Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-19T21:32:35.824Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Mary Allessio Leck
Affiliation:
Rider University, New Jersey
V. Thomas Parker
Affiliation:
San Francisco State University
Robert L. Simpson
Affiliation:
University of Michigan, Dearborn
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarssen, L. W. (2005). Why don't bigger plants have proportionately bigger seeds? Oikos, 111, 199–207.CrossRefGoogle Scholar
Aarssen, L. W. & Jordan, , C. Y. (2001). Between-species patterns of covariation in plant size, seed size and fecundity in monocarpic herbs. Ecoscience, 8, 471–7.CrossRefGoogle Scholar
Abramsky, Z. (1983). Experiments on seed preparation by rodents and ants in the Israeli desert. Oecologia, 57, 328–32.CrossRefGoogle Scholar
Abu-Awwad, A. M. (1997). Water infiltration and redistribution within soils affected by a surface crust. Journal of Arid Environments, 37, 231–42.CrossRefGoogle Scholar
Achard, P., Cheng, H., Grauwe, L.et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91–4.CrossRefGoogle ScholarPubMed
Ackerly, D. D. (2000). Taxon sampling, correlated evolution, and independent contrasts. Evolution, 54, 1480–92.CrossRefGoogle ScholarPubMed
Ackerman, J., Sabat, A., & Zimmerman, J. K. (1996). Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia, 106, 192–8.CrossRefGoogle Scholar
Adamec, L. (1997). Mineral nutrition of carnivorous plants: a review. Botanical Review, 63, 273–99.CrossRefGoogle Scholar
Adamec, L. (2000). Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory. Biologia Plantarum, 43, 113–19.CrossRefGoogle Scholar
Adamec, L. (2002). Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist, 155, 89–100.CrossRefGoogle Scholar
Adamik, K. J. & Brauns, F. E. (1957). Ailanthus glanulosa (tree of heaven) as a pulpwood: part II. Tappi, 40, 522–7.Google Scholar
Adams, W. W. & Martin, C. E. (1986). Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). American Journal of Botany, 73, 1207–14.Google Scholar
Adams, W. W. III., Zarter, C. R., Ebbert, V., & Demmig-Adams, B. (2004). Photoprotective strategies of overwintering evergreens. BioScience, 54, 41–9.CrossRefGoogle Scholar
Adriaensen, K., Lelie, D., Laere, A., Vangronsveld, J., & Colpaert, J. V. (2004). A zinc-adapted fungus protects pines from zinc stress. New Phytologist, 161, 549–55.CrossRefGoogle Scholar
Agrawal, A. A., Conner, J. K., & Stinchcombe, J. R. (2004). Evolution of plant resistance and tolerance to frost damage. Ecology Letters, 7, 1199–1208.CrossRefGoogle Scholar
Ågren, J. (1989). Seed size and number in Rubus chamaemorus: between-habitat variation, and effects of defoliation and supplemental pollination. Journal of Ecology, 77, 1080–92.CrossRefGoogle Scholar
Aguiar, M. R. & Sala, O. E. (1997). Seed distribution constrains the dynamics of the Patagonian steppe. Ecology, 78, 93–100.CrossRefGoogle Scholar
Aguiar, M. R. & Sala, O. E. (1998). Interactions among grasses, shrubs, and herbivores in Patagonian grass-shrub steppes. Ecología Austral, 8, 201–10.Google Scholar
Agyeman, V. K., Swaine, M. D., & Thompson, J. (1999). Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index. Journal of Ecology, 87, 815–27.CrossRefGoogle Scholar
Aide, T. M. & Cavalier, J. (1994). Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology, 4, 219–29.CrossRefGoogle Scholar
Aide, T. M., Zimmerman, J. K., Herrera, L., Rosario, M., & Serrano, M. (1995). Forest recovery in abandoned tropical pastures in Puerto Rico. Forest Ecology and Management, 77, 77–86.CrossRefGoogle Scholar
Aiken, S. G. (1986). The distinct morphology and germination of two species of wild rice (Zizania, Poaceae). Canadian Field-Naturalist, 100, 237–40.Google Scholar
Aizen, M. A. & Feinsinger, P. (1994). Forest fragmentation, pollination and plant reproduction in a Chaco dry forest. Ecology, 75, 330–51.CrossRefGoogle Scholar
, M. A. & Woodcock, H. (1996). Effects of acorn size on seedling survival and growth in Quercus rubra following simulated spring freeze. Canadian Journal of Botany, 74, 308–14.Google Scholar
Akasaka, M. & Tsuyuzaki, S. (2005). Tree seedling performance in microhabitats along an elevational gradient on Mount Koma, Japan. Journal of Vegetation Science, 16, 647–54.CrossRefGoogle Scholar
Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–7.CrossRefGoogle ScholarPubMed
Alberdi, M. & Corcuera, L. J. (1991). Cold-acclimation in plants. Phytochemistry, 30, 3177–84.Google Scholar
Alberdi, M. & Rios, D. (1983). Frost resistance of Embothrium coccineum Forst. and Gevuina avellana Mol. during development and aging. Acta Oecologia (Oecologia Plantarum), 4, 3–9.Google Scholar
Albert, V. A. (1999). Shoot apical meristems and floral patterning: an evolutionary perspective. Trends in Plant Sciences, 4, 84–6.CrossRefGoogle Scholar
Albert, V. A., Williams, S. E., & Chase, M. W. (1992). Carnivorous plants, phylogeny and structural evolution. Nature, 257, 1491–5.Google ScholarPubMed
Albrecht, C., Geurts, R., & Bisseling, T. (1999). Legume nodulation and mycorrhizae formation: two extremes in host specificity meet. EMBO Journal, 18, 281–8.CrossRefGoogle ScholarPubMed
Alexander, I., Ahmad, N., & Lee, S. S. (1992). The role of mycorrhizas in the regeneration of some Malaysian forest trees. Philosophical Transactions of the Royal Society of London Series B, 335, 379–88.CrossRefGoogle Scholar
Alexander, I. J. & Lee, S. S. (2005). Mycorrhizas and ecosystem processes in tropical rain forest, implications for diversity. In Biotic Interactions in the Tropics, ed. Burslem, D. F. R. P., Pinard, M. A., & Hartley, S. E.. Cambridge: Cambridge University Press, pp. 165–203.CrossRefGoogle Scholar
Al-Hamdani, S. & Francko, D. A. (1992). Effect of light and temperature on photosynthesis elongation rate and chlorophyll content of Nelumbo lutea (Willd.) Pers. seedlings. Aquatic Botany, 44, 51–8.CrossRefGoogle Scholar
Allcock, K. G. (2002). Effects of phosphorus on growth and competitive interactions of native and introduced species found in White Box woodlands. Austral Ecology, 27, 638–46.CrossRefGoogle Scholar
Allen, A., Chambers, J. L., & Pezeshki, S. R. (1997). Effects of salinity on baldcypress seedlings: physiological responses and their relation to salinity tolerance. Wetlands, 17, 310–20.CrossRefGoogle Scholar
Allen, E. B. & Allen, M. F. (1984). Competition between plants of different successional stages: mycorrhizae as regulators. Canadian Journal of Botany, 62, 2625–9.CrossRefGoogle Scholar
Allen, M. F. (1991). The Ecology of Mycorrhizae. Cambridge: Cambridge University Press.Google Scholar
Allen, M. F., Allen, E. B., & Friese, C. F. (1989). Responses of the non-mycotrophic plant Salsola kali to invasion by VA mycorrhizal fungi. New Phytologist, 111, 45–9.CrossRefGoogle Scholar
Allen, M. F., Allen, E. B., & Gomez-Pompa, A. (2005). Effects of mycorrhizae and non-target organisms on restoration of a seasonal tropical forest in Quintana Roo, Mexico: factors limiting tree establishment. Restoration Ecology, 13, 325–33.CrossRefGoogle Scholar
Allen, M. F., Rincon, E., Allen, E. B., Huante, P., & Dunn, J. J. (1993). Observations of canopy bromeliad roots compared with plants rooted in soils of a seasonal tropical forest, Chamela, Jalisco, Mexico. Mycorrhiza, 4, 27–8.CrossRefGoogle Scholar
Allen, M. L., Jasper, D. A., & Zak, J. C. (2002). Micro-organisms. In Handbook of Ecological Restoration, vol. 1, ed. Perrow, M. & Davy, A.. Cambridge: Cambridge University Press, pp. 257–78.CrossRefGoogle Scholar
Allen-Diaz, B., Bartolome, J. W., & McClaran, M. P. (1999). California oak savanna. In Savannas, Barrens, and Rock Outcrop Plant Communities of North America, ed. Anderson, R. C., Fralish, J. S., & Baskin, J. M.. Cambridge: Cambridge University Press, pp. 322–39.CrossRefGoogle Scholar
Allessio, M. L. (1967). Observations of seedling development in Polygonum bistortoides. American Journal of Botany, 54, 1272–4.CrossRefGoogle Scholar
Allison, S. K. & Ehrenfeld, J. G. (1999). The influences of microhabitat variation on seedling recruitment of Chamaecyparis thyoides and Acer rubrum. Wetlands, 19, 383–93.CrossRefGoogle Scholar
Almeida-Cortez, J. S. & Shipley, W. (2002). No significant relationship exists between seedling relative growth rate under nutrient limitation and potential tissue toxicity. Functional Ecology, 16, 122–7.CrossRefGoogle Scholar
Alvarez-Aquino, C., Williams-Linera, G., & Newton, A. C. (2004). Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restoration Ecology, 12, 412–8.CrossRefGoogle Scholar
Alvarez-Buylla, E. R. & Martinez-Ramos, M. (1992). Demography and allometry of Cecropia obtusifolia a neotropical pioneer tree, an evaluation of the climax-pioneer paradigm for tropical rain forests. Journal of Ecology, 80, 275–90.CrossRefGoogle Scholar
Alvarez-Clare, S. & Kitajima, K. (2007). Physical defense traits enhance seedling survival of neotropical tree species. Functional Ecology, 21, 1044–54.CrossRefGoogle Scholar
Alvey, L. & Harberd, N. P. (2005). DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiologia Plantarum, 123, 153–60.CrossRefGoogle Scholar
Ampofo, S. T., Moore, K. G., & Lovell, P. H. (1976). Role of cotyledons in 4 Acer species and in Fagus sylvatica during early seedling development. New Phytologist, 76, 31–9.CrossRefGoogle Scholar
Anderberg, A. & Anderberg, A. L. (2006). Den Virtuella Floran. Stockholm: Naturhistoriska Riksmuseet (http://linnaeus.nrm.se/flora/).Google Scholar
Anderson, A. B. (1991). Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana, 6, 183–6.Google Scholar
Andresen, E. & Feer, F. (2005). The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In Seed Fate: Predation, Dispersal and Seedling Establishment, ed. Forget, P.-M., Lambert, J. E., Hulme, P. E., & Wall, S. R. V.. Wallingford: CAB International, pp. 331–49.CrossRefGoogle Scholar
Andrews, H. N. (1963). Early seed plants. Science, 142, 925–31.CrossRefGoogle ScholarPubMed
Andrews, H. N. & Pannel, E. (1942). Contributions to our knowledge of American carboniferous flora. II. Lepidocarpon. Annals of the Missouri Botanical Garden, 29, 19–28.CrossRefGoogle Scholar
Angert, A., Huxman, T., Barron-Gafford, G., Gerst, K., & Venable, D. (2007). Linking growth strategies to long-term population dynamics in a guild of desert annuals. Journal of Ecology, 95, 321–31.CrossRefGoogle Scholar
Aniszewski, T., Kupari, M. H., & Leinonen, A. J. (2001). Seed number, seed size and seed diversity in Washington lupine (Lupinus polyphyllus Lindl.). Annals of Botany, 87, 77–82.CrossRefGoogle Scholar
Antos, J. A., Guest, H. J., & Parish, R. (2005). The tree seedling bank in an ancient montane forest: stress tolerators in a productive habitat. Journal of Ecology, 93, 536–43.CrossRefGoogle Scholar
Antos, J. A., Parish, R. A., & Conley, K. (2000). Age structure and growth of the tree-seedling bank in subalpine spruce-fir forests of South-central British Columbia. American Midland Naturalist, 143, 342–54.CrossRefGoogle Scholar
Aplet, G. H., Laven, R. D., & Smith, F. W. (1988). Patterns of community dynamics in Colorado Engelmann spruce–subalpine fir forests. Ecology, 69, 312–19.CrossRefGoogle Scholar
Arai, N. & Kamitani, T. (2005). Seed rain and seedling establishment of the dioecious tree Neolitsea sericea (Lauraceae): effects of tree sex and density on invasion into a conifer plantation in central Japan. Canadian Journal of Botany, 83, 1144–50.CrossRefGoogle Scholar
Arber, A. (1920). Water Plants. Cambridge: Cambridge University Press.Google Scholar
Arber, A. (1934). Gramineae: A Study of Cereal, Bamboo and Grass. 1965 reprint. Weinheim: J. Cramer.Google Scholar
Arber, E. A. N. & Parkin, J. (1907). On the origin of angiosperms. Journal of the Linnean Society (Botany), 38, 29–80.CrossRefGoogle Scholar
Arctic Climate Impact Assessment. (2004). Impacts of a Warming Arctic. Cambridge: Cambridge University Press.
