraffin-embedded tissue. Cytometry 1989; 10: 711–717.
201. Haag D, Feichter G, Goerttler K, et al. Influence of systematic errors on the evaluation of the S phase portions from DNA distributions of solid tumors as shown for 328 breast carcinomas. Cytometry 1987; 8: 377–385.
202. Meyer JS, Coplin MD. Thymidine labeling index, flow cytometric S-phase measurement, and DNA index in human tumors. Am J Clin Pathol 1988; 89: 586–595.
203. Weaver DL, Bagwell CB, Hitchcox SA, et al. Improved flow cytometric determination of proliferative activity (S-phase fraction) from paraffin-embedded tissue. Am J Clin Pathol 1990; 94: 576–584.
204. Kallioniemi O-P, Visakorpi T, Holli K, et al. Improved prognostic impact of S-phase values from paraffin-embedded breast and prostate carcinomas after correcting for nuclear slicing. Cytometry 1991; 12: 413–421.
205. Wersto RP, Stetler-Stevenson M. Debris compensation of DNA histograms and its effect on S-phase analysis. Cytometry 1995; 20: 43–52.
206. Silvestrini R. Quality control for evaluation of the S-phase fraction by flow cytometry: a multicentric study. The SICCAB Group for Quality Control of Cell Kinetic Determinations. Cytometry 1994; 18: 11–16.
207. Rabinovitch PS. Practical considerations for DNA content and cell cycle analysis. In: Bauer KD, Duque RE, Shankey TV, eds. Clinical Flow Cytometry: Principles and Applications. Baltimore: Williams & Wilkins; 1993: 117–142.
208. Bagwell CB. Theoretical aspects of flow cytometry data analysis. In: Bauer KD, Duque RE, Shankey TV, eds. Clinical Flow Cytometry: Principles and Applications. Baltimore: Williams & Wilkins; 1993: 41–61.
209. Kallioniemi O-P, Visakorpi T, Holli K, et al. Automated peak detection and cell cycle analysis of flow cytometric DNA histograms. Cytometry 1994; 16: 250–255.
210. Zarbo RJ, Nakhleh RE, Brown R, et al. Prognostic significance of flow cytometry (FCM) synthetic phase fraction (SPF) in 168 cytokeratin (CK) stained colorectal carcinomas (abstract). Mod Pathol 1995; 8: 71A.
211. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 2002; 48: 1819–1827.
212. Krutzik PO, Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 2003; 55: 61–70.
213. Nap M, Brockhoff G, Brandt B, et al. Flow cytometric DNA and phenotype analysis in pathology. A meeting report of a symposium at the annual conference of the German Society of Pathology, Kiel, Germany, 6–9 June 2000. Virchows Arch 2001; 438(5): 425–432.
214. Perez OD, Nolan GP. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 2002; 20(2): 155–162.
215. Koss LG, Czerniak B, Herz F, Wersto RP. Flow cytometric measurements of DNA and other cell components in human tumors: a critical appraisal. Hum Pathol 1989; 20: 528–548.
216. Wheeless LL, Coon JS, Cox C, et al. Measurement variability in DNA flow cytometry of replicate samples. Cytometry 1989; 10: 731–738.
217. Coon JS, Deitch AD, de Vere White RW, et al. Interinstitutional variability in DNA flow cytometric analysis of tumors. The National Cancer Institute’s Flow Cytometry Network experience. Cancer 1988; 61: 126–130.
218. Coon JS, Deitch AD, de Vere White RW, et al. Check samples for laboratory self-assessment in DNA flow cytometry. The National Cancer Institute’s Flow Cytometry Network experience. Cancer 1989; 63: 1592–1599.
219. Wheeless LL, Coon JS, Cox C, et al. Precision of DNA flow cytometry in interinstitutional analyses. Cytometry 1991; 12: 405–412.
220. Kallioniemi O-P, Joensuu H, Klemi P, et al. Inter-laboratory comparison of DNA flow cytometric results from paraffin-embedded breast carcinomas. Breast Cancer Res Treat 1990; 17: 59–61.
221. Danesi DT, Spano M, Altavista P. Quality control study of the Italian Group of Cytometry on flow cytometry cellular DNA content measurements. Cytometry 1993; 14: 576–583.
