Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: April 2015

4 - Fundamental Building Blocks

from Part II - Passive Components

Related content

Powered by UNSILO
[1] Tom, Baehr-Jones, Ran, Ding, Ali, Ayazi, et al. “A 25 Gb/s silicon photonics platform”. arXiv:1203.0767v1 (2012) (cit. on pp. 93, 101).
[2] Amnon, Yariv. “Coupled-mode theory for guided-wave optics”. IEEE Journal of Quantum Electronics 9.9 (1973), pp. 919–933 (cit. on pp. 92, 108).
[3] Amnon, Yariv and Pochi, Yeh. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). Oxford University Press, Inc., 2006 (cit. on p. 92).
[4] N., Rouger, L., Chrostowski, and R., Vafaei. “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach”. Journal of Lightwave Technology 28.9 (2010), pp. 1380–1391. DOI: 10.1109/JLT.2010.2041528 (cit. on p. 95).
[5] Fengnian, Xia, Lidija, Sekaric, and Yurii A., Vlasov. “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators”. Optics Express 14.9 (2006), pp. 3872–3886 (cit. on p. 102).
[6] Valentina, Donzella, Sahba Talebi, Fard, and Lukas, Chrostowski. “Study of waveguide crosstalk in silicon photonics integrated circuits”. Proc. SPIE 8915, Photonics North 2013 (2013), 89150Z (cit. on p. 108).
[7] Herwig, Kogelnik and R V, Schmidt. “Switched directional couplers with alternating β”. IEEE Journal of Quantum Electronics 12.7 (1976), pp. 396–401 (cit. on p. 108).
[8] R. V., Schmidt and R., Alferness. “Directional coupler switches, modulators, and filters using alternating β techniques”. IEEE Transactions on Circuits and Systems 26.12 (1979), pp. 1099–1108 (cit. on p. 108).
[9] Yi, Zhang, Shuyu, Yang, Andy Eu-Jin, Lim, Guo-Qiang, Lo, Christophe, Gal-land, Tom, Baehr-Jones, and Michael, Hochberg. “A compact and low loss Y-junction for submicron silicon waveguide”. Optics Express 21.1 (2013), pp. 1310–1316 (cit. on pp. 111, 112).
[10] W., Bogaerts, P., De Heyn, T., Van Vaerenbergh, et al. “Silicon microring resonators”. Laser & Photonics Reviews (2012) (cit. on p. 115).
[11] A., Mekis, S., Gloeckner, G., Masini, et al. “A grating-coupler-enabled CMOS photonics platform”. IEEE Journal of Selected Topics in Quantum Electronics 17.3 (2011), pp. 597–608. DOI: 10.1109/JSTQE.2010.2086049 (cit. on p. 117).
[12] Peak Finding and Measurement. [Accessed 2014/04/14]. URL: http://terpconnect.umd.edu/∼toh/spectrum/PeakFindingandMeasurement.htm (cit. on p. 117).
[13] Jens, Buus, Markus-Christian, Amann, and Daniel J., Blumenthal. Tunable Laser Diodes and Related Optical Sources, 2nd Edn. John Wiley & Sons, Inc., 2005 (cit. on pp. 119, 120).
[14] Xu, Wang, Wei, Shi, Michael, Hochberg, et al. “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography”. IEEE International Conference on Group IV Photon. 2012, ThP 17 (cit. on pp. 120, 128, 134).
[15] L. A., Coldren, S. W., Corzine, and M. L., Mashanovitch. Diode Lasers and Photonic Integrated Circuits. Wiley Series in Microwave and Optical Engineering. John Wiley & Sons, 2012. ISBN: 9781118148181 (cit. on p. 121).
[16] Thomas Edward, Murphy, Jeffrey Todd, Hastings, and Henry I., Smith. “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides”. Journal of Lightwave Technology 19.12 (2001), pp. 1938–1942 (cit. on p. 126).
[17] Ivano, Giuntoni, David, Stolarek, Harald, Richter, et al. “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides”. IEEE Photonics Technology Letters 21.24 (2009), pp. 1894–1896 (cit. on p. 126).
[18] Ivano, Giuntoni, Andrzej, Gajda, Michael, Krause, et al. “Tunable Bragg reflectors on silicon-on-insulator rib waveguides”. Optics Express 17.21 (2009), pp. 18 518–18 524 (cit. on p. 126).
[19] J. T., Hastings, Michael H., Lim, J. G., Goodberlet, and Henry I., Smith. “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography”. Journal of Vacuum Science & Technology B 20.6 (2002), pp. 2753–2757 (cit. on pp. 126, 129).
[20] Guomin, Jiang, Ruiyi, Chen, Qiang, Zhou, et al. “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides”. IEEE Photonics Technology Letters 23.1 (2011), pp. 6–9 (cit. on pp. 126, 129).
[21] Renzo, Loiacono, Graham T., Reed, Goran Z., Mashanovich, et al. “Laser erasable implanted gratings for integrated silicon photonics”. Optics Express 19.11 (2011), pp. 10728–10734. DOI: 10.1364/OE.19.010728 (cit. on p. 126).