Arditti, J. (1992). Fundamentals of Orchid Biology. New York: Wiley.Google Scholar
Arditti, J. & Ghani, A. K. A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145, 367–421.CrossRefGoogle Scholar
Argyris, J., Truco, M. J., Ochoa, O.et al. (2005). Quantitative trait loci associated with seed and seedling traits in Lactuca. Theoretical and Applied Genetics, 111, 1364–76.CrossRefGoogle ScholarPubMed
Arii, K. & Lechowicz, M. J. (2002). The influence of overstory trees and abiotic factors on the sapling community in an old-growth Fagus-Acer forest. Ecoscience, 9, 386–96.CrossRefGoogle Scholar
Armstrong, D. P. & Westoby, M. (1993). Seedlings from large seeds tolerate defoliation better: a test using phylogenetically independent contrasts. Ecology, 74, 1092–1100.CrossRefGoogle Scholar
Arnebrant, K., Ek, H., Finlay, R. D., & Söderström, B. (1993). Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytologist, 124, 231–42.CrossRefGoogle Scholar
Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267–74.CrossRefGoogle Scholar
Ashkannejhad, S. & Horton, T. R. (2006). Ectomycorrhizal ecology under primary succession on the coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytologist, 169, 345–54.CrossRefGoogle ScholarPubMed
Ashton, P. M. S., Gamage, S., Gunatilleke, I. A. U. N., & Gunatilleke, C. V. S. (1997). Restoration of a Sri Lankan rainforest: using Caribbean pine Pinus caribaea as a nurse for establishing late-successional tree species. Journal of Applied Ecology, 34, 915–25.CrossRefGoogle Scholar
Ashton, P. M. S., Gamage, S., Gunatilleke, I. A. U. N., & Gunatilleke, C. V. S. (1998). Using Caribbean pine to establish a mixed plantation: testing effects of pine canopy removal on plantings of rain forest tree species. Forest Ecology and Management, 106, 211–22.CrossRefGoogle Scholar
Ashworth, L. & Galetto, L. (2001). Pollinators and reproductive success of the wild cucurbit Cucurbita maxima ssp. andreana (Cucurbitaceae). Plant Biology, 3, 398–404.CrossRefGoogle Scholar
Asquith, N. M. & Mejia-Chang, M. (2005). Mammals, edge effects, and the loss of tropical forest diversity. Ecology, 86, 379–90.CrossRefGoogle Scholar
Asquith, N. M., Wright, S. J., & Claus, M. J. (1997). Does mammal community composition control recruitment in neotropical forests? Evidence from Panama. Ecology, 78, 941–6.CrossRefGoogle Scholar
Aston, H. I. (1977). Aquatic Plants of Australia. Carlton: Melbourne University Press.Google Scholar
Auble, G. T. & Scott, M. L. (1998). Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands, 18, 546–56.CrossRefGoogle Scholar
Auge, H. & Brandl, R. (1997). Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia, 110, 205–11.CrossRefGoogle Scholar
Auge, H., Neuffer, B., Erlinghagen, F., Grupe, R., & Brandl, R. (2001). Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Molecular Ecology, 10, 1811–19.CrossRefGoogle Scholar
Augspurger, C. K. (1983). Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. Journal of Ecology, 71, 759–71.CrossRefGoogle Scholar
Augspurger, C. K. (1984a). Light requirements of neotropical tree seedlings – a comparative study of growth and survival. Journal of Ecology, 72, 777–95.CrossRefGoogle Scholar
Augspurger, C. K. (1984b). Seedling survival of tropical tree species: interactions of dispersal distance, light gaps, and pathogens. Ecology, 65, 1705–12.CrossRefGoogle Scholar
Augspurger, C. K. & Kelly, C. K. (1984). Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211–17.CrossRefGoogle ScholarPubMed
Aukema, J. E. (2003). Vectors, viscin, and Viscaceae: mistletoes as parasites, mutualists, and resources. Frontiers in Ecology and the Environment, 1, 212–19.CrossRefGoogle Scholar
Baar, J., Horton, T. R., Kretzer, A. M., & Bruns, T. D. (1999). Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytologist, 143, 409–18.CrossRefGoogle Scholar
Babaev, A. G. (1999). Desert Problems and Desertification in Central Asia: The Researches of the Desert Institute. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bailey, C. & Scholes, M. (1997). Rhizosheath occurrence in South African grasses. South African Journal of Botany, 63, 484–90.CrossRefGoogle Scholar
Bais, H. P. & Ravishankar, G. A. (2002). Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant, Cell, Tissue and Organ Culture, 69, 1–34.CrossRefGoogle Scholar
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377–80.CrossRefGoogle ScholarPubMed
Baker, H. G. (1965). Characteristics and modes of origin of weeds. In The Genetics of Colonizing Species, ed. Baker, H. G. & Stebbins, G. L.. New York: Academic Press, pp. 147–68.Google Scholar
Baker, H. G. (1972). Seed weight in relation to environmental conditions in California. Ecology, 53, 997–1010.CrossRefGoogle Scholar
Bakker, C., Bodegom, P. M., Nelissen, H. J. M., Aerts, R., & Ernst, W. H. O. (2007). Preference of wet dune species for waterlogged conditions can be explained by adaptations and specific recruitment requirements. Aquatic Botany, 86, 37–45.CrossRefGoogle Scholar
Baldwin, A., Egnotovich, M., Ford, M., & Platt, W. (2001). Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecology, 157, 151–64.CrossRefGoogle Scholar
Ball, E. (1956a). Growth of the embryo of Ginkgo biloba under experimental conditions. I. Origin of the first root of the seedling in vitro. American Journal of Botany, 43, 488–95.CrossRefGoogle Scholar
Ball, E. (1956b). Growth of the embryo of Ginkgo biloba under experimental conditions. II. Effects of a longitudinal split in the tip of the hypocotyl. American Journal of Botany, 43, 802–10.CrossRefGoogle Scholar
Ball, M. C. (1988). Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. 1. Water-use in relation to growth, carbon partitioning, and salt balance. Australian Journal of Plant Physiology, 15, 447–64.CrossRefGoogle Scholar
Ball, M. C., Egerton, J. J. G., Leuning, R., Cunningham, R. B., & Dunne, P. (1997). Microclimate above grass adversely affects spring growth of seedling snow gum (Eucalyptus pauciflora). Plant Cell and Environment, 20, 155–66.CrossRefGoogle Scholar
Ball, M. C. & Farquhar, G. D. (1984). Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long-term salinity and humidity conditions. Plant Physiology, 74, 1–6.CrossRefGoogle ScholarPubMed
Ball, V. C., Hodges, V. S., & Laughlin, G. P. (1991). Cold-induced photoinhibition limits regeneration of snow gum at tree line. Functional Ecology, 5, 663–8.CrossRefGoogle Scholar
Baltzer, J. L. & Thomas, S. L. (2007). Physiological and morphological correlates of whole-plant light compensation point in temperate deciduous tree seedlings. Oecologia, 153, 209–23.CrossRefGoogle ScholarPubMed
Baraloto, C., Bonal, D., & Goldberg, D. E. (2006). Differential seedling growth response to soil resource availability among nine neotropical tree species. Journal of Tropical Ecology, 22, 487–97.CrossRefGoogle Scholar
Baraloto, C. & Forget, P.-M. (2007). Seed size, seedling morphology, and response to deep shade and damage in neotropical rain forest trees. American Journal of Botany, 94, 901–11.CrossRefGoogle ScholarPubMed
Baraloto, C., Forget, P.-M., & Goldberg, D. E. (2005a). Seed mass, seedling size and neotropical tree seedling establishment. Journal of Ecology, 93, 1156–66.CrossRefGoogle Scholar
Baraloto, C., Goldberg, D. E., & Bonal, D. (2005b). Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology, 86, 2461–72.CrossRefGoogle Scholar
Baraza, E., Gomez, J., Hodar, J., & Zamora, R. (2004). Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multi-factorial environmental variation. Canadian Journal of Botany, 82, 357–64.CrossRefGoogle Scholar
Baraza, E., Zamora, R., & Hodar, J. A. (2006). Conditional outcomes in plant–herbivore interactions: neighbors matter. Oikos, 113, 148–56.CrossRefGoogle Scholar
Barchuk, A. H., Valiente-Banuet, A., & Diaz, M. P. (2005). Effect of shrubs and seasonal variability of rainfall on the establishment of Aspidosperma quebracho-blanco in two edaphically contrasting environments. Austral Ecology, 30, 695–705.CrossRefGoogle Scholar
Barker, N. G. & Williamson, B. G. (1988). Effects of a winter fire on Sarracenia alata and S. psittacina. American Journal of Botany, 75, 138–43.CrossRefGoogle Scholar
Barlow, B. A. (1981). The loranthaceous mistletoes in Australia. In Ecological Biogeography of Australia, ed. Keast, A.. The Hague: Dr. W. Junk Publishers, pp. 556–74.CrossRefGoogle Scholar
Barlow, J. & Peres, C. A. (2004). Ecological responses to El Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society of London Series B, 359, 367–80.CrossRefGoogle ScholarPubMed
Barrat-Segretain, M.-H. (1996). Germination and colonization dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquatic Botany, 55, 31–8.CrossRefGoogle Scholar
Barth, H. J. (1999). Desertification in the eastern province of Saudi Arabia. Journal of Arid Environments, 43, 399–410.CrossRefGoogle Scholar
Barton, L. V. (1961). Seed Preservation and Longevity. New York: Plant Science Monograph Series, Interscience.Google Scholar
Baskin, C. C. & Baskin, J. M. (1998; 2001). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.Google Scholar
Baskin, C. C., Chesson, P. L., & Baskin, J. M. (1993). Annual seed dormancy cycles in two winter annuals. Journal of Ecology, 81, 551–6.CrossRefGoogle Scholar
Baskin, C. C., Hawkins, T. S., & Baskin, J. M. (2004). Ecological life cycle of Chaerophyllum procumbens variety shortii (Apiaceae), a winter annual of the North American eastern deciduous forest. Journal of the Torrey Botanical Society, 131, 126–39.CrossRefGoogle Scholar
Baskin, J. M. & Baskin C. C. (1989). Physiology of dormancy and germination in relationship to seed bank ecology. In Ecology of Soil Seed Banks, ed. Leck, M. A., Parker, V. T., & Simpson, R. L.. San Diego: Academic Press, pp. 54–66.Google Scholar
Baskin, Y. (1998). Winners and losers in a changing world: global changes may promote invasions and alter the fate of invasive species. BioScience, 48, 788–92.CrossRefGoogle Scholar
Bassow, S. L. & Bazzaz, F. A. (1997). Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia, 109, 507–15.CrossRefGoogle Scholar
Batanouny, K. H. (2001). Plants in the desert of the Middle East. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Battaglia, L. L., Foré, S. A., & Sharitz, R. R. (2000). Seedling emergence, survival and size in relation to light and water availability in two bottomland hardwood species. Journal of Ecology, 88, 1041–50.CrossRefGoogle Scholar
Batty, A. L., Brundrett, M. C., Dixon, K. W., & Sivasithamparam, K. (2006). New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Australian Journal of Botany, 54, 367–74.CrossRefGoogle Scholar
Batty, A. L., Dixon, K. W., Brundrett, M., & Sivasithamparam, K. (2001a). Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist, 152, 511–20.CrossRefGoogle Scholar
Batty, A. L., Dixon, K. W., Brundrett, M., & Sivasithamparam, K. (2001b). Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Australian Journal of Botany, 49, 619–28.CrossRefGoogle Scholar
Baylis, G. T. S. (1975). The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In Endomycorrhiza, ed. Sanders, F. E., Moss, B., & Tinker, P. B.. London: Academic Press, pp. 378–89.Google Scholar
Baylis, G. T. S. (1980). Mycorrhizas and the spread of beech. New Zealand Journal of Ecology, 3, 151–2.Google Scholar
Bazzaz, F. A. (1979). Physiological ecology of plant succession. Annual Review of Ecology and Systematics, 10, 351–71.CrossRefGoogle Scholar
Bazzaz, F. A. (1990). Plant–plant interaction in successional environments. In Perspectives on Plant Competition, ed. Grace, J. B. & Tilman, D.. San Diego: Academic Press.Google Scholar
Bazzaz, F. A. (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge: Cambridge University Press.Google Scholar
Bazzaz, F. A. & Carlson, R. W. (1982). Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 54, 313–6.CrossRefGoogle ScholarPubMed
Beare, P. A. & Zedler, J. B. (1987). Cattail invasion and persistence in a coastal salt-marsh – the role of salinity reduction. Estuaries, 10, 165–70.CrossRefGoogle Scholar
Beatley, J. C. (1974). Phenological events and their environmental triggers in Mojave Desert. Ecosystem Ecology, 55, 856–63.Google Scholar
Beckage, B. & Clark, J. S. (2005). Does predation contribute to tree diversity? Oecologia, 143, 458–69.CrossRefGoogle ScholarPubMed
Beckage, B., Lavine, M., & Clark, J. S. (2005). Survival of tree seedlings across space and time: estimates from long-term count data. Journal of Ecology, 93, 1177–84.CrossRefGoogle Scholar
Beentje, H. J. (1993). A new aquatic palm from Madagascar. Principes, 37, 197–202.Google Scholar
Begon, M. (1985). A general theory of life-history variation. In Behavioural Ecology: Ecological Consequences of Adaptive Behaviour, ed. Sibly, M. R. & Smith, R. H.. Oxford: Blackwell Scientific Publications, pp. 91–8.Google Scholar
Beland, M. & Bergeron, Y. (1993). Ecological factors affecting abundance of advance growth in jack pine (Pinus banksiana Lamb.) stands of the boreal forest of northwestern Quebec. Forest Chronicles, 69, 561–8.CrossRefGoogle Scholar
Bell, A. D. (1991). Plant Form: An Illustrated Guide to Flowering Plant Morphology. Oxford: Oxford University Press.Google Scholar
Bell, D. T., Plummer, J. A., & Taylor, S. K. (1993). Seed germination ecology in southwestern Western Australia. Botanical Review, 59, 24–73.CrossRefGoogle Scholar
Bell, T., Freckleton, R. P., & Lewis, O. T. (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569–74.CrossRefGoogle Scholar
Bellingham, P. J., Duncan, R. P., Lee, W. G., & Buxton, R. P. (2004). Seedling growth rate and survival do not predict invasiveness in naturalized woody plants in New Zealand. Oikos, 106, 308–16.CrossRefGoogle Scholar
Bellingham, P. J. & Richardson, S. J. (2006). Tree seedling growth and survival over 6 years across different microsites in a temperate rain forest. Canadian Journal of Forest Research, 36, 910–8.CrossRefGoogle Scholar
Belnap, J., Welter, J. R., Grimm, N. B., Barger, N., & Ludwig, J. A. (2005). Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology, 86, 298–307.CrossRefGoogle Scholar
Benítez-Malvido, J. (1998). Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conservation Biology, 12, 380–9.CrossRefGoogle Scholar
Benítez-Malvido, J., García-Guzman, G., & Kossman-Ferraz, I. D. (1999). Leaf fungal incidence and herbivory on tree seedlings in tropical forest fragments: an experimental study. Biological Conservation, 91, 143–50.CrossRefGoogle Scholar
Benítez–Malvido, J. & Lemus-Albor, A. (2005). The seedling community of tropical rain forests and its interaction with herbivores and pathogens. Biotropica, 37, 301–13.CrossRefGoogle Scholar
Bennett, J. R. & Mathews, S. (2006). Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. American Journal of Botany, 93, 1039–51.CrossRefGoogle ScholarPubMed
Benson, D. R. & Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiology and Molecular Biology Reviews, 57, 293–319.Google ScholarPubMed
Benzing, D. H. (1978). Germination and early establishment of Tillandsia circinnata Schlecht. (Bromeliaceae) on some of its hosts and other supports in South Florida. Selbyana, 5, 95–106.Google Scholar
Benzing, D. H. (1980). The Biology of the Bromeliads. Eureka: Mad River Press.Google Scholar
Benzing, D. H. (1981). The population dynamics of Tillandsia circinnata (Bromeliaceae): cypress crown colonies in southern Florida. Selbyana, 5, 256–63.Google Scholar
Benzing, D. H. (1990). Vascular Epiphytes: General Biology and Related Biota. New York: Cambridge University Press.CrossRefGoogle Scholar
Benzing, D. H. (2000). Bromeliaceae: Profile of an Adaptive Radiation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Benzing, D. H., Friedman, W. E., Peterson, G., & Renfrow, A. (1983). Shootless, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. American Journal of Botany, 70, 121–33.CrossRefGoogle Scholar
Benzing, D. H. & Renfrow, A. (1974). The mineral nutrition of Bromeliaceae. Botanical Gazette, 135, 281–8.CrossRefGoogle Scholar