222. Homburger HA, McCarthy R, Deodhar S. Assessment of interlaboratory variability in analytical cytology. Results of College of American Pathologists flow cytometry study. Arch Pathol Lab Med 1989; 113: 667–672.
223. Coon JS, Paxton H, Lucy L, et al. Interlaboratory variation in DNA flow cytometry. Results of the College of American Pathologists’ survey. Arch Pathol Lab Med 1994; 118: 681–685.
224. Frierson HF Jr. The need for improvement in flow cytometric analysis of ploidy and S-phase fraction 9 (editorial). Am J Clin Pathol 1995; 95: 439–441.
225. Brotherick I, Lennard TWJ, Cook S, et al. Use of the biotinylated antibody DAKO-ER ID5 to measure oestrogen receptor and cytokeratin positive cells obtained from primary breast cancer cells. Cytometry 1995; 20: 74–80.
226. Martin-Reay DG, Kamentsky LA, Weinberg DS, et al. Evaluation of a new slide-based laser scanning cytometer for DNA analysis of tumors. Comparison with flow cytometry and image analysis. Am J Clin Pathol 1994; 102: 432–438.
227. Weinberg DW. Relative applicability of image analysis and flow cytometry in clinical medicine. In: Bauer KD, Duque RE, Sharkey TV, eds. Flow Cytometry: Principles and Applications. Baltimore: Williams & Wilkins; 1993: 359–371.
228. Gill J. Image analysis in pathology: what are the issues? Hum Pathol 1989; 20: 203–204.
229. Inoue S. Video Microscopy. New York: Plenum; 1986.
230. Wells WA, Rainer RO, Memoli VA. Basic principles of image processing. Am J Clin Pathol 1992; 98: 493–501.
231. Bauer TW, Tubbs RR, Edinger MG, et al. A prospective comparison of DNA quantitation by image and flow cytometry. Am J Clin Pathol 1990; 93: 322–326.
232. Chabanas A, Rambeaud JJ, Seigneurin D, et al. Flow and image cytometry for DNA analysis in bladder washings: improved concordance by using internal reference for flow. Cytometry 1993; 14: 943–950.
233. Claud RD, Weinstein RS, Howeedy A, et al. Comparison of image analysis of imprints with flow cytometry for DNA analysis of solid tumors. Mod Pathol 1989; 2: 463–467.
234. Colombel MC, Pous MF, Abbou CC, et al. Computer assisted image analysis of bladder tumour nuclei for morphonuclear and ploidy assessment. Anal Cell Pathol 1994; 6: 137–147.
235. Wilbur DC, Zakowski MF, Kosciol CM, et al. DNA ploidy in breast lesions: a comparative study using two commercial image analysis systems and flow cytometry. Anal Quant Cytol Histol 1990; 12: 28–34.
236. Wojcik EM, Katz RL, Johnston DA, et al. Comparative analysis of DNA ploidy and proliferative index in fine needle aspirates of non-Hodgkin’s lymphomas by image analysis and flow cytometry. Anal Quant Cytol Histol 1993; 15: 151–157.
237. Danque PO, Chen HB, Patil J, et al. Image analysis versus flow cytometry for DNA ploidy quantitation of solid tumors: a comparison of six methods of sample preparation. Mod Pathol 1993; 6: 270–275.
238. Dawson AE, Norton JA, Weinberg DS. Comparative assessment of proliferation and DNA content in breast carcinoma by image analysis and flow cytometry. Am J Pathol 1990; 136: 1115–1124.
239. Taylor SR, Zachariah S, Chakraborty S, et al. Ploidy studies by image analysis on fine needle aspirates of the breast. Acta Cytol 1993; 37: 923–928.
240. Pindur A, Chakraborty S, Wheeler TM. DNA ploidy measurements in prostate cancer: differences between image analysis and flow cytometry and clinical implications. Prostate 1994; 25: 189–198.
241. Bauer KD, Merkel DE, Winter JN, et al. Prognostic implications of ploidy and proliferative activity in diffuse large cell lymphomas. Cancer Res 1986; 46: 3173–3178.
242. Michie BA, Black C, Reid RP, et al. Image analysis derived ploidy and proliferation indices in soft tissue sarcomas: comparison with clinical outcome. J Clin Pathol 1994; 47: 443–447.
