Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-10T06:34:21.649Z Has data issue: false hasContentIssue false

16 - Epilepsy: multistability in a dynamic disease

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Suddenly the person sitting beside you falls to the ground in the grip of a generalized convulsion. Within seconds to minutes, the cataclysm ends as abruptly as it began. Why did the seizure occur when it did, and why, once started, did it stop? Even more puzzling is the centuries-old observation that a brief sensory stimulus, such as noise, given close to the onset of a seizure might have stopped it (Figure 1). The clinical challenge is to prevent seizures from occurring and, thus, to restore a normal life to the sufferer. The scientific challenge is to understand how sudden qualitative changes in brain dynamics, reflected by changes in the electroencephalogram (EEG), occur. The hope is that insights into mechanism translate into the development of effective therapeutic strategies.

A sudden change in qualitative dynamics in response to a clinical maneuver, or to a change in an endogenous factor, is the hallmark of a dynamic disease. Dynamic diseases can arise because of alterations in underlying physiological control mechanisms (Mackey and Glass, 1977; Glass and Mackey, 1979; Mackey and an der Heiden, 1982; Mackey and Milton, 1987; Milton and Mackey, 1989; Glass, 1991; Bèlair et al., 1995; Milton and Black, 1995). By analogy with mathematical models, changes of certain physiologically important parameters into critical ranges result in the sudden appearance of qualitatively different dynamical behaviors. In the mathematical models these changes in qualitative dynamics correspond to bifurcations.

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 374 - 386
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×