Berardini, T. Z., Bollman, K., Sun, H., & Posthig, R. S. (2001). Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science, 291, 2405–7.CrossRefGoogle ScholarPubMed
Berbee, M. L. & Taylor, J. W. (1993). Dating of the evolutionary radiations of the true fungi. Canadian Journal of Botany, 71, 1114–27.CrossRefGoogle Scholar
Berch, S. M., Allen, T. R., & Berbee, M. L. (2002). Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant and Soil, 244, 55–66.CrossRefGoogle Scholar
Berkeley, A., Thomas, A. D., & Dougill, A. J. (2005). Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. African Journal of Ecology, 43, 137–45.CrossRefGoogle Scholar
Berndtsson, R., Nodomi, K., Yasuda, H.et al. (1996). Soil water and temperature patterns in an arid desert dune sand. Journal of Hydrology, 185, 221–40.CrossRefGoogle Scholar
Bertness, M. D. & Callaway, R. M. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191–3.CrossRefGoogle ScholarPubMed
Bertness, M. D. & Yeh, S. M. (1994). Cooperative and competitive interactions in the recruitment of marsh elders. Ecology, 75, 2416–29.CrossRefGoogle Scholar
Berube, D. E. & Myers, J. H. (1982). Suppression of knapweed invasion by crested wheatgrass in the dry interior of British Columbia. Journal of Range Management, 35, 459–61.CrossRefGoogle Scholar
Besserer, A., Puech–Pages, V., Kiefer, P.et al. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Public Library of Science Biology, 4, 1239–47.Google ScholarPubMed
Betz, R. F. (1986). One decade of research in prairie restoration at the Fermi National Accelerator Laboratory (Fermilab) Batavia, Illinois. In Proceedings of the Ninth North American Prairie Conference, ed. Clambey, G. K. & Pemble, R. H.. Moorhead & Fargo: Tri-College University Center for Environmental Studies, pp. 179–85.Google Scholar
Beukes, P. C. & Cowling, R. M. (2003). Evaluation of restoration techniques for the Succulent Karoo, South Africa. Restoration Ecology, 11, 308–16.CrossRefGoogle Scholar
Bever, J. D. (2002). Negative feedback within a mutualism: host specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London Series B – Biological Sciences, 269, 2595–601.CrossRefGoogle ScholarPubMed
Bever, J. D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465–73.CrossRefGoogle Scholar
Bever, J. D., Schultz, P. A., Pringle, A., & Morton, J. B. (2001). Arbuscular my;corrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience, 51, 923–31.CrossRefGoogle Scholar
Bews, J. W. (1927). Studies on the ecological evolution of angiosperms. New Phytologist, 26, 1–21.CrossRefGoogle Scholar
Beyrle, H. F., Penningsfeld, F., & Hock, B. (1991). The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytologist, 117, 665–72.CrossRefGoogle Scholar
Beyrle, H. F., Smith, S. E., Peterson, R. L., & Franco, C. M. M. (1995). Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Canadian Journal of Botany, 73, 1129–40.CrossRefGoogle Scholar
Bhaskar, V. (2003). Root Hairs: the ‘Gills’ of Roots: Development, Structure and Functions. Enfield: Science Publishers, Inc.Google Scholar
Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. New Phytologist, 167, 335–52.CrossRefGoogle ScholarPubMed
Bidartondo, M. I. & Bruns, T. D. (2001). Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Molecular Ecology, 10, 2285–95.CrossRefGoogle ScholarPubMed
Bidartondo, M. I. & Bruns, T. D. (2002). Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Molecular Ecology, 11, 557–68.CrossRefGoogle ScholarPubMed
Bidartondo, M. I. & Bruns, T. D. (2005). On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Molecular Ecology, 14, 1549–60.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Redecker, D., Hijri, I.et al. (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 419, 389–92.CrossRefGoogle ScholarPubMed
Biere, A. (1991). Parental effects in Lychnis flos-cuculi. 1. Seed size, germination and seedling performance in a controlled environment. Journal of Evolutionary Biology, 4, 447–65.CrossRefGoogle Scholar
Bierhorst, D. (1971). Morphology of Vascular Plants. New York: Macmillan.Google Scholar
Birch, C. P. D. (1986). Development of VA mycorrhizal infection in seedlings in semi-natural grassland turf. In First European Symposium on Mycorrhizas, ed. Gianinazzi-Pearson, V. & Gianinazzi, S.. Paris: INRA, pp. 233–9.Google Scholar
Birschwilks, M., Haupt, S., Hofius, D., & Neumann, S. (2006). Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. Journal of Experimental Botany, 57, 911–21.CrossRefGoogle ScholarPubMed
Bischoff, A., Cremieux, L., Smilauerova, M.et al. (2006). Detecting local adaptation in widespread grassland species – the importance of scale and local plant community. Journal of Ecology, 94, 1130–42.CrossRefGoogle Scholar
Björkman, E. (1960). Monotropa hypopitys L. – an epiparasite on tree roots. Physiological Plantarum, 13, 308–27.CrossRefGoogle Scholar
Björkman, O. & Holmgren, P. (1966). Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. Physiologia Plantarum, 19, 854–9.CrossRefGoogle Scholar
Black, J. N. (1958). Competition between plants of different initial seed sizes in swards of subterranean cover (Trifolium subterraneum L.) with particular reference to leaf area and the light microclimate. Australian Journal of Agricultural Research, 9, 299–318.CrossRefGoogle Scholar
Blanc, P. (1986). Edification d'arbres par croissance d'établissement de type monocotylédon: l'exemple de Chloranthacae. In Colloque international sur l'arbre 1986. Montpellier: Nautralia Monspeliensia, numéro hors série, pp. 101–23.Google Scholar
Blaudez, D., Jacob, C., Turnau, K.et al. (2000). Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 104, 1366–71.CrossRefGoogle Scholar
Blennow, K. & Lindkvist, L. (2000). Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management, 135, 289–301.CrossRefGoogle Scholar
Bloor, J. M. G. & Grubb, P. J. (2003). Growth and mortality in high and low light: trends among 15 shade-tolerant tropical rain forest tree species. Journal of Ecology, 91, 77–85.CrossRefGoogle Scholar
Blossey, B. & Nötzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887–9.CrossRefGoogle Scholar
Blouin, M., Zuily-Fodil, Y., Pham-Thi, A.-T.et al. (2005). Belowground organism activities affect plant aboveground phenotype, inducing tolerance to parasites. Ecology Letters, 8, 202–8.CrossRefGoogle Scholar
Blum, J. D., Klaue, A., Nezat, C. A.et al. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729–31.CrossRefGoogle ScholarPubMed
Boddey, R. M., Deoliveira, O. C., Urquiaga, S.et al. (1995). Biological nitrogen fixation associated with sugar cane and rice contribution and prospects for improvement. Plant and Soil, 174, 195–209.CrossRefGoogle Scholar
Bodley, J. H. & Benson, F. C. (1980). Stilt-root walking by an Iriarteoid palm in Peruvian Amazon. Biotropica, 12, 67–71.CrossRefGoogle Scholar
Boege, K. & Marquis, R. J. (2005). Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology & Evolution, 20, 441–8.CrossRefGoogle ScholarPubMed
Boeken, B., Ariza, C., Gutterman, Y., & Zaady, E. (2004). Environmental factors affecting dispersal, germination and distribution of Stipa capensis in the Negev Desert, Israel. Ecological Research, 19, 533–40.CrossRefGoogle Scholar
Boeken, B., Lipchin, C., Gutterman, Y., & Rooyen, N. (1998). Annual plant community responses to density of small-scale soil disturbances in the Negev, Israel. Oecologia, 114, 106–17.CrossRefGoogle Scholar
Boeken, B. & Orenstein, D. (2001). The effect of plant litter on ecosystem properties in a Mediterranean semi-arid shrubland. Journal of Vegetation Science, 12, 825–32.CrossRefGoogle Scholar
Boeken, B. & Shachak, M. (1994). Desert plant communities in human-made patches – implications for management. Ecological Applications, 4, 702–16.CrossRefGoogle Scholar
Boeken, B. & Shachak, M. (1998a). The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography, 21, 63–73.CrossRefGoogle Scholar
Boeken, B. & Shachak, M. (1998b). Colonization by annual plants of an experimentally altered desert landscape: source–sink relationships. Journal of Ecology, 86, 804–14.CrossRefGoogle Scholar
Boeken, B. & Shachak, M. (2006). Linking community and ecosystem processes: the role of minor species. Ecosystems, 9, 119–27.CrossRefGoogle Scholar
Boeken, B., Shachak, M., Gutterman, Y., & Brand, S. (1995). Patchiness and disturbance: plant community responses to porcupine diggings in the central Negev. Ecography, 18, 410–22.CrossRefGoogle Scholar
Boerner, R. E. J. & Brinkman, J. A. (1996). Ten years of tree seedling establishment and mortality in an Ohio deciduous forest complex. Bulletin of the Torrey Botanical Club, 123, 309–17.CrossRefGoogle Scholar
Böhning-Gaese, K., Gaese, B. H., & Rabemanantsoa, S. B. (1999). Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. Ecology, 80, 821–32.CrossRefGoogle Scholar
Bokdam, J. (1977). Seedling morphology of some African Sapotaceae and its taxonomic significance. Mededelingen Lanbouwhogeschool, Wageningen, 77, 1–84.Google Scholar
Bonaccorso, F. J., Glanz, W. E., & Sanford, C. M. (1980). Feeding assemblages of mammals at fruiting Dipteryx panamensis (Papilionaceae) trees in Panama: seed predation, dispersal and parasitism. Revista Biologica Tropical, 28, 61–72.Google Scholar
Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixing systems. In Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, ed. Gordon, J. C. & Wheeler, C. T.. The Hague: Martinus Nijhoff, pp. 55–8.CrossRefGoogle Scholar
Bond, W. J. (1989). The tortoise and the hare – ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227–49.CrossRefGoogle Scholar
Bond, W. J., Honig, M., & Maze, K. E. (1999). Seed size and seedling emergence: an allometric relationship and some ecological implications. Oecologia, 120, 132–6.CrossRefGoogle ScholarPubMed
Bond, W. J. & Keeley, J. E. (2005). Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20, 387–94.CrossRefGoogle ScholarPubMed
Bond, W. J. & Wilgen, B. W. (1996). Fire and Plants. New York: Chapman & Hall.CrossRefGoogle Scholar
Bonello, P., Bruns, T. D., & Gardes, M. (1998). Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytologist, 138, 533–42.CrossRefGoogle Scholar
Bonnis, A. & Lepart, J. (1994). Vertical structure of seed banks and the impact of depth of burial on recruitment in two temporary marshes. Vegetatio, 112, 127–39.CrossRefGoogle Scholar
Boon, J. D. (2006). Cephalotus follicularis, Western Australian pitcher plant, Albany pitcher plant (http://www.aqph26.dsl.pipex.com, March 14, 2007).Google Scholar
Booth, M. G. (2004). Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecology Letters, 7, 538–46.CrossRefGoogle Scholar
Borchers, S. L. & Perry, D. A. (1990). Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Canadian Journal of Forest Research, 20, 712–15.CrossRefGoogle Scholar
Bormann, F. H. & Likens, G. E. (1979). Pattern and Process in a Forested Ecosystem. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bornkamm, R., Darius, F., & Prasse, R. (1999). On the life cycle of Stipagrostis scoparia hillocks. Journal of Arid Environments, 42, 177–86.CrossRefGoogle Scholar
Bosy, J. L. & Reader, R. J. (1995). Mechanisms underlying the suppression of forb seedling emergence by grass (Poa pratensis) litter. Functional Ecology, 9, 635–9.CrossRefGoogle Scholar
Boucher, D. H. (1983). Quercus oleoides (Roble Encino, Oak). In Costa Rican Natural History, ed. Janzen, D. H.. Chicago: University of Chicago Press, pp. 319–20.Google Scholar
Boulton, A. J. & Brock, M. A. (1999). Australian Freshwater Ecology: Processes and Management. Glen Osmond: Gleneagles Publishing.Google Scholar
Bouwmeester, H. J., Matusova, R., Zhongkui, S., & Beale, M. H. (2003). Secondary metabolite signaling in host–parasitic plant interactions. Current Opinion in Plant Biology, 6, 358–64.CrossRefGoogle ScholarPubMed
Bower, F. O. (1935). Primitive Land Plants. London: Macmillan.Google Scholar
Bowers, J. E. & Pierson, E. A. (2001). Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae). Southwestern Naturalist, 46, 272–81.CrossRefGoogle Scholar
Bowers, J. E., Turner, R. M., & Burgess, T. L. (2004). Temporal and spatial patterns in emergence and early survival of perennial plants in the Sonoran Desert. Plant Ecology, 172, 107–19.CrossRefGoogle Scholar
Box, E. O. (1996). Plant functional types and climate at the global scale. Journal of Vegetation Science, 7, 309–20.CrossRefGoogle Scholar
Boyce, C. K. (2005). Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology, 31, 117–40.2.0.CO;2>CrossRefGoogle Scholar
Boyd, L. (1932). Monocotylous seedlings: morphological studies in the post-seminal development of the embryo. Transactions and Proceedings of the Botanical Society of Edinburgh, 31, 5–224.Google Scholar
Breckle, S. W. (2002). Walter's Vegetation of the Earth, 4th edn. Berlin: Springer.CrossRefGoogle Scholar
Bremer, K. (1985). Summary of green plant phylogeny and classification. Cladistics, 1, 369–85.CrossRefGoogle Scholar
Brewer, J. S. (1999a). Short-term effects of fire and competition on growth and plasticity of the yellow pitcher plant, Sarracenia alata (Sarraceniaceae). American Journal of Botany, 86, 1264–71.CrossRefGoogle Scholar
Brewer, J. S. (1999b). Effects of fire, competition, and soil disturbances on regeneration of a carnivorous plant (Drosera capillaris). American Midland Naturalist, 141, 28–42.CrossRefGoogle Scholar
Brewer, J. S. (2001). A demographic analysis of fire-stimulated seedling establishment of Sarracenia alata (Sarraceniaceae). American Journal of Botany, 88, 1250–7.CrossRefGoogle Scholar
Briede, J. W. & McKell, C. M. (1992). Germination of seven perennial arid land species, subject to soil moisture stress. Journal of Arid Environments, 23, 263–70.Google Scholar
Brighigna, L., Fiordi, A. C., & Palandri, M. R. (1990). Structural comparison between free and anchored roots in Tillandsia (Bromeliaceae) species. Caryologia, 43, 27–42.CrossRefGoogle Scholar
Brittingham, S. & Walker, L. R. (2000). Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs. Western North American Naturalist, 60, 374–83.Google Scholar
Brock, M. A. (1998). Are temporary wetlands resilient? Evidence from seed banks of Australian and South African wetlands. In Wetlands for the Future: Contributions from INTECOL's V International Wetlands Conference, ed. McComb, J. & Davis, J. A.. Adelaide: Gleneagles Publishing.Google Scholar
Brockie, R. (1992). A Living New Zealand Forest. Auckland: David Bateman.Google Scholar
Brodribb, T. J., Holbrook, N. M., & Hill, R. S. (2005). Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure. Australian Journal of Botany, 53, 749–55.CrossRefGoogle Scholar
Brooks, S. M. & Spencer, T. (1997). Changing soil hydrology due to rain forest logging, an example from Sabah Malaysia. Journal of Environmental Management, 49, 297–310.CrossRefGoogle Scholar
Brown, J. & Venable, D. (1986). Evolutionary ecology of seed-bank annuals in temporally varying environments. American Naturalist, 127, 31–47.CrossRefGoogle Scholar
Brown, J. S. & Venable, D. L. (1991). Life history evolution of seed-bank annuals in response to seed predation. Evolutionary Ecology, 5, 12–29.CrossRefGoogle Scholar
Brown, N. A. C. & Staden, J. (1997). Smoke as a germination cue: a review. Plant Growth Regulation, 22, 115–24.CrossRefGoogle Scholar
Brown, N. D. & Whitmore, T. C. (1992). Do dipterocarp seedlings really partition tropical rain forest gaps? Philosophical Transactions of the Royal Society of London, 335, 369–78.CrossRefGoogle Scholar
Brown, R. L. & Fridley, J. D. (2003). Control of plant species diversity and community invasibility by species immigration: seed richness versus seed density. Oikos, 102, 15–24.CrossRefGoogle Scholar
Brown, W. H. (1935). The Plant Kingdom. Boston: Ginn and Company.Google Scholar
Bruchmann, H. (1898). Über die Prothallien und die Keimpflanzen mehrer europaischer Lycopodien. Gotha: self-published.Google Scholar
Bruchmann, H. (1909). Vom Prothallium der grossen Sporen und von der Keimes-Entwicklung einiger Selaginella-arten. Flora, 99, 12–51.Google Scholar
Bruchmann, H. (1912). Zur Embryologie der Selaginellaceen. Flora, 104, 180–224.Google Scholar