243. Weinberg DS. Proliferation indices in solid tumors. Adv Pathol Lab Med 1992; 5: 163.
244. Bravo R. Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication. Exp Cell Res 1986; 163: 287–293.
245. Schwartz BR, Pinkus G, Bacus S, et al. Cell proliferation in non-Hodgkin’s lymphomas: digital image analysis of Ki-67 staining. Am J Pathol 1989; 134: 327–336.
246. Pesce CM. Defining and interpreting diseases through morphometry. Lab Invest 1987; 56: 568–575.
247. Allred DC, Bustamante M, Daniel CO, et al. Immunocytochemical analysis of estrogen receptors in human breast carcinomas: evaluation of 130 cases and a review of the literature regarding concordance with the biochemical assay and clinical relevance. Arch Surg 1990; 125: 107–113.
248. Auger M, Katz RL, Johnston DA, et al. Quantitation of immunocytochemical estrogen and progesterone receptor content in the fine needle aspirates of breast carcinoma using the SAMBA 4000 image analysis system. Anal Quant Cytol Histol 1993; 15: 274–280.
249. Bacus S, Flowers JL, Press MF, et al. The evaluation of estrogen receptor in primary breast carcinoma by computer-assisted image analysis. Am J Clin Pathol 1988; 90: 233–239.
250. Bacus SS, Chin D, Stern RK, et al. HER-2/neu oncogene expression, DNA ploidy and proliferation index in breast cancers. Anal Quant Cytol Histol 1992; 14: 433–445.
251. Grogan T, Dalton W, Rybski J, et al. Optimization of immunocytochemical P-glycoprotein assessment in multidrug-resistant plasma cell myeloma using three antibodies. Lab Invest 1991; 63: 815–824.
252. Castleman KR, Chui LA, Martin TP, et al. Quantitative muscle biopsy analysis. Monogr Clin Cytol 1984; 9: 101.
253. Wied GL, Bartels PH, Bahr GF, et al. Taxonomic intracellular system (TICAS) for cell identification. Acta Cytol 1968; 12: 180–204.
254. Wied GL, Bartels PH, Bibbo M, et al. Image analysis in quantitative cytopathology and histopathology. Hum Pathol 1989; 20: 549–571.
255. Mitelman F. Recurrent chromosome aberrations in cancer. Mutation Rea 2000; 462: 247–253.
256. Chen Z, Sandberg AA. Molecular cytogenetic aspects of hematological malignancies. Clinical implications. Am J Med Genetics 2002; 115: 130–141.
257. Sandberg AA. Cytogenetics and molecular genetics of bone and soft tissue tumors. Am J Med Genetics (Semin Med Genet) 2002; 115: 189–193.
258. Gosden JR. Chromosome Analysis Protocols (Methods in Molecular Biology). Totawa: Humana Press; 1994.
259. Loda M, DeLellis RA. Molecular diagnostic techniques. In: Silverberg SG, DeLellis RA, Frable WJ, eds. Principles and Practice of Surgical Pathology and Cytopathology. 3rd edn. New York: Churchill Livingstone; 1997: 77–94.
260. Hanahan D, Weinberg R. The hallmarks of cancer. Cell 2000; 100: 57–70.
261. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA 1993; 90: 10914–10921.
262. Hill DA, O’Sullivan MJ, Zhu X, et al. Practical application of molecular genetic testing as an aid to the surgical pathologic diagnosis of sarcomas: a prospective study. Am J Surg Pathol 2002; 26: 965–977.
263. Tamborini E, Agus V, Perrone F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002; 82: 609–618.
264. Naito N, Kawai A, Ouchida M, et al. A reverse transcriptase-polymerase chain reaction assay in the diagnosis of soft tissue sarcomas. Cancer 2000; 89: 1992–1998.
265. Hiraga H, Nojima T, Abe S, et al. Diagnosis of synovial sarcoma with the reverse transcriptase-polymerase chain reaction: analyses of 84 soft tissue and bone tumors. Diagn Mol Pathol 1998; 7: 102–110.