[22] Xu, Wang. “Silicon photonic waveguide Bragg gratings”. PhD thesis. University of British Columbia, 2013 (cit. on pp. 128, 129, 131, 135, 136, 138, 139, 140, 141, 142).
[23] D. T. H., Tan, K., Ikeda, R. E., Saperstein, B., Slutsky, and Y., Fainman. “Chip-scale dispersion engineering using chirped vertical gratings”. Optics Letters 33.24 (2008), pp. 3013–3015 (cit. on p. 127).
[24] A. S., Jugessur, J., Dou, J. S., Aitchison, R. M., De La Rue, and M., Gnan. “A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications”. Microelectronic Engineering 86.4-6 (2009), pp. 1488–1490 (cit. on p. 127).
[25] Xu, Wang, Wei, Shi, Raha, Vafaei, Nicolas A. F., Jaeger, and Lukas, Chrostowski. “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations”. IEEE Photonics Technology Letters 23.5 (2011), pp. 290–292 (cit. on pp. 127, 137).
[26] D. T. H., Tan, K., Ikeda, and Y., Fainman. “Cladding-modulated Bragg gratings in silicon waveguides”. Optics Letters 34.9 (2009), pp. 1357–1359 (cit. on p. 127).
[27] Xu, Wang, Wei, Shi, Han, Yun, et al. “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process”. Optics Express 20.14 (2012), pp. 15 547–15 558. DOI: 10.1364/OE.20.015547 (cit. on p. 129).
[28] R. J., Bojko, J., Li, L., He, et al. “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides”. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29.6 (2011), 06F309–06F309 (cit. on p. 131).
[29] X., Wang, W., Shi, R., Vafaei, N. A. F., Jaeger, and L., Chrostowski. “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations”. IEEE Photonics Technology Letters 23.5 (2010), pp. 290–292 (cit. on p. 134).
[30] W., Bogaerts, P., Bradt, L., Vanholme, P., Bienstman, and R., Baets. “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again”. Optical and Quantum Electronics 40.11 (2008), pp. 801–811 (cit. on p. 134).
[31] Calibre Computational Lithography – Mentor Graphics. [Accessed 2014/04/14]. URL: http://www.mentor.com/products/ic-manufacturing/computational-lithography (cit. on p. 134).
[32] S. K., Selvaraja, P., Jaenen, W., Bogaerts, et al. “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography”. Journal of Lightwave Technology 27.18 (2009), pp. 4076–4083 (cit. on p. 135).
[33] Alexandre D., Simard, Guillaume, Beaudin, Vincent, Aimez, Yves, Painchaud, and Sophie, LaRochelle. “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings”. Optics Express 21.20 (2013), pp. 23 145–23 159 (cit. on p. 137).
[34] Steve, Zamek, Dawn T. H., Tan, Mercedeh, Khajavikhan, et al. “Compact chip-scale filter based on curved waveguide Bragg gratings”. Optics Letters 35.20 (2010), pp. 3477–3479. DOI: 10.1364/OL.35.003477 (cit. on p. 137).
[35] Alexandre D., Simard, Yves, Painchaud, and Sophie, LaRochelle. “Integrated Bragg gratings in spiral waveguides”. Optics Express 21.7 (2013), pp. 8953–8963. DOI: 10.1364/OE.21.008953 (cit. on p. 137).
[36] Xu, Wang, Han, Yun, and Lukas, Chrostowski. “Integrated Bragg gratings in spiral waveguides”. In Conference on Lasers and Electro-Optics, San Jose, CA, paper CTh4F.8 (2013) (cit. on p. 137).
[37] Xu, Wang, Samantha, Grist, Jonas, Flueckiger, Nicolas A. F., Jaeger, and Lukas, Chrostowski. “Silicon photonic slot waveguide Bragg gratings and resonators”. Optics Express 21 (2013), pp. 19 029–19 039 (cit. on p. 139).
[38] Y., Painchaud, M., Poulin, C., Latrasse, and M., Picard. “Bragg grating based Fabry–Perot filters for characterizing silicon-on-insulator waveguides”. Group IV Photonics (GFP). IEEE. 2012, pp. 180–182 (cit. on p. 140).
[39] Wei, Shi, Venkat, Veerasubramanian, David V., Plant, Nicolas A. F., Jaeger, and Lukas, Chrostowski. “Silicon photonic Bragg-grating couplers for optical communications”. Proc. SPIE. 2014 (cit. on pp. 142, 143).
[40] Wei, Shi, Han, Yun, Charlie, Lin, et al. “Ultra-compact, flat-top demultiplexer using anti-reflection contradirectional couplers for CWDM networks on silicon”. Optics Express 21.6 (2013), pp. 6733–6738 (cit. on p. 143).
[41] Lukas, Chrostowski and Krzysztof, Iniewski. High-speed Photonics Interconnects, Chapter 3 Silicon Photonic Bragg Gratings. Vol. 13. CRC Press, 2013 (cit. on p. 143).