Brudvig, L. A. & Evans, C. W. (2006). Competitive effects of native and exotic shrubs on Quercus alba seedlings. Northeastern Naturalist, 13, 259–68.CrossRefGoogle Scholar
Bruelheide, H. (2002). Climatic factors controlling the eastern and altitudinal distribution boundary of Digitalis purpurea L. in Germany. Flora, 197, 475–90.CrossRefGoogle Scholar
Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with Mycorrhizas in Forestry and Agriculture. Canberra: ACIAR Monograph.Google Scholar
Bryan, G. S. (1920). Early stages in development of the sporophyte of Sphagnum subsecundum. American Journal of Botany, 7, 296–303.CrossRefGoogle Scholar
Bryan, G. S. (1952). The cellular proembryo of Zamia and its cap cells. American Journal of Botany, 39, 433–43.CrossRefGoogle Scholar
Buddenhagen, C. E. & Ogden, J. (2003). Growth and survival of Dysoxylum spectabile (Meliaceae) seedlings in canopy gaps. New Zealand Journal of Botany, 41, 179–83.CrossRefGoogle Scholar
Budelsky, R. & Galatowitsch, S. (2000). Effects of water regime and competition on the establishment of a native sedge in restored wetlands. Journal of Applied Ecology, 37, 971–85.CrossRefGoogle Scholar
Budelsky, R. & Galatowitsch, S. (2004). Establishment of Carex stricta Lam. seedlings in experimental wetlands with implications for restoration. Plant Ecology, 175, 91–105.CrossRefGoogle Scholar
Budowski, G. (1987). Living fence posts in tropical America, a widespread agroforestry practice. In Agroforestry, Realities, Possibilities and Potentials, ed. Gholz, H. L.. Dordrecht, Netherlands: Martinus Nijhoff, pp. 169–78.Google Scholar
Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R., & Becard, G. (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant–Microbe Interactions, 13, 693–8.CrossRefGoogle ScholarPubMed
Buell, M. F. (1935). Seed and seedling of Acorus calamus. Botanical Gazette, 96, 758–65.CrossRefGoogle Scholar
Bugmann, H. (2001). A review of forest gap models. Climatic Change, 51, 259–305.CrossRefGoogle Scholar
Bullock, J. M. (2000). Gaps and seedling colonization. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn., ed. Fenner, M.. Wallingford: CAB International, pp. 375–95.CrossRefGoogle Scholar
Bullock, S. H. (1991). Herbivory and the demography of the chaparral shrub Ceanothus greggii (Rhamnaceae). Madroño, 38, 63–72.Google Scholar
Bungard, R. A., Press, M. C., & Scholes, J. D. (2000). The influence of nitrogen on rain forest dipterocarp seedlings exposed to a large increase in irradiance. Plant Cell and Environment, 23, 1183–94.CrossRefGoogle Scholar
Burger, D. (1972). Seedlings of Some Tropical Trees and Shrubs Mainly of South East Asia. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Burgess, L. M., Hild, A. L., & Shaw, N. L. (2005). Capsule treatments to enhance seedling emergence of Gaura neomexicana spp. coloradensis. Restoration Ecology, 13, 8–14.CrossRefGoogle Scholar
Burleigh, J. G. & Mathews, S. (2007). Assessing among-locus variation in the inference of seed plant phylogeny. International Journal of Plant Sciences, 168, 111–24.CrossRefGoogle Scholar
Burrows, C. J. (1993). Vivipary and effects of maternal tissues on germination of some New Zealand seeds. Canterbury Botanical Society, 27, 47–8.Google Scholar
Burrows, C. J. (1995). The germination behaviour of the seeds of the New Zealand species Aristotelia serrata, Coprosma robusta, Cordyline australis, Myrtus obcordata and Schefflera digitata. New Zealand Journal of Botany, 33, 257–64.CrossRefGoogle Scholar
Burrows, C. J. (1996). Germination behaviour of the seeds of seven New Zealand vine species. New Zealand Journal of Botany, 34, 93–102.CrossRefGoogle Scholar
Burslem, D. F. R. P., Grubb, P. J., & Turner, I. M. (1995). Responses to nutrient addition among shade-tolerant tree seedlings of lowland tropical rain forest in Singapore. Journal of Ecology, 83, 113–22.CrossRefGoogle Scholar
Burt, A. (1989). Comparative methods using phyllogenetically independent contrasts. Oxford Surveys in Evolutionary Biology, 6, 33–53.Google Scholar
Burton, P. J. & Bazzaz, F. A. (1995). Ecophysiological responses of tree seedlings invading different patches of old-field vegetation. Journal of Ecology, 83, 99–112.CrossRefGoogle Scholar
Burton, P. J. & Mueller-Dombois, D. (1984). Response of Metrosideros polymorpha seedlings to experimental canopy opening. Ecology, 65, 779–91.CrossRefGoogle Scholar
Burt-Smith, G. S., Grime, J. P., & Tilman, D. (2003). Seedling resistance to herbivory as a predictor of relative abundance in a synthesised prairie community. Oikos, 101, 345–53.CrossRefGoogle Scholar
Buschmann, H., Keller, M., Porret, N., Dietz, H., & Edwards, P. J. (2005). The effect of slug grazing on vegetation development and plant species diversity in an experimental grassland. Functional Ecology, 19, 291–8.CrossRefGoogle Scholar
Byers, D. L., Platenkamp, G. A. J., & Shaw, R. G. (1997). Variation in seed characters in Nemophila menziesii – evidence of a genetic basis for maternal effect. Evolution, 51, 1445–56.Google ScholarPubMed
Cabin, R. J., Weller, S. G., Lorence, D. H.et al. (2002). Effects of light, alien grass, and native species additions on Hawaiian dry forest restoration. Ecological Applications, 12, 1595–1610.CrossRefGoogle Scholar
Cairney, J. W. G. & Alexander, I. J. (1992). A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. III. Phosphate absorption and transfer in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytologist, 122, 159–64.CrossRefGoogle Scholar
Callaway, R. M. (1995). Positive interactions among plants. Botanical Review, 61, 306–49.CrossRefGoogle Scholar
Callaway, R. M. (1997). Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 112, 143–9.CrossRefGoogle ScholarPubMed
Callaway, R. M. & Aschehoug., E. T. (2000). Invasive plants versus their new and old neighbors: a mechanism for invasion. Science, 290, 521–3.CrossRefGoogle ScholarPubMed
Callaway, R. M., Brooker, R. W., Choler, P.et al. (2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844–8.CrossRefGoogle ScholarPubMed
Callaway, R. M. & Davis, F. W. (1998). Recruitment of Quercus agrifolia in central California: the importance of shrub-dominated patches. Journal of Vegetation Science, 9, 647–56.CrossRefGoogle Scholar
Callaway, R. M., Lucia, E. H., Moore, D., Nowak, R., & Schlesinger, W. H. (1996). Competition and facilitation: contrasting effects of Artemisia tridentata on desert vs. montane pines. Ecology, 77, 2130–41.CrossRefGoogle Scholar
Callaway, R. M. & Walker, L. R. (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78, 1958–65.CrossRefGoogle Scholar
Cameron, G. N. & Spencer, S. R. (1989). Rapid leaf decay and nutrient release in a Chinese tallow forest. Oecologia, 80, 222–8.CrossRefGoogle Scholar
Campbell, E. J. F. & Newbery, D. M. C. (1993). Ecological relationships between lianas and trees in lowland rain forest in Sabah, East Malaysia. Journal of Tropical Ecology, 9, 469–90.CrossRefGoogle Scholar
Campbell, E. O. (1928). The Structure and Development of Mosses and Ferns, 3rd edn. New York: Macmillan.Google Scholar
Campbell, R. S. (1929). Vegetative succession in the Prosopis sand dunes of southern New Mexico. Ecology, 10, 392–8.CrossRefGoogle Scholar
Canham, C. D. (1988). Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology, 69, 786–95.CrossRefGoogle Scholar
Canham, C. D., Berkovwitz, A. R., Kelly, V. R.et al. (1996). Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research, 26, 1521–30.CrossRefGoogle Scholar
Canham, C. D., Kobe, R. K., Latty, E. F., & Chazdon, R. L. (1999). Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia, 121, 1–11.CrossRefGoogle ScholarPubMed
Caprio, A. C. & Lineback, P. (2002). Pre-twentieth century fire history of Sequoia and Kings Canyon National Parks: a review and evaluation of our knowledge. In Fire in California Ecosystems: Integrating Ecology, Prevention and Management, ed. Morales, M. & Morales, T.. Berkeley: Association for Fire Ecology, pp. 180–99.Google Scholar
Carafa, A., Duckett, J. G., & Ligrone, R. (2003). The placenta in Monoclea forsteri Hook. and Treubia lacunosa (Col.) Prosk: insights into placental evolution in liverworts. Annals of Botany, 92, 299–307.CrossRefGoogle ScholarPubMed
Cardel, Y., Rico-Gray, V., Garcia-Franco, J. G., & Thien, L. B. (1997). Ecological status of Beaucarnea gracilis, an endemic species of the semiarid Tehuacan Valley, Mexico. Conservation Biology, 11, 367–74.CrossRefGoogle Scholar
Carlyle, C. N. & Fraser, L. H. (2006). A test of three juvenile plant competitive response strategies. Journal of Vegetation Science, 17, 11–18.CrossRefGoogle Scholar
Carnago, C. E. D. & Ferreira, A. W. P. (2005). Genetic control of wheat seedling growth. Scientia Agricola, 62, 325–30.Google Scholar
Carnevale, N. & Montagnini, F. (2002). Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest Ecology and Management, 163, 217–27.CrossRefGoogle Scholar
Carrillo-Garcia, A., Bashan, Y., & Bethlenfalvay, G. J. (2000). Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Plant and Soil, 218, 207–14.CrossRefGoogle Scholar
Carrillo-Garcia, A., Luz, J. L. L., Bashan, Y., & Bethlenfalvay, G. J. (1999). Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restoration Ecology, 7, 321–35.CrossRefGoogle Scholar
Casanova, M. & Brock, M. (2004). How do depth, duration, and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147, 237–50.CrossRefGoogle Scholar
Casler, M. D. & Undersander, D. J. (2006). Selection for establishment capacity in reed canarygrass. Crop Science, 46, 1277–85.CrossRefGoogle Scholar
Casperson, J. P. & Kobe, R. K. (2001). Interspecific variation in sapling mortality in relation to growth and soil moisture. Oikos, 92, 160–8.CrossRefGoogle Scholar
Castro, J., Zamora, R., Hodar, J. A., & Gomez, J. M. (2002). Use of shrubs as nurse plants: a new technique for reforestation in Mediterranean mountains. Restoration Ecology, 10, 297–305.CrossRefGoogle Scholar
Castro, J., Zamora, R., Hódar, J. A., & Gómez, J. M. (2004a). Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology, 92, 266–77.CrossRefGoogle Scholar
Castro, J., Zamora, R., Hodar, J. A., Gomez, J. M., & Gomez-Aparico, L. (2004b). Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restoration Ecology, 12, 352–8.CrossRefGoogle Scholar
Castro-Diez, P., Puyravaud, J. P., & Cornelissen, J. H. C. (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 124, 476–86.CrossRefGoogle ScholarPubMed
Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C., & Villarsalvador, P. (1998). Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 116, 57–66.CrossRefGoogle ScholarPubMed
Caswell, H. (1989). Matrix Population Models. Sunderland: Sinauer.Google Scholar
Caswell, H. (2001). Matrix Population Models, 2nd edn. Sunderland: Sinauer.Google Scholar
Catalán, L., Balzarini, M., Taleisnik, E., Sereno, R., & Karlin, U. (1994). Effects of salinity on germination and seedling growth of Prosopis flexuosa (Dc). Forest Ecology and Management, 63, 347–57.CrossRefGoogle Scholar
Catovsky, S. & Bazzaz, F. A. (2002). Nitrogen availability influences regeneration of temperate tree species in the understory seedling bank. Ecological Applications, 12, 1056–70.CrossRefGoogle Scholar
Catovsky, S., Kobe, R. K., & Bazzaz, F. A. (2002). Nitrogen-induced changes in seedling regeneration and dynamics of mixed conifer–broad-leaved forests. Ecological Applications, 12, 1611–25.Google Scholar
Cavelier, J., Aide, T. M., Santos, C., Eusse, A. M., & Dupuy, J. M. (1998). The savannizations of moist forests in the Sierra Nevada de Santa Marta, Colombia. Journal of Biogeography, 25, 901–12.CrossRefGoogle Scholar
Cázares, E. & Smith, J. E. (1996). Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza, 6, 65–7.Google Scholar
Cázares, E. & Trappe, J. M. (1994). Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia, 86, 507–10.CrossRefGoogle Scholar
Cerabolini, B., Ceriani, R. M., Caccianiga, M., Andreis, R., & Raimondi, B. (2003). Seed size and shape and persistence in soil: a test on Italian flora from alps to Mediterranean coasts. Seed Science Research, 13, 75–85.CrossRefGoogle Scholar
Cervera, J. C., Andrade, J. L., Simá, J. L., & Graham, E. A. (2006). Microhabitats, germination, and establishment for Mammillaria gaumeri (Cactaceae), a rare species from Yucatan. International Journal of Plant Science, 167, 311–19.CrossRefGoogle Scholar
Chacon, P. & Armesto, J. J. (2005). Effect of canopy openness on growth, specific leaf area, and survival of tree seedlings in a temperate rainforest of Chiloe Island, Chile. New Zealand Journal of Botany, 43, 71–81.CrossRefGoogle Scholar
Chamberlain, C. J. (1919). The Living Cycads. Chicago: University of Chicago Press.Google Scholar
Chamberlain, C. J. (1935). Gymnosperms: Structure and Evolution. Chicago: University of Chicago Press.Google Scholar
Chambers, J. C. (1995). Disturbance, life history strategies, and seed fates in alpine herbfield communities. American Journal of Botany, 82, 421–33.CrossRefGoogle Scholar
Chambers, J. C., Farleigh, K., Tausch, R. J., et al. (1998). Understanding long- and short-term changes in vegetation and geomorphic processes: the key to riparian restoration. In Proceedings: Rangeland Management and Water Resources, ed. Potts, D. F.. Middleburg: Water Resources Association and Society for Range Management, pp. 101–10.Google Scholar
Chambers, J. C., Wall, Vander S. B., & Schupp, E. W. (1999). Seed and seedling ecology of pinyon and juniper species in the pygmy woodlands of western North America. Botanical Reviews, 65, 1–38.CrossRefGoogle Scholar
Chang, S.–M. (2006). Female compensation through the quantity and quality of progeny in a gynodioecious plant, Geranium maculatum (Geraniaceae). American Journal of Botany, 93, 263–70.CrossRefGoogle Scholar
Chao, W. S., Horvath, D. P., Anderson, J. V., & Foley, M. E. (2005). Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Science, 53, 929–37.CrossRefGoogle Scholar
Chapin, F. S. III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–60.CrossRefGoogle Scholar
Chapin, F. S. III (1989). The cost of tundra plant structures: evaluation of concepts and currencies. American Naturalist, 133, 1–19.CrossRefGoogle Scholar
Chapin, F. S. III, Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. American Naturalist, 142, S78–S92.CrossRefGoogle Scholar
Chapman, C. A. & Overdonk, D. A. (1998). Forests without primates: primate/ plant codependency. American Journal of Primatology, 45, 127–41.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Chapman, V. J. (1976). Mangrove Vegetation. Vaduz: J. Cramer.Google Scholar
Charnov, E. L. (1993). Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford: Oxford University Press.Google Scholar
Chase, J. M. (2003). Community assembly: when should history matter? Oecologia, 136, 489–98.CrossRefGoogle ScholarPubMed
Chase, M. W. (2005). Classification of Orchidaceae in the age of DNA data. Curtis's Botanical Magazine, 22, 2–7.CrossRefGoogle Scholar
Chauvel, A., Grimaldi, M., & Tessier, D. (1991). Changes in soil pore-space distribution following deforestation and revegetation, an example from the Central Amazon Basin, Brazil. Forest Ecology and Management, 38, 259–71.CrossRefGoogle Scholar
Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling, 124, 233–54.CrossRefGoogle Scholar
Chazdon, R. L. (2003). Tropical forest recovery, legacies of human impact and natural disturbance. Perspectives in Plant Ecology, Evolution and Systematics, 6, 51–71.CrossRefGoogle Scholar
Chen, J.-G., Ullah, H., Temple, B.et al. (2006). RACK1 mediates multiple hormone responsiveness and development processes in Arabidopsis. Journal of Experimental Botany, 57, 2697–708.CrossRefGoogle ScholarPubMed
Chen, Y.-F., Etheridge, N., & Schaller, G. E. (2005). Ethylene signal transduction. Annals of Botany, 95, 901–15.CrossRefGoogle ScholarPubMed
Cheplick, G. P. (1982). The role of differential allocation to aerial and subterranean propagules in the population dynamics and survival strategies of Amphicarpum pershii Kunth. MS thesis, Rutgers, State University of New Jersey, USA.