266. Dubeau L, Chandler LA, Gralow JR, et al. Southern blot analysis of DNA extracted from formalin-fixed pathology specimens. Cancer Res 1986; 46: 2964–2969.
267. Wright CF, Reid AH. Hybridization and blotting techniques. In: O’Leary, ed. Advanced Methods in Pathology. Principles, Practice and Protocols. Philadelphia: Saunders; 2003: 3–91.
268. Southern E. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503–517.
269. Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111–1116.
270. Cossman J, Zehnbauer B, Garrett CT, et al. Gene rearrangements in the diagnosis of lymphoma/leukemia. Guidelines for use based on a multiinstitutional study. Am J Clin Path 1991; 95: 347–354.
271. Ladanyi M, Bridge JA. Contribution of molecular genetic data to the classification of sarcomas. Human Pathol 2000; 31: 532–538.
272. El-Naggar A. Methods in molecular surgical pathology. Sem Diag Pathol 2000; 219: 56–72.
273. Blomek B, Shields PG. Laboratory methods for the determination of genetic polymorphisms in humans. IARC Sci Publ 1999; 148: 133–147.
274. Erlich HA, Gelfand D, Sninsky JJ. Recent advances in the polymerase chain reaction. Science 1991; 252: 1643–1651.
275. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5ʹ exonuclease activity of thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991; 88: 7276–7280.
276. Liu H, Huang X, Zhang Y, et al. Archival fixed histologic and cytological specimens including stained and unstained materials are amenable to RT−PCR. Diagn Mol Pathol 2002; 11: 222–227.
277. Kohler S, Galili N, Sklar JL, Donlon TA, Blume KG, Cleary ML. Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia 1990; 4: 541–547.
278. Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 1988; 335(6189): 414–417.
279. Chong SS, Gore-Langton RE, Hughes MR. Single-cell DNA analysis for applicaton to preimplantation genetic diagnosis. In: Dracopoli NC, Haines JL, Korf BR, et al., eds. Current Protocols in Human Genetics. New York: John Wiley and Sons, 1996: 9.10.1–9.10.26.
280. Hahn S, Zhong XY, Holzgreve W. Single cell PCR in laser capture microscopy. Methods Enzymol 2002; 356: 295–301.
281. Persson A, Backvall H, Ponten F, et al. Single cell gene mutation analysis using laser-assisted microdissection of tissue sections. Methods Enzymol 2002; 356: 334–343.
282. Simone NL, Bonner RF, Gillespie JW, et al. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 1998; 14: 272–276.
283. Fend F, Quintanilla-Martinez L, Kumar S, et al. Composite low grade B-cell lymphomas with two immunophenotypically distinct cell populations are true biclonal lymphomas. A molecular analysis using laser capture microdissection. Am J Pathol 1999; 154: 1857–1866.
284. Thompson L, Chang B, Barsky SH. Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis. Am J Surg Pathol 1996; 20: 277–285.
285. Yaremko ML, Kelemen PR, Kutza C, et al. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells. Am J Pathol 1996; 148: 95–104.
286. Niederhauser C, Hofelein C, Wegmuller B, et al. Reliability of PCR decontamination systems. PCR Methods Appl 1994; 4: 117–123.
287. Rys PN, Persing DH. Preventing false positives: quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J Clin Microbiol 1993; 31: 2356–2360.
288. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature 1989; 339: 237–238.
289. Burkardt H. Standardization and quality control of PCR analyses. Clin Chem Lab Med 2000; 38: 87–91.
290. Ladanyi M, Bridge J. Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol 2000 May; 31: 532–538.
291. Sarkar G, Sommer SS. Shedding light on PCR contamination. Nature 1990; 343: 27.
292. Longo MC, Berninger MD, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 1990; 93: 125–128.
293. Yamamoto N, Kato Y, Yanagisawa A, Ohta H, Takahashi T, Kitagawa T. Predictive value of genetic diagnosis for cancer micrometastasis: histologic and experimental appraisal. Cancer 1997; 80: 1393–1398.
294. Sestini R, Orlando C, Zentilin L, et al. Gene amplification for c-erbB-2, c-myc, epidermal growth factor receptor, int-2 and N-myc measured by quantitative PCR with a multiple competitor template. Clin Chem 1995; 41: 826–832.