Cheplick, G. P. (1983). Differences between plants arising from aerial and subterranean seeds in the amphicarpic annual Cardamine chenopodifolia (Cruciferae). Bulletin of the Torrey Botanical Club, 110, 442–8.CrossRefGoogle Scholar
Cheplick, G. P. (1998). Seed dispersal and seedling establishment in grass populations. In Population Biology of Grasses, ed. Cheplick, G. P.. Cambridge: Cambridge University Press, pp. 84–105.CrossRefGoogle Scholar
Cheplick, G. P. & Quinn, J. A. (1988). Subterranean seed production and population responses to fire in Amphicarpum purshii (Gramineae). Journal of Ecology, 76, 263–73.CrossRefGoogle Scholar
Cherry, J. A. & Gough, L. (2006). Temporary floating island formation maintains wetland plant species richness: the role of the seed bank. Aquatic Botany, 85, 29–36.CrossRefGoogle Scholar
Chiarello, N., Field, C., & Mooney, H. (1987). Midday wilting in a tropical pioneer tree. Functional Ecology, 1, 3–11.CrossRefGoogle Scholar
Chick, E. (1903). The seedling of Torreya Myristica. New Phytologist, 2, 83–91.CrossRefGoogle Scholar
Chittenden, F. J., ed. (1951). The Royal Horticultural Society Dictionary of Gardening. Oxford: Clarendon Press.Google Scholar
Chuck, G. & Hake, S. (2005). Regulation of developmental transitions. Current Opinion in Plant Biology, 8, 67–70.CrossRefGoogle ScholarPubMed
Cione, N. K., Padgett, P. E., & Allen, E. B. (2002). Restoration of a native shrubland impacted by exotic grasses, frequent fire, and nitrogen deposition in southern California. Restoration Ecology, 10, 376–84.CrossRefGoogle Scholar
Cipollini, D. (2004). Stretching the limits of plasticity: can a plant defend against both competitors and herbivores? Ecology, 85, 28–37.CrossRefGoogle Scholar
Cipollini, D., Enright, S., Traw, M. B., & Bergelson, J. (2004). Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology, 13, 1643–53.CrossRefGoogle ScholarPubMed
Cisse, N. & Ejeta, G. (2003). Genetic variation and relationships among seedling vigor traits in Sorghum. Crop Science, 43, 824–8.CrossRefGoogle Scholar
Claessen, D., Gilligan, C. A., Lutman, P. J. W., & Bosch, F. (2005). Which traits promote persistence of feral GM crops? Part 1: implications of environmental stochasticity. Oikos, 110, 20–9.CrossRefGoogle Scholar
Clark, C. J., Poulsen, J. R., Connor, E. F., & Parker, V. T. (2004). Fruiting trees as dispersal foci in a semi-deciduous tropical forest. Oecologia, 139, 66–75.CrossRefGoogle Scholar
Clark, D. A. & Clark, D. B. (1984). Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen–Connell model. American Naturalist, 124, 769–88.CrossRefGoogle Scholar
Clark, D. B. & Clark, D. A. (1989). The role of physical damage in the seedling mortality regime of a neotropical rain forest. Oikos, 55, 225–30.CrossRefGoogle Scholar
Clark, D. B. & Clark, D. A. (1991). The impact of physical damage on canopy tree regeneration in tropical rain forest. Journal of Ecology, 79, 447–57.CrossRefGoogle Scholar
Clark, D. B., Palmer, M. W., & Clark, D. A. (1999). Edaphic factors and the landscape-level distributions of tropical rain forest trees. Ecology, 80, 2662–75.CrossRefGoogle Scholar
Clark, J. S., Beckage, B., Camill, P.et al. (1999). Interpreting recruitment limitation in forests. American Journal of Botany, 86, 1–16.CrossRefGoogle ScholarPubMed
Clark, S. E. (1997). Organ formation at the vegetative shoot meristem. Plant Cell, 9, 1067–76.CrossRefGoogle ScholarPubMed
Clauss, M. J. & Venable, D. L. (2000). Seed germination in desert annuals: an empirical test of adaptive bet hedging. American Naturalist, 155, 168–86.CrossRefGoogle ScholarPubMed
Claveau, Y., Messier, C., & Comeau, P. G. (2005). Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance. Tree Physiology, 25, 373–84.CrossRefGoogle ScholarPubMed
Clay, K. (1990). Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21, 275–97.CrossRefGoogle Scholar
Clay, K. & Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 1742–4.CrossRefGoogle ScholarPubMed
Clearwater, M. J., Susilawaty, R., Effendi, R., & Gardingen, P. R. (1999). Rapid photosynthetic acclimation of Shorea johorensis seedlings after logging disturbance in Central Kalimantan. Oecologia, 121, 478–88.CrossRefGoogle ScholarPubMed
Climent, J. M., Aranda, I., Alonso, J., Pardos, J. A., & Gil, L. (2006). Developmental constraints limit the response of Canary Island pine seedlings to combined shade and drought. Forest Ecology and Management, 231, 164–8.CrossRefGoogle Scholar
Clipson, N. J. W., Tomos, A. D., Flowers, T. J., & Jones, R. G. W. (1985). Salt tolerance in the halophyte Suaeda maritima L Dum – the maintenance of turgor pressure and water-potential gradients in plants growing at different salinities. Planta, 165, 392–6.CrossRefGoogle ScholarPubMed
Close, T. J. (1997). Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiologia Plantarum, 100, 291–6.CrossRefGoogle Scholar
Clouse, S. D. & Sasse, J. M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annual Review of Plant Physiology and Molecular Biology, 49, 427–51.CrossRefGoogle ScholarPubMed
Cochrane, M. A., Alencar, A., Schulze, M. D.et al. (1999). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–5.CrossRefGoogle ScholarPubMed
Cochrane, M. A. & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18, 311–25.CrossRefGoogle Scholar
Cochrane, M. A. & Schulze, M. D. (1999). Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31, 2–16.Google Scholar
Cockayne, L. (1928). The Vegetation of New Zealand. In Die Vegetation der Erde, ed. Engler, A. & Drude, O., XIV, 2nd edn. Liepzig.Google Scholar
Cody, M. L. (1993). Do cholla cacti (Opuntia spp., subgenus cylindropuntia) use or need nurse plants in the Mojave Desert? Journal of Arid Environments, 24, 139–54.CrossRefGoogle Scholar
Cody, M. L. (2000). Slow–motion population dynamics in Mojave Desert perennial plants. Journal of Vegetation Science, 11, 351–8.CrossRefGoogle Scholar
Cohen, A. L., Singhakumara, B. M. P., & Ashton, P. M. S. (1995). Releasing rain forest succession: a case study in the Dicranopteris linearis fernlands of Sri Lanka. Restoration Ecology, 3, 261–70.CrossRefGoogle Scholar
Cohen, D. (1967). Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. Journal of Theoretical Biology, 16, 1–14.CrossRefGoogle Scholar
Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in lowland tropical forest. Ecological Monographs, 53, 209–33.CrossRefGoogle Scholar
Coley, P. D. & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305–35.CrossRefGoogle Scholar
Coley, P. D., Bryant, J. P., & Chapin, F. S. III. (1985). Resource availability and plant anti-herbivore defense. Science, 230, 895–9.CrossRefGoogle Scholar
Collier, M. H., Vankat, J. L., & Hughes, M. R. (2002). Diminished plant richness and abundance below Lonicera maackii, an invasive shrub. American Midland Naturalist, 147, 60–71.CrossRefGoogle Scholar
Collins, R. J. & Carson, W. P. (2004). The effects of environment and life stage on Quercus abundance in the eastern deciduous forest, USA: are sapling densities most responsive to environmental gradients? Forest Ecology and Management, 201, 241–58.CrossRefGoogle Scholar
Collins, S. L. & Good, R. E. (1987). The seedling regeneration niche: habitat structure of tree seedlings in an oak–pine forest. Oikos, 48, 89–98.CrossRefGoogle Scholar
Colosi, J. C. & McCormick, J. F. (1978). Population structure of Iva imbricata in five coastal sand dune habitats. Bulletin of the Torrey Botanical Club, 105, 175–86.CrossRefGoogle Scholar
Colpaert, J. V., Vandenkoornhuyse, P., Adriaensen, K., & Vangronsveld, J. (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist, 147, 367–79.CrossRefGoogle Scholar
Comisky, L., Royo, A. A., & Carson, W. P. (2005). Deer browsing creates rock refugia gardens on large boulders in the Allegheny National Forest, Pennsylvania. American Midland Naturalist, 154, 201–6.CrossRefGoogle Scholar
Comita, L. S., Aguilar, S., Pérez, R., Lao, S., & Hubbell, S. P. (2007). Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. Journal of Vegetation Science, 18, 163–74.CrossRefGoogle Scholar
Cona, A., Rea, G., Angelini, R., Federico, R., & Tavladoraki, P. (2006). Functions of amine oxidases in plant development and defense. Trends in Plant Science, 11, 80–8.CrossRefGoogle Scholar
Conard, H. S. (1905). The Waterlilies: a Monograph of the Genus Nymphaea. Baltimore: Lord Baltimore Press.Google Scholar
Condit, R., Ashton, P. S., Manokaran, N.et al. (1999). Dynamics of the forest communities at Pasoh and Barro Colorado, comparing two 50 ha plots. Philosophical Transactions of the Royal Society of London, 354, 1739–48.CrossRefGoogle ScholarPubMed
Condit, R., Watts, K., Bohlman, S. A.et al. (2000). Quantifying the deciduousness of tropical forest canopies under varying climates. Journal of Vegetation Science, 11, 649–58.CrossRefGoogle Scholar
Congdon, R. A. & Herbohn, J. L. (1993). Ecosystem dynamics of disturbed and undisturbed sites in north Queensland wet tropical rain forest. I. Floristic composition, climate and soil chemistry. Journal of Tropical Ecology, 9, 349–63.CrossRefGoogle Scholar
Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In Dynamics of Populations, ed. Boer, P. J. & Gradwell, G. R.. Wageningen: Centre for Agricultural Publishing and Documentation, pp. 298–310.Google Scholar
Connell, J. H. & Green, P. T. (2000). Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology, 81, 568–84.CrossRefGoogle Scholar
Connell, J. H. & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111, 1119–44.CrossRefGoogle Scholar
Conway, W. C., Smith, L. M., & Bergan, J. F. (2002). Potential allelopathic interference by the exotic Chinese tallow tree (Sapium sebiferum). American Midland Naturalist, 148, 43–53.CrossRefGoogle Scholar
Cook, C. D. K. (1987). Dispersion in aquatic and amphibious vascular plants. In Plant Life in Aquatic and Amphibious Habitats, ed. Crawford, R. M. M.. Oxford: Blackwell Scientific Publications, pp. 179–90.Google Scholar
Cook, C. D. K. (1999). The number and kinds of embryo-bearing plants which have become aquatic: a survey. Perspectives in Plant Ecology, Evolution and Systematics, 2, 79–102.CrossRefGoogle Scholar
Cook, R. E. (1979). Patterns of juvenile mortality and recruitment in plants. In Topics in Plant Population Biology, ed. Solbrig, O. T., Jain, S., Johnson, G. B., & Raven, P. H.. New York: Columbia University Press, pp. 206–31.CrossRefGoogle Scholar
Cooke, D. A. (1983). The seedling of Tirthuria (Hydatellaceae). Victorian Naturalist, 100, 68–9.Google Scholar
Coomes, D. A. & Grubb, P. J. (2003). Colonization, tolerance, competition and seed size variation within functional groups. Trends in Ecology & Evolution, 18, 283–91.CrossRefGoogle Scholar
Cooper, D. J., Merritt, D. M., Andersen, D. C., & Chimner, R. A. (1999). Factors controlling the establishment of Fremont cottonwood seedlings on the upper Green River, USA. Regulated Rivers: Research and Management, 15, 419–40.3.0.CO;2-Y>CrossRefGoogle Scholar
Cooper, E. J., Alsos, I. G., Hagen, D.et al. (2004). Plant recruitment in the High Arctic: seed bank and seedling emergence on Svalbard. Journal of Vegetation Science, 15, 115–24.CrossRefGoogle Scholar
Cooper, J. B. & Long, S. R. (1994). Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. The Plant Cell, 6, 215–25.CrossRefGoogle ScholarPubMed
Corbin, J. D. & Antonio, D' C. M. (2004). Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecology, 85, 1273–83.CrossRefGoogle Scholar
Cordeiro, N. J. & Howe, H. F. (2001). Low recruitment of trees dispersed by animals in African forest fragments. Conservation Biology, 15, 1733–41.CrossRefGoogle Scholar
Corlett, R. (1998). Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan region). Biological Reviews, 73, 413–48.CrossRefGoogle Scholar
Cornelissen, J. H. C. (1999). A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia, 118, 248–55.CrossRefGoogle ScholarPubMed
Cornelissen, J. H. C., Diez, P. C., & Hunt, R. (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755–65.CrossRefGoogle Scholar
Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., Rheenen, J. W. A., & Rowland, A. P. (1997). Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia, 111, 460–9.CrossRefGoogle ScholarPubMed
Cornelissen, J. H. C., Werger, M. J. A., & Zhong, Z. C. (1994). Effects of canopy gaps on the growth of tree seedlings from subtropical broad-leaved evergreen forests of Southern China. Vegetatio, 110, 43–54.Google Scholar
Corner, E. J. H. (1976). The Seeds of Dicotyledons, Volumes 1 and 2. Cambridge: Cambridge University Press.Google Scholar
Cornett, M. W., Puettmann, K. J., Frelich, L. E., & Reich, P. B. (2001). Comparing the importance of seedbed and canopy type in the restoration of upland Thuja occidentalis forests of northeastern Minnesota. Restoration Ecology, 9, 386–96.CrossRefGoogle Scholar
Coruzzi, G. & Zhou, L. (2001). Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects.’Current Opinion in Plant Biology, 4, 247–53.CrossRefGoogle Scholar
Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C., & Waller, D. M. (2004). Ecological impact of deer overabundance. Annual Review of Ecology, Evolution and Systematics, 35, 113–47.CrossRefGoogle Scholar
Cowling, R. M., Kirkwood, D., Midgley, J. J., & Pierce, S. M. (1997). Invasion and persistence of bird-dispersed, subtropical thicket and forest species in fire-prone coastal fynbos. Journal of Vegetation Science, 8, 475–88.CrossRefGoogle Scholar
Cox, P. A. (1991). Hydrophilous pollination of a dioecious seagrass, Thallasodendron ciliatum (Cymodoceaceae) in Kenya. Biotropica, 23, 159–65.CrossRefGoogle Scholar
Cox, P. A. & Knox, R. B. (1988). Pollination postulates and two-dimensional pollination in hydrophilous monocotyledons. Annals of the Missouri Botanical Garden, 75, 811–18.CrossRefGoogle Scholar
Crain, C. M. & Bertness, M. D. (2005). Community impacts of a tussock-forming sedge: is ecosystem engineering important in physically benign habitats? Ecology, 86, 2695–704.CrossRefGoogle Scholar
Craven, D., Braden, D., Ashton, M. S.et al. (2007). Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management, 238, 335–46.CrossRefGoogle Scholar
Crawley, M. J. (1997a). Life history and environment. In Plant Ecology, ed. Crawley, M. J.. Oxford: Blackwell Science, pp. 73–131.Google Scholar
Crawley, M. J. (1997b). Plant Ecology. Oxford: Blackwell Science.Google Scholar
Creelman, R. A. & Mullet, J. A. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Molecular Biology, 48, 355–81.CrossRefGoogle ScholarPubMed
Cribb, P. J., Kell, S. P., Dixon, K. W., & Barrett, R. L. (2003). Orchid conservation: a global perspective. In Orchid Conservation, ed. Dixon, K. W., Kell, S. P., Barrett, R. L., & Cribb, P. J.. Sabah: Natural History Publications, pp. 1–24.Google Scholar
Croat, T. B. (1983). Diffenbachia (Loaterías, Dumb Cane). In Costa Rican Natural History, ed. Janzen, D. H.. Chicago: University of Chicago Press, pp. 234–6.Google Scholar
Cronk, Q. C. B. & Fuller, J. L. (1995). Plant Invaders: The Threat to Natural Ecosystems. London: Chapman & Hall.Google Scholar
Cronquist, A. (1981). An Integrated System of Classification of Flowering Plants. New York: Columbia University Press.Google Scholar
Crowder, A. A., Pearson, M. C., Grubb, P. J., & Langlois, P. H. (1990). Biological flora of the British Isles. Drosera L. Journal of Ecology, 78, 233–67.CrossRefGoogle Scholar
Csapody, V. (1968). Keimlings-Bestimmungsbuch der Dikotyledonen. Budapest: Akadémiai Kiadó.Google Scholar
Cullings, K. W., Parker, V. T., Finley, S. K., & Vogler, D. R. (2000). Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Applied and Environmental Microbiology, 66, 4988–91.CrossRefGoogle Scholar
Curran, L. M., Caniago, I., Paoli, G. D.et al. (1999). Impact of El Niño and logging on canopy tree recruitment in Borneo. Science, 286, 2184–8.CrossRefGoogle ScholarPubMed
Curran, L. M. & Webb, C. O. (2000). Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecological Monographs, 70, 129–48.CrossRefGoogle Scholar
Curtis, J. T. (1943). Germination and seedling development in five species of Cypripedium L. American Journal of Botany, 30, 199–206.CrossRefGoogle Scholar
Curtis, J. T. (1959). The Vegetation of Wisconsin. Madison: University of Wisconsin Press.Google Scholar
Dallimore, J. W. & Jackson, A. B. (1966). Handbook of Coniferae and Ginkgoaceae. London: Edward Arnold Publishers, Ltd.Google Scholar
Dalling, J. W. (2005). The fate of seed banks: factors influencing seed survival for light-demanding species in moist tropical forests. In Seed Fate: Predation, Dispersal and Seedling Establishment, ed. Forget, P.-M., Lambert, J. E., Hulme, P. E., & Wall, S. B. Vander. Wallingford: CAB International, pp. 31–44.CrossRefGoogle Scholar