295. Cerutti P, Hussain P, Pourzand C, et al. Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res 1994; 54(7 Suppl): 1934s–1938s.
296. Griesser H. Applied molecular genetics in the diagnosis of malignant non-Hodgkin’s lymphoma. Diagn Mol Pathol 1993; 2: 177–191.
297. Hodinka RL. The clinical utility of viral quantitation using molecular methods. Clin Diagn Virol 1998; 10: 25–47.
298. Osaki M, Adachi H, Gomyo Y, et al. Detection of mycobacterial DNA in formalin-fixed, paraffin embedded tissue specimens by duplex polymerase chain reaction: application to histopathologic diagnosis. Mod Pathol 1997; 10: 78–83.
299. Edwards MC, Gibbs RA. Multiplex PCR: advantages, development and applications. PCR Methods Appl 1994; 3: S65–S75.
300. Wang A, Doyle M, Mark DF. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 1989; 86: 9717–9721.
301. Salomon RN. Introduction to reverse transcriptase polymerase chain reaction. Diag Mol Pathol 1995; 4: 2–3.
302. Ghossein RA, Rosai, J. Polymerase chain reaction in the detection of micrometastases and circulating tumor cells. Cancer 1996; 78: 10–16.
303. Loda M. Polymerase chain reaction-based methods for the detection of point mutations in oncogenes and tumor suppressor genes. Hum Pathol 1994; 25: 564–571.
304. Crotty PL, Staggs RA, Porter PT. Quantitative analysis in molecular diagnostics. Hum Pathol 1994; 25: 572–579.
305. Sandin RL, Greene JN. Diagnostic molecular pathology and infectious disease. Cancer Control 1995; 2: 255–257.
306. Jung R, Soondrum K, Neumaier M. Quantitative PCR. Clin Chem Lab Med 2000; 38: 833–836.
307. Loda M, Giangaspero F, Badiali M, et al. P53 gene expression in medulloblastoma by quantitative polymerase chain reaction. Diagn Mol Pathol 1992; 1: 36–41.
308. Gibson UE, Heid CA, Williams PM. A novel method for real-time quantitative RT-PCR. Genome Res 1996; 6: 995–1001.
309. Abravaya K, Huff J, Marshall R, et al. Molecular beacons as diagnostic tools: technology and applications. Clin Chem Lab Med 2003; 41: 468–474.
310. Nuovo GJ. Co-labeling using in-situ PCR: A review. J Histochem Cytochem 2001; 49: 1329–1339.
311. Wilkinson D. In situ Hybridization: A Practical Approach. Oxford: IRL Press, 1998.
312. Szakacs JG, Livingston SK. mRNA in-situ hybridization using biotinylated oligonucleotide probes: implications for the diagnostic laboratory. Ann Clin Lab Sci 1994; 24: 324–338.
313. Lloyd RV, Jin L, Bonnerup MK. In situ hybridization in diagnostic pathology. Mayo Clin Proc 1994; 69: 597–598.
314. Negro F, Pacchioni D, Mondardini A, et al. In situ hybridization in viral hepatitis. Liver 1992;12:217–226.
315. Morey AL, Fleming KA. The use of in situ hybridization in studies of viral disease. In: Coulton GR, de Belleroche J, eds. In situ Hybridization: Medical Applications. Boston: Kluwer, 1992:66–96.
316. Ambinder RF, Mann RB. Epstein–Barr-encoded RNA in situ hybridization: diagnostic applications. Hum Pathol 1994; 25: 602–605.
317. Gowans EJ, Arthur J, Blight K, et al. Application of in situ hybridization for the detection of virus nucleic acids. Meth Mol Biol 1994; 33: 395–408.
318. Dictor M, Siven M, Tennvall J, et al. Determination of nonendemic nasopharyngeal carcinoma by in situ hybridization for Epstein–Barr virus EBER1 RNA: sensitivity and specificity in cervical node metastases. Laryngoscope 1995; 105: 407–412.
319. Uner AH, Hutchison RE, Davey FR. Applications of in situ hybridization in the study of hematologic malignancies. Hematol Oncol Clin North Am 1994; 8: 771–784.
320. DeLellis RA. In situ hybridization techniques for the analysis of gene expression: applications in tumor pathology. Hum Pathol 1994; 25: 580–585.