Dalling, J. W. & Burslem, D. F. R. P. (2005). Role of trade-offs in the equalization and differentiation of tropical tree species. In Biotic Interactions in the Tropics, ed. Burslem, D. F. R. P, Pinard, M. A., & Hartley, S. E.. Cambridge: Cambridge University Press, pp. 65–88.CrossRefGoogle Scholar
Dalling, J. W. & Denslow, J. S. (1998). Changes in soil seed bank composition along a chronosequence of lowland secondary tropical forest, Panama. Journal of Vegetation Science, 9, 669–78.CrossRefGoogle Scholar
Dalling, J. W. & Hubbell, S. P. (2002). Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology, 90, 557–68.CrossRefGoogle Scholar
Dalling, J. W., Muller-Landau, H. C., Wright, S. J., & Hubbell, S. P. (2002). Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90, 714–27.CrossRefGoogle Scholar
Dalling, J. W., Winter, K., Nason, J. D.et al. (2001). The unusual life history of Alseis blackiana: A shade-persistent pioneer tree? Ecology, 82, 933–45.CrossRefGoogle Scholar
D'Antonio, C. M. (1993). Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology, 74, 83–95.CrossRefGoogle Scholar
D'Antonio, C. M. & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Reviews of Ecology and Systematics, 23, 63–87.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. New York: D. Appleton and Co. (1869).Google Scholar
Davidson, E. A., Carvalho, Reis C. J., Vieira, I. C. G.et al. (2004). Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications, 14, S150–63.CrossRefGoogle Scholar
Davies, P. J., ed. (1995). Plant Hormones: Physiology, Biochemistry, and Molecular Biology. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Davis, A. S., Landis, D. A., Nuzzo, V.et al. (2006). Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata). Ecological Applications, 6, 2399–410.CrossRefGoogle Scholar
Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528–34.CrossRefGoogle Scholar
Davis, M. A., Wrage, K. J., & Reich, P. B. (1998). Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. Journal of Ecology, 86, 652–61.CrossRefGoogle Scholar
Daws, M. I., Burslem, D. F. R. P., Crabtree, L. M.et al. (2002). Differences in seed germination responses may promote coexistence of four sympatric Piper species. Functional Ecology, 16, 258–67.CrossRefGoogle Scholar
Daws, M. I., Orr, D., Burslem, D., & Mullins, C. E. (2006). Effect of high temperature on chalazal plug removal and germination in Apeiba tibourbou Aubl. Seed Science and Technology, 34, 221–5.CrossRefGoogle Scholar
Deacon, J. W. & Flemming, L. V. (1992). Interactions of ectomycorrhizal fungi. In Mycorrhizal Functioning: an Integrative Plant-fungal Process, ed. Allen, M. F.. New York: Chapman and Hall, pp. 249–300.Google Scholar
Debussche, M., Escarré, J., & Lepart, J. (1982). Ornithochory and plant succession in Mediterranean abandoned orchards. Vegetatio, 48, 255–66.Google Scholar
Kroon, H., Plaisier, A., Groenendael, J., & Caswell, H. (1986). Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology, 67, 1427–31.CrossRefGoogle Scholar
Kroon, H., Groenendael, J. M., & Ehrlén, J. (2000). Elasticities: a review of methods and model limitations. Ecology, 81, 607–18.CrossRefGoogle Scholar
Delagrange, S., Messier, C., Lechowicz, M. J., & Dizengremel, P. (2004). Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology, 24, 775–84.CrossRefGoogle ScholarPubMed
Providencia, I. E., Souza, F. A., Fernandez, F., Séjalon-Delmas, N., & Declerck, S. (2005). Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups. New Phytologist, 165, 261–71.CrossRefGoogle Scholar
Del Tredici, P. (1997). Lignotuber development in Ginkgo biloba. In Ginkgo biloba, a Global Treasure: From Biology to Medicine, ed. Hori, T., Ridge, R. W., Tulecke, W., Tredici, P. D., Trémouillaux-Guiller, J., & Tobe, H.. Tokyo: Springer-Verlag, pp. 119–26.CrossRefGoogle Scholar
DeLucia, E. H., Sipe, T. W., Herrick, J., & Maherali, H. (1998). Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. American Journal of Botany, 85, 955–63.CrossRefGoogle ScholarPubMed
Denham, A. J. & Auld, T. D. (2004). Survival and recruitment of seedlings and suckers of trees and shrubs of the Australian arid zone following habitat management and the outbreak of Rabbit Calicivirus Disease (RCD). Austral Ecology, 29, 585–99.CrossRefGoogle Scholar
Denk, T. & Oh, I.-C. (2006). Phylogeny of Schisandraceae based on morphological data: evidence from modern plants and the fossil record. Plant Systematics and Evolution, 256, 113–45.CrossRefGoogle Scholar
Wittmann, Oliveira A., Piedade, M. T. F., Parolin, P., & Wittmann, F. (2007). Germination in four low-várzea tree species of Central Amazonia. Aquatic Botany, 86, 197–203.CrossRefGoogle Scholar
Desbiez, M.-O. & Boyer, N. (1981). Hypocotyl growth and peroxidases of Bidens pilosus. Plant Physiology, 68, 41–3.CrossRefGoogle ScholarPubMed
DeSimone, S. A. & Zedler, P. H. (1999). Shrub seedling recruitment in unburned California coastal sage scrub and adjacent grassland. Ecology, 80, 2018–32.CrossRefGoogle Scholar
Smet, I., Zhang, H., Inzé, D., & Beeckman, T. (2006). A novel role for abscisic acid emerges from underground. Trends in Plant Science, 11, 434–9.CrossRefGoogle ScholarPubMed
Souza, F. A. & Declerck, S. (2003). Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed roots. Mycologia, 95, 1004–12.CrossRefGoogle Scholar
Steven, D. (1991). Experiments on mechanisms of tree establishment in old-field succession seedling survival and growth. Ecology, 72, 1076–88.CrossRefGoogle Scholar
Steven, D. (1994). Tropical tree seedling dynamics: recruitment patterns and their population consequences for three canopy species in Panama. Journal of Tropical Ecology, 10, 369–83.CrossRefGoogle Scholar
Vogel, E. F. (1980). Seedlings of Dicotyledons: Structure, Development, Types, Descriptions of 150 Woody Malesian Taxa. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Devoto, A. & Turner, J. G. (2005). Jasmonate-regulated Arabidopsis stress signalling network. Physiologia Plantarum, 123, 161–72.CrossRefGoogle Scholar
DeWalt, S. J. (2006). Population dynamics and potential for biological control of an exotic invasive shrub in Hawaiian rainforests. Biological Invasions, 8, 1145–58.CrossRefGoogle Scholar
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 77–81.CrossRefGoogle ScholarPubMed
D'Haeze, W., Rycke, R., Mathis, R.et al. (2003). Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proceedings of the National Academy of Sciences (USA), 100, 11789–94.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1975). Assembly of species communities. In Ecology and Evolution of Communities, ed. Cody, M. L. & Diamond, J. M.. Cambridge: Harvard University Press, pp. 342–444.Google Scholar
Dick, C. W., Etchelecu, G., & Austerlitz, G. (2003). Pollen dispersal of tropical trees (Dinizia excelsa, Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Molecular Ecology, 12, 753–64.CrossRefGoogle ScholarPubMed
Dickie, I. A., Guza, R. C., Krazewski, S. E., & Reich, P. B. (2004). Shared ectomycorrhizal fungi between an herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytologist, 164, 375–82.CrossRefGoogle Scholar
Dickie, I. A., Koide, R. T., & Steiner, K. C. (2002). Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecological Monographs, 72, 505–21.CrossRefGoogle Scholar
Dickie, I. A. & Reich, P. B. (2005). Ectomycorrhizal fungal communities at forest edges. Journal of Ecology, 93, 244–55.CrossRefGoogle Scholar
Dickie, I. A., Schnitzer, S. A., Reich, P. B., & Hobbie, E. A. (2005). Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters, 8, 1191–1200.CrossRefGoogle ScholarPubMed
Dickie, I. A., Schnitzer, S. A., Reich, P. B., & Hobbie, S. E. (2007). Is oak establishment in old-fields and savanna openings context dependent? Journal of Ecology, 95, 309–20.CrossRefGoogle Scholar
Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology – a review. Basic and Applied Ecology, 4, 493–506.CrossRefGoogle Scholar
Dirzo, R. (1984). Herbivory: a phytocentric overview. In Perspectives in Population Ecology, ed. Dirzo, R. & Sarukhan, J.. Sutherland: Sinauer Associates Inc., pp. 141–65.Google Scholar
Dirzo, R. (1985). The role of the grazing animal. In Studies in Plant Demography, ed. White, J.. London: Academic Press, pp. 343–55.Google Scholar
Dirzo, R. (2001). Plant–mammal interactions, lessons for our understanding of nature and implications for biodiversity conservation. In Ecology, Achievement and Challenge, ed. Press, M. C., Huntly, N. J., & Levin, S.. Oxford: Blackwell Science, pp. 319–35.Google Scholar
Dirzo, R. & Domínguez, C. A. (1986). Seed shadows, seed predation and the advantages of dispersal. In Frugivores and Seed Dispersal, ed. Estrada, A. & Fleming, T. H.. Dordrecht: Junk, pp. 237–49.CrossRefGoogle Scholar
Dirzo, R. & Miranda, A. (1990). Contemporary neotropical defaunation and forest structure, function, and diversity – a sequel. Conservation Biology, 4, 444–7.CrossRefGoogle Scholar
Dixon, K. W. (1991). Seeder/clonal concepts in Western Australian orchids. In Population Ecology of Terrestrial Orchids, ed. Wells, T. C. E. & Willems, J. H.. The Hague: SPB Academic Publishing bv, pp. 111–24.Google Scholar
Dixon, K. W., Kell, S. P., Barrett, R. L., & Cribb, P. J. ed. (2003). Orchid Conservation. Sabah: Natural History Publications.Google Scholar
Dmowski, K. & Kozakiewicz, M. (1990). Influence of a shrub corridor on movements of passerine birds to a lake littoral zone. Landscape Ecology, 4, 99–108.CrossRefGoogle Scholar
Dobbins, D. R. & Kuijt, J. (1974a). Anatomy and fine structure of the mistletoe haustorium (Phthirusa pyrifolia). I. Development of the young haustorium. American Journal of Botany, 61, 535–43.CrossRefGoogle Scholar
Dobbins, D. R. & Kuijt, J. (1974b). Anatomy and fine structure of the mistletoe haustorium (Phthirusa pyrifolia). II. Penetration attempts and formation of the gland. American Journal of Botany, 61, 544–50.CrossRefGoogle Scholar
Dodd, A. N., Salathera, N., Hall, A.et al. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 309, 630–33.CrossRefGoogle ScholarPubMed
Dolan, R. W. (1984). The effect of seed size and maternal source on individual size in a population of Ludwigia leptocarpa Onagraceae. American Journal of Botany, 71, 1302–7.CrossRefGoogle Scholar
Domingo, F., Villagarcia, L., Boer, M. M., Alados-Arboledas, L., & Puigdefabregas, J. (2001). Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modelling and hillslope runoff measurements. Journal of Hydrology, 243, 17–30.CrossRefGoogle Scholar
Don, R. (2003). Handbook for Seedling Evaluation, 3rd edn. Bassersdorf: International Seed Testing Association.Google Scholar
Dong, Y. J., Ogawa, T., Lin, D. Z.et al. (2006). Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Research, 95, 420–5.CrossRefGoogle Scholar
Dörr, I. (1990). Sieve elements in haustoria of parasitic angiosperms. In Sieve Elements-Comparative Structure, Induction, and Development, ed. Behnke, H.-D. & Sjolund, R. D.. Heidelberg: Springer, pp. 163–70.Google Scholar
Santos, dos U. M. Jr., Gonçalves, Carvalho J. F., & Feldpausch, T. R. (2006). Growth, leaf nutrient concentration and photosynthetic nutrient use efficiency in tropical tree species planted in degraded areas in central Amazonia. Forest Ecology and Management, 226, 299–309.CrossRefGoogle Scholar
Doube, B. M. (1994). Enhanced root nodulation of subterranean clover (Trifolium subterraneum) by Rhizobium leguminosarium biovar. trifolii in the presence of the earthworm Aporrectodea trapezoides (Lumbricidae). Biology and Fertility of Soils, 18, 169.CrossRefGoogle Scholar
Douglas, I., Spencer, T., Greer, T.et al. (1992). The impact of selective commercial logging on stream hydrology, chemistry and sediment loads in the Ulu Segama rain forest, Sabah, Malaysia. Philosophical Transactions of the Royal Society Series B, 335, 397–406.CrossRefGoogle Scholar
Dowling, R. M. & McDonald, T. J. (1982). Structure, function and management. In Mangrove Ecosystems in Australia, ed. Clough, B. F.. Canberra: Australian Institute of Marine Science and Australian National University Press, pp. 79–93.Google Scholar
Downs, R. J. & Hellmers, H. (1975). Environment and the Experimental Control of Plant Growth. London: Academic Press.Google Scholar
Downton, W. J. S. (1982). Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Australian Journal of Plant Physiology, 9, 519–28.CrossRefGoogle Scholar
Doyle, J. (1963). Proembryogeny in Pinus in relation to that of other conifers – a survey. Proceedings of the Royal Irish Academy, 62B, 181–216.Google Scholar
Doyle, J. A. (2006). Seed ferns and the origin of angiosperms. Journal of the Torrey Botanical Society, 133, 169–209.CrossRefGoogle Scholar
Doyle, J. A. & Donoghue, M. J. (1986). Seed plant phylogeny and the origin of angiosperms – an experimental cladistic approach. Botanical Review, 52, 321–431.CrossRefGoogle Scholar
Doyle, J. A. & Endress, P. K. (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences, 161, S121–53.CrossRefGoogle Scholar
Doyle, J. A. & Hickey, L. J. (1976). Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In Origin and Early Evolution of Angiosperms, ed. Beck, C. B.. New York: Columbia University Press, pp. 139–206.Google Scholar
Drake, J. A., Mooney, H. A., diCastri, F.et al. (1989). Biological Invasions: A Global Perspective. New York: John Wiley & Sons.Google Scholar
Dregne, H. E. (1986). Desertification of arid lands. In Physics of Desertification, ed. El-Baz, F. & Hassan, M. H. A.. Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Dressler, R. (1981). The Orchids, Natural History and Classification. Cambridge: Harvard University Press.Google Scholar
Dressler, R. (1983). Phylogeny and Classification of the Orchid Family. London: Cambridge University Press.Google Scholar
Driscoll, C. T., Driscoll, K. M., Mitchell, M. J., & Raynal, D. J. (2003). Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environmental Pollution, 123, 327–36.CrossRefGoogle ScholarPubMed
Drumm-Herrel, H. & Mohr, H. (1985). Photosensitivity of seedlings differing in their potential to synthesize anthocyanin. Physiologia Plantarum, 64, 60–5.CrossRefGoogle Scholar
Dubrovsky, J. G. (1997a). Determinate primary growth in Stenocereus gummosus (Cactaceae). In The Biology of Root Formation and Development, ed. Altman, A. & Waisel, Y.. New York: Plenum Press, pp. 13–20.CrossRefGoogle Scholar
Dubrovsky, J. G. (1997b). Determinate primary-root growth in seedlings of Sonoran Desert Cactaceae: its organization, cellular basis, and ecological significance. Planta, 203, 85–92.CrossRefGoogle Scholar
Dubrovsky, J. G. & Gómez-Lomelí, L. F. (2003). Water deficit accelerates determinate developmental program of the primary root and does not affect lateral root initiation in a Sonoran Desert cactus (Pachycereus pringlei, Cactaceae). American Journal of Botany, 90, 823–31.CrossRefGoogle Scholar
Duchok, R., Kent, K., Khumbongmayum, A. D., Paul, A., & Khan, M. L. (2005). Population structure and regeneration status of a medicinal tree Illicium griffithii in relation to disturbance gradients in temperate broad-leaved forest of Arunachal Pradesh. Current Science, 89, 673–6.Google Scholar
Ducker, S. C. & Knox, R. B. (1976). Submarine pollination of seagrasses. Nature (London), 263, 705–6.CrossRefGoogle Scholar
Duckett, J. G. & Ligrone, R. (1992). A light and electron microscope study of the fungal endophytes in the sporophyte and gametophyte of Lycopodium cernuum L. with observations on the gametophyte–sporophyte junction. Canadian Journal of Botany, 70, 58–72.CrossRefGoogle Scholar
Duckett, J. G. & Ligrone, R. (2003). The structure and development of haustorial placentas in leptosporangiate ferns provide a clear-cut distinction between euphyllophytes and lycophytes. Annals of Botany, 92, 513–21.CrossRefGoogle ScholarPubMed
Duckworth, J. C., Kent, M., & Ramsay, P. M. (2000). Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography, 24, 515–42.CrossRefGoogle Scholar
Dudash, M. R. (1991). Plant size effects on female and male function in hermaphroditic Sabatia angularis (Gentianaceae). Ecology, 72, 1004–12.CrossRefGoogle Scholar
Duke, J. A. (1965). Keys for the identification of seedlings of some prominent woody species in eight forest types in Puerto Rico. Annals of the Missouri Botanical Garden, 52, 314–50.CrossRefGoogle Scholar
Dulmer, K. (2006). Mycorrhizal associations of American chestnut seedlings: a lab and field bioassay. MS thesis, State University of New York, Syracuse, USA.