321. Andersen JK, Frim DM, Isacson O, et al. Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter. Cell Mol Neurobiol 1993; 13: 503–515.
322. Hyde SC, Gill DR, Higgins CF, et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 1993; 362: 250–255.
323. Wolman SR. Fluorescence in situ hybridization. A new tool for the pathologist. Hum Pathol 1994; 25: 586–590.
324. Lee W, Han K, Harris CP, et al. Use of FISH to detect chromosomal translocations and deletions. Analysis of chromosome rearrangements in synovial sarcoma cells from paraffin embedded specimens. Am J Pathol 1993; 143: 15–19.
325. Shapiro DN, Valentine MB, Rowe ST, et al. Detection of N-myc gene amplification by fluorescence in situ hybridization. Diagnostic utility for neuroblastoma. Am J Pathol 1993; 142: 1339–1346.
326. Strefford JC, Lillington DM, Young BD, et al. The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data. Cancer Genet Cytogenet 2001; 124: 112–121.
329. Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 1416–1434.
330. Lion T. Clinical implications of qualitative and quantitative polymerase chain reaction analysis in the monitoring of patients with chronic myelogenous leukemia. Bone Marrow Transplant 1994; 14: 505–509.
331. Gerhard DS, Kawasaki ED, Carter-Bancroft F, et al. Localization of a unique gene by direct hybridization in situ. Proc Natl Acad Sci USA 1981; 78: 3755–3759.
332. Harper ME, Ullrich A, Sanders GF. Localization of the human insulin gene to the distal end of the short arm of chromosome 11. Proc Natl Acad Sci USA 1981; 78: 4458–4460.
333. Mathew S, Murty VV, Hunziker W, et al. Subregional mapping of 13 single-copy genes on the long arm of chromosome 12 by fluorescence in situ hybridization. Genomics 1992; 14: 775–779.
334. Bhatt B, Burns J, Flannery D, et al. Direct visualization of single copy genes on banded metaphase chromosomes by nonisotopic in situ hybridization. Nucleic Acids Res 1988; 16: 3951–3961.
335. Lichter P, Boyle AL, Cremer T, et al. Analysis of genes and chromosomes by nonisotopic in situ hybridization. Genet Anal Tech Appl 1991; 8: 24–35.
336. Tanner M, Gancberg D, Di Leo A, et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 2000; 157: 1467–1472.
337. Chen Q, Lu P, Jones AV, et al. Amplification refractory mutation system, a highly sensitive and simple polymerase chain reaction assay, for the detection of JAK2 V617F mutation in chronic myeloproliferative disorders. J Mol Diagn 2007; 9: 272–276.
338. Montgomery J, Wittwer CT, Palais R, et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2007; 2: 59–66.
339. Koboldt DC, Ding L, Mardis ER, et al. Challenges of sequencing human genomes. Brief Bioinform 2010; 11(5): 484–498.
340. Zhou X, Ren L, Meng Q, et al. The next-generation sequencing technology and application. Protein Cell 2010; 1: 520–536.
341. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456: 66–72.
342. Ellis MJ, Ding L, Shen D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012; 486(7403): 353–360.
343. Berger MF, Hodis E, Heffernan TP, et al. Melanoma genome sequencing reveals frequent mutations. Nature 2012; 485: 502–506.
344. Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012; 150: 1121–1134.
345. McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.
346. Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N Engl J Med 2010; 362(13): 1181–1191.
347. Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360–363.
348. Bertucci F, Viens P, Tagett R, et al. DNA arrays in clinical oncology: promises and challenges. Lab Invest 2003; 83: 305–316.
349. Ahrendt SA, Halachmi S, Chow JT, et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA 1999; 96: 7382–7387.
350. Kozal MJ, Shah N, Shen N, et al. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat Med 1996; 2: 753–759.
351. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–821.
352. Braga-Neto U, Hashimoto R, Dougherty ER, et al. Is cross-validation better than resubstitution for ranking genes? Bioinformatics 2004; 20: 253–258.
353. Yang MC, Yang JJ, McIndoe RA, et al. Microarray experimental design: power and sample size considerations. Physiol Genomics 2003; 16: 24–28.
354. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.
355. Emmet-Buck MR, Strausberg RL, Kritzman DB, et al. Molecular profiling of clinical tissue specimens. Feasibility and applications. J Mol Diagn 2000; 2: 60–66.
356. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. New Engl J Med 2002; 346: 1937–1947.
357. Gabrielson E, Berg K, Anbazhagan R. Functional genomics, gene arrays and the future of pathology. Mod Pathol 2001; 14: 1294–1299.
358. Giordano TJ, Shedden KA, Swartz DR, et al. Organ-specific molecular classification of primary lung, colon and ovarian adenocarcinomas using gene expression profiles. Am J Pathol 2001; 159: 1231–1238.
359. Bassett DE Jr, Eisen MB, Boguski MS. Gene expression informatics – it’s all in your mind. Nature Genet 1999; 21(1 Suppl): 51–55.
360. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.
361. van Steensel B. Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 2005; 37(Suppl): S18–S24.
362. Iscove NN, Barbara M, Gu M, et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol. 2002; 20: 940–943.
363. Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell 2003; 4: 383–393.
364. Luzzi V, Mahadevappa M, Raja R, et al. Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 2003; 5: 9–14.
365. Li L, Roden J, Shapiro BE, et al. Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. J Mol Diagn 2005; 7: 48–56.
366. Tothill RW, Kowalczyk A, Rischin D, et al. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 2005; 65: 4031–4040.
367. Dennis JL, Vass JK, Wit EC, et al. Identification from public data of molecular markers of adenocarcinoma characteristic of the site of origin. Cancer Res 2002; 62: 5999–6005.
368. Shedden KA, Taylor JM, Giordano TJ, et al. Accurate molecular classification of human cancers based on gene expression using a simple classifier with a pathological tree-based framework. Am J Pathol 2003; 163: 1985–1995.
369. Lee YF, John M, Falconer A, et al. A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 2004; 64: 7201–7204.
370. Roepman P, Wessels LF, Kettelarij N, et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 2005; 37: 182–186.
371. Xi L, Lyons-Weiler J, Coello MC, et al. Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 2005; 11: 4128–4135.
372. Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49–54.
373. Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 2005; 365: 488–492.
374. Reid JF, Lusa L, De Cecco L, et al. Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 2005; 97: 927–930.
375. Ein-Dor L, Kela I, Getz G, et al. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005; 21: 171–178.
376. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature 1985; 31: 467–472.
377. De la Chapelle A. Microsatellite instability. New Engl J Med 2003; 349: 209–210.
378. Wooster R, Cleton-Jansen AM, Collins N, et al. Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet 1994; 6: 152–156.
379. Loeb LA. Cancer cells exhibit a mutator phenotype. Adv Cancer Res 1998; 72: 25–56.
380. Liu B, Nicolaides NC, Markowitz S, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet 1995; 9: 48–55.
381. Naidoo R, Chetty R. The application of microsatellites in molecular pathology. Pathol Oncol Res 1998; 4: 310–315.
382. Sensabaugh GF. Biochemical markers of individualaity. In: Saferstein R, ed. Forensic Science Handbook. Englewood Cliffs, NJ: Prentice-Hall; 1982: 338–415.
383. Rudin N, Inman K, eds. An Introduction to Forensic DNA Analysis, 2nd edn. Boca Raton, FL: CRC Press Publishers, 2002.
384. Hirschhorn R. In vivo reversion to normal of inherited mutations in humans. J Med Genet 2003; 40: 721–728.
385. Erickson RP. Somatic gene mutation and human disease other than cancer. Mutat Res 2003; 543: 125–136.
386. Youssoufian H, Pyeritz RE. Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 2002; 3: 748–758.
387. Schichman SA, Lin P, Gilbrech LJ. Bone marrow transplant engraftment analysis with loss of an informative allele. J Mol Diagn 2002; 4: 230–232.
388. Zhou M, Sheldon S, Akel N, et al. Chromosomal aneuploidy in leukemic blast crisis: a potential source of error in interpretation of bone marrow engraftment analysis by VNTR amplification. Mol Diagn 1999; 4: 153–157.
389. Clayton TM, Whitaker JP, Sparkes R, et al. Analysis and interpretation of mixed forensic stains using DNA STR profiling. Forensic Sci Int 1998; 91: 55–70.