Dunbar, R. B. (2000). El Niño – clues from corals. Nature, 407, 956–9.CrossRefGoogle ScholarPubMed
Dunham, S. M., Kretzer, A., & Pfrender, M. E. (2003). Characterization of Pacific golden chanterelle (Cantharellus formosus) genet size using co-dominant microsatellite markers. Molecular Ecology, 12, 1607–18.CrossRefGoogle ScholarPubMed
Dunkerley, D. L. (1997). Banded vegetation: Survival under drought and grazing pressure based on a simple cellular automation model. Journal of Arid Environments, 35, 419–28.CrossRefGoogle Scholar
Dunne, J. A. & Parker, V. T. (1999). Seasonal soil water potential patterns and establishment of Pseudotsuga menziesii seedlings in chaparral. Oecologia, 119, 36–45.CrossRefGoogle Scholar
Durand, E. J. (1908). The development of the sexual organs and sporogonium of Marchantia polymorpha. Bulletin of the Torrey Botanical Club, 35, 321–35.CrossRefGoogle Scholar
Dyer, A. R. & Rice, K. J. (1997). Intraspecific and diffuse competition: the response of Nassella pulchra in a California grassland. Ecological Applications, 7, 484–92.CrossRefGoogle Scholar
Dyer, M. I., Turner, C. L., & Seastedt, T. R. (1993). Herbivory and its consequences. Ecological Applications, 3, 10–16.CrossRefGoogle ScholarPubMed
Eames, A. J. (1961). Morphology of the Angiosperms. New York: McGraw Hill Book Company, Inc.CrossRefGoogle Scholar
Eapen, D., Barroso, M. L., Ponce, G., Campos, M. E., & Cassab, G. I. (2005). Hydrotropism: root growth responses to water. Trends in Plant Science, 10, 44–50.CrossRefGoogle Scholar
Ebbett, R. L. & Ogden, J. (1998). Comparative seedling growth of five endemic New Zealand podocarp species under different light regimes. New Zealand Journal of Botany, 36, 189–201.CrossRefGoogle Scholar
Eccles, N. S., Esler, K. J., & Cowling, R. M. (1999). Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions. Plant Ecology, 142, 71–85.CrossRefGoogle Scholar
Edwards, P. J., Kollmann, J., & Fleischmann, K. (2002). Life history evolution in Lodoicea maldivica (Arecaceae). Nordic Journal of Botany, 22, 227–37.CrossRefGoogle Scholar
Edwards, W., Gadek, P., Webber, E., & Warboys, S. (2001). Idiosyncratic phenomenon of regeneration from cotyledons in the idiot fruit tree, Idiospermum australiense. Austral Ecology, 26, 254–8.CrossRefGoogle Scholar
Egerton, J. J. G., Banks, J. C. G., Gibson, A., Cunningham, R. B., & Ball, M. C. (2000). Facilitation of seedling establishment: reduction in irradiance enhances winter growth of Eucalyptus paciflora. Ecology, 81, 1437–49.CrossRefGoogle Scholar
Egerton-Warburton, L. M. & Allen, M. F. (2001). Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza, 11, 283–90.CrossRefGoogle ScholarPubMed
Ehrenfeld, J. G. & Schneider, J. P. (1991). Chamaecyparis thyoides wetlands and suburbanization: effects on hydrology, water quality and plant community composition. Journal of Applied Ecology, 28, 467–90.CrossRefGoogle Scholar
Ehrlén, J. (2002). Assessing the life-time consequences of animal interactions with a perennial herb, Lathyrus vernus (Fabaceae). Perspectives in Plant Ecology, Evolution and Systematics, 5, 145–63.CrossRefGoogle Scholar
Ehrlén, J. (2003). Fitness components versus total demographic effects: evaluating herbivore impacts on a perennial herb. American Naturalist, 162, 796–810.CrossRefGoogle ScholarPubMed
Ehrlén, J. & Eriksson, O. (1996). Seedling recruitment in the perennial herb Lathyrus vernus. Flora, 191, 377–83.CrossRefGoogle Scholar
Ehrlén, J. & Eriksson, O. (2000). Dispersal limitation and patch occupancy in forest herbs. Ecology, 81, 1667–74.CrossRefGoogle Scholar
Ehrlén, J. & Lehtilä, K. (2002). How perennial are perennial plants? Oikos, 98, 308–22.CrossRefGoogle Scholar
Ehrlén, J., Münzbergova, Z., Diekmann, M., & Eriksson, O. (2006). Long-term assessment of seed limitation in plants: results from an 11-year experiment. Journal of Ecology, 94, 1224–32.CrossRefGoogle Scholar
Ehrlén, J., Syrjänen, K., Leimu, R., Garcia, M. B., & Lehtilä, K. (2005). Land use and population growth of Primula veris: an experimental demographic approach. Journal of Applied Ecology, 42, 317–26.CrossRefGoogle Scholar
Eklund, H., Doyle, J. A., & Herendeen, P. S. (2004). Morphological phylogenetic analysis of living and fossil Chloranthaceae. International Journal of Plant Sciences, 165, 107–51.CrossRefGoogle Scholar
El-Bana, M. I., Nijs, I., & Khedr, A. H. A. (2003). The importance of phytogenic mounds (nebkhas) for restoration of arid degraded rangelands in Northern Sinai. Restoration Ecology, 11, 317.CrossRefGoogle Scholar
Elberse, W. T. & Breman, H. (1989). Germination and establishment of Sahelian rangeland species. I. Seed properties. Oecologia, 80, 477–84.CrossRefGoogle ScholarPubMed
Eldred, R. A. & Maun, M. A. 1982. A multivariate approach to the problem of decline in vigour in Ammophila. Canadian Journal of Botany, 60, 1371–80.CrossRefGoogle Scholar
Eldridge, D. J., Zaady, E., & Shachak, M. (2000). Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena, 40, 323–36.CrossRefGoogle Scholar
Harti, El A., Saghi, M., Molina, J. A. E., & Teller, G. (2001). Production by the earthworm (Lumbricus terrestris) of a rhizogenic substance similar to indolacetic acid. Canadian Journal of Zoology, 79, 1911–20.CrossRefGoogle Scholar
Eliason, S. A. & Allen, E. B. (1997). Exotic grass competition in suppressing native shrubland re-establishment. Restoration Ecology, 5, 245–55.CrossRefGoogle Scholar
Ellenberg, H., Weber, H. E., Düll, R.et al. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.Google Scholar
Ellis, R. H., Hong, T. D., & Roberts, E. H. (1985). Handbook of Seed Technology for Genebanks, Vol. II. Compendium of Specific Germination Information and Test Recommendations. Rome: International Board Plant Genetic Resources.Google Scholar
Ellis, S. & Mellor, A. (1995). Soils and Environment. New York: Routledge.CrossRefGoogle Scholar
Ellison, A. M., Denslow, J. S., Loiselle, B. A., & Brenés, M. D. (1993). Seed and seedling ecology of neotropical Melastomataceae. Ecology, 74, 1733–49.CrossRefGoogle Scholar
Ellison, A. M. & Gotelli, N. J. (2001). Evolutionary ecology of carnivorous plants. Trends in Ecology & Evolution, 16, 623–9.CrossRefGoogle Scholar
Ellison, A. M. & Parker, J. N. (2002). Seed dispersal and seedling establishment of Sarracenia purpurea (Sarraceniaceae). American Journal of Botany, 89, 1024–6.CrossRefGoogle Scholar
Ellner, S. & Shmida, A. (1981). Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia, 51, 133–44.Google Scholar
Ellner, S. P., Hairston, N. G. Jr., & Babai, D. (1998). Long-term diapause and spreading of risk across the life cycle. Ergebnisse der Limnologie, 52, 297–312.Google Scholar
Elmarsdottir, A., Aradottir, A. L., & Trlica, M. J. (2003). Microsite availability and establishment of native species on degraded and reclaimed sites. Journal of Applied Ecology, 40, 815–23.CrossRefGoogle Scholar
Elmqvist, T. & Cox, P. A. (1996). The evolution of vivipary in flowering plants. Oikos, 77, 3–9.CrossRefGoogle Scholar
Elton, C. S. (1958). The Ecology of Invasions by Animals and Plants. London: Methuen.CrossRefGoogle Scholar
Emerson, F. W. (1921). Subterranean organs of bog plants. Botanical Gazette, 72, 359–74.CrossRefGoogle Scholar
Emmerson, L. M. (1999). Persistence mechanisms of Erodiophyllum elderi. PhD thesis, University of Adelaide, Australia.Google Scholar
Endo, Y. & Ohashi, H. (1998). The features of cotyledon areoles in Leguminosae and their systematic utility. American Journal of Botany, 85, 753–9.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Comita, L. S., Condit, R.et al. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–2.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Dalling, J. W., Pearson, T. R. H.et al. (2006). Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia, 148, 258–69.CrossRefGoogle ScholarPubMed
Engelbrecht, B. M. J., Kursar, T. A., & Tyree, M. T. (2005). Drought effects on seedling survival in a tropical moist forest. Trees, 19, 312–21.CrossRefGoogle Scholar
Enoch, I. C. (1980). Morphology of germination. In Recalcitrant Crop Seeds, ed. Chin, H. F. & Roberts, E. H.. Kuala Lumpur: Tropical Press SDN. BHD., pp. 6–37.Google Scholar
Enright, N. J. & Watson, A. D. (1992). Population dynamics of the Nikau palm Rhopalostylis sapida Wendl. et Drude in a temperate forest remnant near Auckland, New Zealand. New Zealand Journal of Botany, 30, 29–43.CrossRefGoogle Scholar
Eppley, S. M. (2001). Gender-specific selection during early life history stages in the dioecious grass Distichlis spicata. Ecology, 82, 2022–31.CrossRefGoogle Scholar
Eranen, J. K. & Kozlov, M. V. (2006). Physical sheltering and liming improve survival and performance of mountain birch seedlings: a 5-year study in a heavily polluted industrial barren. Restoration Ecology, 14, 77–86.CrossRefGoogle Scholar
Eriksson, O. (1989). Seedling recruitment and life histories in clonal plants. Oikos, 55, 231–8.CrossRefGoogle Scholar
Eriksson, O. (1993). Dynamics of genets in clonal plants. Trends in Ecology & Evolution, 8, 313–16.CrossRefGoogle Scholar
Eriksson, O. (2002). Ontogenetic niche shifts and their implications for recruitment in three clonal Vaccinium shrubs: Vaccinium myrtillus, Vaccinium vitis-idaea, and Vaccinium oxycoccos. Canadian Journal of Botany, 80, 635–41.CrossRefGoogle Scholar
Eriksson, O. (2005). Game theory provides no explanation for seed size variation in grasslands. Oecologia, 114, 98–105.CrossRefGoogle Scholar
Eriksson, O. & Ehrlén, J. (1992). Seed and microsite limitation in plant populations. Oecologia, 91, 360–4.CrossRefGoogle ScholarPubMed
Eriksson, O., Friis, E.-M., & Crane, P. R. (2000a). Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. American Naturalist, 156, 47–58.CrossRefGoogle Scholar
Eriksson, O., Friis, E.-M., Pedersen, K. R., & Crane, P. R. (2000b). Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicao, Portugal. International Journal of Plant Sciences, 161, 319–29.CrossRefGoogle Scholar
Eriksson, O. & Fröborg, H. (1996). Windows of opportunity for recruitment in long-lived clonal plants: experimental studies of seedling recruitment in Vaccinium shrubs. Canadian Journal of Botany, 74, 1369–74.CrossRefGoogle Scholar
Erskine, P. D., Lamb, D., & Bristow, M. (2006). Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? Forest Ecology and Management, 233, 205–10.CrossRefGoogle Scholar
Esler, K. J. (1999). Plant reproductive ecology. In The Karoo, Ecological Patterns and Processes, ed. Dean, W. R. J. & Milton, S. J.. Cambridge: Cambridge University Press, pp. 123–44.CrossRefGoogle Scholar
Esler, K. J. & Cowling, R. M. (1995). The comparison of selected life-history characteristics of Mesembryanthema species occurring on and off Mima-like mounds (heuweltjies) in semi arid southern Africa. Vegetatio, 116, 41–50.Google Scholar
Esler, K. J. & Phillips, N. (1994). Experimental effects of water stress on semi-arid succulent Karoo seedlings: implications for field seedling survivorship. Journal of Arid Environments, 26, 325–37.CrossRefGoogle Scholar
Espelta, J. M., Riba, M., & Retana, J. (1995). Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. Journal of Vegetation Science, 6, 465–72.CrossRefGoogle Scholar
Esseling, J. J. & Emons, A. M. (2004). Dissection of Nod factor signalling in legumes: cell biology, mutants and pharmacological approaches. Journal of Microscopy, 214, 104–13.CrossRefGoogle ScholarPubMed
Evans, D. E. (2004). Aerenchyma formation. New Phytologist, 161, 35–49.CrossRefGoogle Scholar
Evenari, M., Shanan, L., & Tadmor, N. (1982). The Negev: The Challenge of a Desert. Cambridge: Harvard University Press.CrossRefGoogle Scholar
Eviner, V. T. & Chapin, F. S., III (2003). Gopher–plant–fungal interactions affect establishment of an invasive grass. Ecology, 84, 120–8.CrossRefGoogle Scholar
Fabian, P., Kohlpainter, M., & Rollenbeck, R. (2005). Biomass burning the Amazon – fertilizer for the mountainous rain forest of Ecuador. Environmental Science and Pollution Research, 12, 290–6.CrossRefGoogle Scholar
Facelli, J. M. (1994). Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields. Ecology, 75, 1727–35.CrossRefGoogle Scholar
Facelli, J. M. & Brock, D. J. (2000). Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia. Ecography, 23, 479–91.CrossRefGoogle Scholar
Facelli, J. M. & Chesson, P. (2008). Cyclic dormancy, temperature and water availability control germination of Carrichtera annua, an invasive species in chenopod shrublands. Austral Ecology, 33, 324–8.
Facelli, J. M., Chesson, P., & Barnes, N. (2005). Differences in seed biology of annual plants in arid lands: a key ingredient of the storage effect. Ecology, 86, 2998–3006.CrossRefGoogle Scholar
Facelli, J. M. & Facelli, E. (1993). Interactions after death – plant litter controls priority effects in a successional plant community. Oecologia, 95, 277–82.CrossRefGoogle Scholar
Facelli, J. M. & Kerrigan, R. (1996). Effects of ash and four types of litter on the establishment of Eucalyptus obliqua. Ecoscience, 3, 319–24.CrossRefGoogle Scholar
Facelli, J. M. & Ladd, B. (1996). Germination requirements and responses to leaf litter of four species of eucalypt. Oecologia, 107, 441–5.CrossRefGoogle ScholarPubMed
Facelli, J. M. & Pickett, S. T. A. (1991a). Plant litter: its dynamics and effects on plant community structure. Botanical Review, 57, 1–32.CrossRefGoogle Scholar
Facelli, J. M. & Pickett, S. T. A. (1991b). Plant litter: light interception and effects on an old-field plant community. Ecology, 72, 1024–31.CrossRefGoogle Scholar
Facelli, J. M., Williams, R., Fricker, S., & Ladd, B. (1999). Establishment and growth of seedlings of Eucalyptus obliqua: interactive effects of litter, water and pathogens. Australian Journal of Ecology, 24, 484–94.CrossRefGoogle Scholar
Fahn, A. (1979). Secretory Tissues in Plants. London: Academic Press.Google Scholar
Fang, W., Taub, D. R., Fox, G. A.et al. (2006). Sources of variation in growth, form, and survivial in dwarf and normal-stature pitch pines (Pinus rigida, Pinaceae) in long-term transplant experiments. American Journal of Botany, 93, 1125–33.CrossRefGoogle Scholar
Fang, X., Wang, X., Li, H., Chen, K., & Wang, G. (2006). Responses of Caragana korshinskii to different aboveground shoot removal: combining defense and tolerance strategies. Annals of Botany, 98, 203–11.CrossRefGoogle Scholar
FAO (1997). Drylands Development and Combating Desertification: Bibliographic Study of Experiences in China. Rome: Food and Agriculture Organization of the United Nations.