390. Budowle B, Moretti TR, Baumstark AL, et al. Population data on the thirteen CODIS core short tandem repeat loci in African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians. J Forensic Sci 1999; 44: 1277–1286.
391. Kupferschmid TD, Calicchio T, Budowle B. Maine Caucasian population DNA database using twelve short tandem repeat loci. J Forensic Sci 1999; 44: 392–395.
392. Martin P, Garcia O, Albarran C, et al. Spanish population data on the four STR loci D8S1179, D16S539, D18S51 and D21S11. Int J Legal Med 1999; 112: 340–341.
393. Allen RW, ed. Standards for Parentage Testing Laboratories, 3rd edn. Bethesda, MD: American Association of Blood Banks; 1998.
394. TWGDAM. Guidelines for a quality assurance program for DNA analysis. Crime Laboratory Digest 1991; 18: 44–75.
395. Gephardt GN, Zarbo RJ. Extraneous tissue in surgical pathology: a College of American Pathologists Q-Probes study of 275 laboratories. Arch Pathol Lab Med 1996; 120: 1009–1014.
396. Pfeifer JD, Payton J, Zehnbauer BA. The changing spectrum of DNA-based specimen provenance testing in surgical pathology. Am J Clin Pathol 2011; 135: 132–138.
397. Weedn VW. Forensic DNA tests. Clin Lab Med 1996; 16: 187–196.
398. Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature 1985; 318: 577–579.
399. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.
400. Carey L, Mitnik L. Trends in DNA forensic analysis. Electrophoresis 2002; 23: 1386–1397.
401. Pfeifer JD, Liu J. Rate of occult specimen provenance complications in routine clinical practice. Am J Clin Pathol 2013; 139: 93–100.
402. Penn I. Post-transplant malignancy: the role of immunosuppression. Drug Saf 2000; 23: 101–113.
403. Penn I. Cancers in renal transplant recipients. Adv Ren Replace Ther 2000; 7: 147–156.
404. Loh E, Couch FJ, Hendricksen C, et al. Development of donor-derived prostate cancer in a recipient following orthotopic heart transplantation. JAMA 1997; 277: 133–137.
405. Schmitt C, Cire K, Schattenkirchner S, et al. Highly sensitive DNA typing for detecting tumors transmitted by transplantation. Transpl Int 1998; 11: 382–386.
406. Stephens JK, Everson GT, Elliott CL, et al. Fatal transfer of malignant melanoma from multiorgan donor to four allograft recipients. Transplantation 2000; 70: 232–236.
407. Beckingham IJ, O’Rourke JS, Bishop MC, et al. The use of DNA typing to clarify the origin of metastatic carcinoma after renal transplantation. A clinical and medico-legal problem. Transpl Int 1994; 7: 379–381.
408. Bell KA, Van Deerlin V, Addya K, Clevenger CV, Van Deerlin PG, Leonard DG. Molecular genetic testing from paraffin-embedded tissue distinguishes nonmolar hydropic abortion from hydatidiform mole. Mol Diagn 1999; 4(1): 11–19.
409. Van Deerlin VM, Leonard DG. Bone marrow engraftment analysis after allogeneic bone marrow transplantation. Clin Lab Med 2000; 20: 197–225.
410. Worsham MJ, Wolman SR, Zarbo RJ. Molecular approaches to identification of tissue contamination in surgical pathology sections. J Mol Diagn 2001; 3(1): 11–15.
411. Kosoy R, Nassir R, Tian C, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 2008; 30: 1–10.
412. Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, De La Vega FM, Kidd KK. Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investig Genet 2(1): 1. PMCID: 3025953.
413. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.
414. Liu ZJ, Maekawa M. Polymerase chain reaction-based methods of DNA methylation analysis. Anal Biochem 2003; 317: 259–265.
415. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.
416. Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 2003; 362: 1439–1444.
417. Jones PA. Epigenetics in carcinogenesis and cancer prevention. Ann NY Acad Sci 2003; 983: 213–219.
418. Diaz-Cano SJ, Blanes A, Wolfe HJ. PCR techniques for clonality assays. Diagn Mol Pathol 2001; 10: 24–33.