Farnsworth, E. (2000). The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics, 31, 107–38.CrossRefGoogle Scholar
Farnsworth, E. (2004). Hormones and shifting ecology through plant development. Ecology, 85, 5–15.CrossRefGoogle Scholar
Farnsworth, E. J. & Ellison, A. M. (1991). Patterns of herbivory in Belizean mangrove swamps. Biotropica, 23, 555–67.CrossRefGoogle Scholar
Farnsworth, E. J. & Ellison, A. M. (1996). Sun–shade adaptability of the red mangrove, Rhizophora mangle (Rhizophoraceae): changes through ontogeny at several levels of biological organization. American Journal of Botany, 83, 1131–43.CrossRefGoogle Scholar
Farnsworth, E. J. & Farrant, J. M. (1998). Reductions in abscisic acid are linked with viviparous reproduction in mangroves. American Journal of Botany, 85, 760–9.CrossRefGoogle ScholarPubMed
Farooq, M., Basra, S. M. A., Khalid, M., Tabassum, R., & Mahmood, T. (2006). Nutrient homeostasis, metabolism of reserves, and seedling vigor as affected by seed priming in coarse rice. Canadian Journal of Botany, 84, 1196–202.CrossRefGoogle Scholar
Feild, T. S. & Arens, N. C. (2005). Form, function, and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytologist, 166, 383–408.CrossRefGoogle ScholarPubMed
Feild, T. S. & Arens, N. C. (2007). The ecophysiology of early angiosperms. Plant, Cell, & Environment, 30, 291–309.CrossRefGoogle ScholarPubMed
Feild, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E., & Donoghue, M. J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82–107.2.0.CO;2>CrossRefGoogle Scholar
Feild, T. S., Brodribb, T., Jaffre, T., & Holbrook, N. M. (2001). Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences, 162, 999–1008.CrossRefGoogle Scholar
Feild, T. S., Franks, P. J., & Sage, T. L. (2003). Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae). International Journal of Plant Sciences, 164, 313–24.CrossRefGoogle Scholar
Feild, T. S., Sage, T. L., Czerniak, C., & Iles, W. J. D. (2005). Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell, & Environment, 28, 1179–90.CrossRefGoogle Scholar
Feinbrun-Dothan, N. (1986). Flora Palestina, Vol IV. Jerusalem: Israel Academy of Sciences and Humanities.Google Scholar
Fenner, M. (1985). Seed Ecology. London: Chapman and Hall.CrossRefGoogle Scholar
Fenner, M. (1986). A bioassay to determine the limiting minerals for seeds from nutrient-deprived Senecio vulgaris plants. Journal of Ecology, 74, 497–505.CrossRefGoogle Scholar
Fenner, M. (1987). Seedlings. New Phytologist, 106, 35–47.CrossRefGoogle Scholar
Fenner, M., Hanley, M. E., & Lawrence, R. (1999). Comparison of seedling and adult palatability in annual and perennial plants. Functional Ecology, 13, 546–51.CrossRefGoogle Scholar
Fenner, M. & Kitajima, K. (2000). Ecology of seedling regeneration. In Seeds: the Ecology of Regeneration in Plant Communities, ed. Fenner, M.. Wallingford: CAB International, pp. 331–59.CrossRefGoogle Scholar
Fenner, M. & Lee, W. G. (1989). Growth of seedlings of pasture grasses and legumes deprived of single mineral nutrients. Journal of Applied Ecology, 26, 223–32.CrossRefGoogle Scholar
Fenner, M. & Thompson, K. (2005). The Ecology of Seeds. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fenster, C. B. (1991). Effect of male pollen donor and female seed parent on allocation of resources to developing seeds and fruit in Chamaecrista fasciculata (Leguminosae). American Journal of Botany, 78, 13–23.CrossRefGoogle Scholar
Feret, P. P. (1973). Early flowering in Ailanthus. Forest Science, 19, 237–9.Google Scholar
Fetcher, N., Strain, B. R., & Oberbauer, S. F. (1983). Effects of light regime on the growth, leaf morphology, and water relations of two species of tropical trees. Oecologia, 58, 314–9.CrossRefGoogle ScholarPubMed
Fichtner, K. & Schulze, E. D. (1992). The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia, 92, 236–41.CrossRefGoogle ScholarPubMed
Figueroa, J. A. & Lusk, C. H. (2001). Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytologist, 152, 483–9.CrossRefGoogle Scholar
Finch-Savage, W. E. & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501–23.CrossRefGoogle ScholarPubMed
Fine, P. V. A., Mesones, I., & Coley, P. D. (2004). Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663–5.CrossRefGoogle ScholarPubMed
Fine, P. V. A., Miller, Z. J., Mesones, I.et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150–62.CrossRefGoogle ScholarPubMed
Finkelstein, R. R., Gampala, S. S. L., & Rock, C. D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14, S15–45.CrossRefGoogle ScholarPubMed
Finlay, R. D. & Read, D. J. (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytologist, 103, 157–65.CrossRefGoogle Scholar
Finzi, A. C., Canham, C. D., & Breeman, N. (1998). Canopy tree soil interactions within temperate forests: species effects on pH and cations. Ecological Applications, 8, 447–54.Google Scholar
Fiordi, A. C., Palandra, M. R., Turicchia, S., Tani, G., & Falco, P. D. (2001). Characterization of the seed reserve in Tillandsia (Bromeliaceae) and ultrastructural aspects of their use at germination. Caryologia, 54, 1–16.Google Scholar
Firn, R. D., Wagstaff, C., & Digby, J. (2000). The use of mutants to probe models of gravitropism. Journal of Experimental Botany, 51, 1323–40.CrossRefGoogle ScholarPubMed
Fisher, B. L., Howe, H. F., & Wright, S. J. (1991). Survival and growth of Virola surinamensis yearlings, water augmentation in gap understory. Oecologia, 86, 292–7.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
Fitter, A. (2005). Darkness visible: reflections on underground ecology. Journal of Ecology, 93, 231–43.CrossRefGoogle Scholar
Fitter, A. H., Graves, J. D., Watkins, N. K., Robinson, D., & Scrimgeour, C. (1998). Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Functional Ecology, 12, 406–12.CrossRefGoogle Scholar
Fitzjohn, C., Ternan, J. L., & Williams, A. G. (1998). Soil moisture variability in a semi-arid gully catchment: Implications for runoff and erosion control. Catena, 32, 55–70.CrossRefGoogle Scholar
FloraWeb. (2006). Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. Bonn: Bundesamt fÿr Naturschutz (http://www.floraweb.de/).
Florence, R. G. (1981). The biology of the eucalypt forest. In The Biology of Australian Plants, ed. Pate, J. S. & McComb, A. J.. Nedlands: University of Western Australia Press, pp. 147–80.Google Scholar
Flores, J., Briones, O., Flores, A., & Sánchez-Colón, S. (2004). Effect of predation and solar exposure on the emergence and survival of desert seedlings of contrasting life-forms. Journal of Arid Environments, 58, 1–18.CrossRefGoogle Scholar
Flores, J. & Jurado, E. (2003). Are nurse–protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14, 911–6.CrossRefGoogle Scholar
Folgarait, P. J., Marquis, R. J., Ingvarsson, P., Braker, H. E., & Arguedas, M. (1995). Patterns of attack by insect herbivores and a fungus on saplings in a tropical tree plantation. Environmental Entomology, 24, 1487–94.CrossRefGoogle Scholar
Folgarait, P. J. & Sala, O. E. (2002). Granivory rates by rodents, insects, and birds at different microsites in the Patagonian steppe. Ecography, 25, 417–27.CrossRefGoogle Scholar
Forbis, T. A., Floyd, S. K., & Queiroz, A. (2002). The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution, 56, 2112–25.CrossRefGoogle ScholarPubMed
Forget, P.-M. (2004). Post-dispersal predation and scatter-hoarding of Dipteryx panamensis seeds by rodents in Panama. Oecologia, 94, 255–61.CrossRefGoogle Scholar
Forman, R. T. T. (1995). Land Mosaics: The Ecology of Landscapes and Regions. Cambridge: Cambridge University Press.Google Scholar
Forterre, Y., Skotheim, J. M., Dumais, J., & Makhadevan, L. (2005). How the Venus flytrap snaps. Nature, 433, 421–5.CrossRefGoogle ScholarPubMed
Fountain, D. W. & Outred, H. A. (1990). Seed development in Phaseolus vulgaris L. cv Seminole. II. Precocious germination in late maturation. Plant Physiology, 93, 1089–93.CrossRefGoogle ScholarPubMed
Fountain, D. W. & Outred, H. A. (1991). Germination requirements of New Zealand native seeds: a review. New Zealand Journal of Botany, 29, 311–16.CrossRefGoogle Scholar
Fowells, H. A. (1965). Silvics of Forest Trees of the United States. Washington: U.S. Department of Agriculture.Google Scholar
Fowells, H. A. & Stark, N. B. (1965). Natural regeneration in relation to environment in the mixed conifer forest type of California. USDA Forest Service, Research Paper PSW-24, Berkeley: Pacific Southwest Forest and Range Experiment Station.
Fowler, N. L. (1986). Microsite requirement for germination and establishment of three grass species. American Midland Naturalist, 114, 131–45.CrossRefGoogle Scholar
Fowler, N. L. (1988). What is a safe site? Neighbor, litter, germination date, and patch effects. Ecology, 69, 947–61.CrossRefGoogle Scholar
Fox, J. F. (1979). Intermediate disturbance hypothesis. Science, 204, 1344–5.CrossRefGoogle ScholarPubMed
Francis, R. & Read, D. J. (1994). The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil, 159, 11–25.CrossRefGoogle Scholar
Francis, R. & Read, D. J. (1995). Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 73, S1301–9.CrossRefGoogle Scholar
Franco, A. C. & Nobel, P. S. (1988). Interactions between seedlings of Agave deserti and the nurse plant Hilaria rigida. Ecology, 69, 1731–40.CrossRefGoogle Scholar
Franco, A. C. & Nobel, P. S. (1989). Effect of nurse plants on the microhabitat and growth of cacti. Journal of Ecology, 77, 870–86.CrossRefGoogle Scholar
Franco, A. C. & Nobel, P. S. (1990). Influences of root distribution and growth on predicted water uptake and interspecific competition. Oecologia, 82, 151–7.CrossRefGoogle ScholarPubMed
Franco, M. & Silvertown, J. (2004). Comparative demography of plants based upon elasticities of vital rates. Ecology, 85, 531–8.CrossRefGoogle Scholar
Frank, B. (2005). On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A. B. Frank's classic paper of 1885). Mycorrhiza, 15, 267–75.CrossRefGoogle Scholar
Freckelton, R. P. & Lewis, O. T. (2006). Pathogens, density dependence and the coexistence of tropical trees. Proceedings of the Royal Society, B, 273, 2909–16.CrossRefGoogle Scholar
Fredericksen, T. S. & Pariona, W. (2002). Effect of skid disturbance on commercial tree regeneration in logging gaps in a Bolivian tropical forest. Forest Ecology and Management, 171, 223–30.CrossRefGoogle Scholar
Frey, W., Hofmann, M., & Hilger, H. H. (1996). The sporophyte–gametophyte junction in Hymenophyton and Symphyogyna (Metzgeriidae, Hepaticae): structure and phylogenetic implications. Flora, 191, 245–52.CrossRefGoogle Scholar
Frey, W., Hofmann, M., & Hilger, H. H. (2001). The gametophyte–sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora, 196, 431–45.CrossRefGoogle Scholar
Friedman, J., Stein, Z., & Rushkin, E. (1981). Drought tolerance of germinating seeds and young seedlings of Anastatica hierochuntica L. Oecologia, 51, 400–3.CrossRefGoogle Scholar
Friedman, W. E. (2006). Embryological evidence for developmental lability during early angiosperm evolution. Nature, 441, 337–40.CrossRefGoogle ScholarPubMed
Friml, J., Vieten, A., Sauer, M.et al. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426, 147–53.CrossRefGoogle ScholarPubMed
Frumin, S. & Friis, E.-M. (1999). Magnoliid reproductive organs from the Cenomanian-Turonian of north-western Kazakhstan: Magnoliaceae and Illiciaceae. Plant, Systematics and Evolution, 216, 265–88.CrossRefGoogle Scholar
Fujiyoshi, M., Kagawa, A., Nakatsubo, T., & Masuzawa, T. (2006). Effects of arbuscular mycorrhizal fungi and soil developmental stages on herbaceous plants growing in the early stage of primary succession on Mount Fuji. Ecological Research, 21, 278–84.CrossRefGoogle Scholar
Fukuda, H. (2004). Signals that control plant vascular cell differentiation. Nature Reviews in Molecular Cell Biology, 5, 379–91.CrossRefGoogle ScholarPubMed
Funes, G., Basconcelo, S., Diaz, S., & Cabido, M. (1999). Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research, 9, 341–5.CrossRefGoogle Scholar
Gagne, J. M. & Houlé, G. (2001). Facilitation of Leymus mollis by Honckenya peploides on coastal dunes in subarctic Quebec, Canada. Canadian Journal of Botany, 79, 1327–31.CrossRefGoogle Scholar
Galatowitsch, S., Budelsky, R., & Yetka, L. (1999). Revegetation strategies for northern temperate glacial marshes and meadows. In An International Perspective on Wetland Rehabilitation, ed. Streever, W.. Dordrecht: Kluwer Academic Publishers, pp. 225–41.CrossRefGoogle Scholar
Galatowitsch, S. & Valk, A. (1996). The vegetation of restored and natural prairie wetlands. Ecological Applications, 6, 102–12.CrossRefGoogle Scholar
Galetti, M., Donatti, C. I., Pires, A. C., Guimaraes, P. R., & Jordano, P. (2006). Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Botanical Journal Linnean Society, 151, 141–9.CrossRefGoogle Scholar
Gallery, R., Dalling, J. W., & Arnold, A. E. (2007). Diversity, host affinity and distribution of seed-infecting fungi: a case-study with neotropical Cecropia. Ecology, 88, 582–8.CrossRefGoogle Scholar
Garbary, D. J., Renzaglia, K. S., & Duckett, J. G. (1993). The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Systematics and Evolution, 188, 237–69.CrossRefGoogle Scholar
Garcia, D. & Obeso, J. R. (2003). Facilitation by herbivore-mediated nurse plants in a threatened tree, Taxus baccata: local effects and landscape level consistency. Ecography, 26, 739–50.CrossRefGoogle Scholar
Garcia, D., Obeso, J. R., & Martinez, I. (2005). Spatial concordance between seed rain and seedling establishment in bird-dispersed trees: does scale matter? Journal of Ecology, 93, 693–704.CrossRefGoogle Scholar
Garcia, D., Zamora, R., Gomez, J. M., Jordano, P., & Hodar, J. A. (2000). Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology, 88, 436–46.CrossRefGoogle Scholar
Garcia-Castaño, J. L., Kollmann, J., & Jordano, P. (2006). Spatial variation of post-dispersal seed removal by rodents in highland microhabitats of Spain and Switzerland. Seed Science Research, 16, 213–22.CrossRefGoogle Scholar
García-Fayos, P. & Verdú, M. (1998). Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecologica, 19, 357–66.CrossRefGoogle Scholar
Garcia-Guzmán, G., & Benítez-Malvido, J. (2003). Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens. Journal of Tropical Ecology, 19, 171–7.CrossRefGoogle Scholar
García-Guzmán, G. & Dirzo, R. (2001). Patterns of leaf-pathogen infection in the understorey of a Mexican rain forest: incidence, spatio-temporal variation, and mechanism of infection. American Journal of Botany, 88, 634–45.CrossRefGoogle Scholar
García-Martinez, J. & Gil, J. (2002). Light regulation of gibberellin biosynthesis and mode of action. Journal of Plant Growth Regulation, 20, 354–68.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1996). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Canadian Journal of Botany, 74, 1572–83.CrossRefGoogle Scholar
Garwood, N. C. (1996). Functional morphology of tropical tree seedlings. In The Ecology of Tropical Forest Tree Seedlings, ed. Swaine, M. D.. Paris: UNESCO & The Parthenon Publishing Group, pp. 59–129.Google Scholar
Gascon, C., Williamson, G. B., & Fonseca, da G. A. B. (2000). Receding forest edges and vanishing reserves. Science, 288, 1356–58.CrossRefGoogle ScholarPubMed
Gay, G., Normand, L., Marmeisse, R., Sotta, B., & Debaud, J. C. (1994). Auxin overproducer mutants of Hebeioma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytologist, 128, 645–57.CrossRefGoogle Scholar
Gazzarrini, S. & McCourt, P. (2001). Genetic interactions between ABA, ethylene and sugar signaling pathways. Current Opinion in Plant Biology, 4, 387–91.CrossRefGoogle ScholarPubMed
Geddes, P. (1893). Chapters in Modern Botany. London: John Murray.CrossRefGoogle Scholar
Gedroc, J. J., McConnaughay, K. D. M., & Coleman, J. S. (1996). Plasticity in root shoot partitioning: Optimal, ontogenetic, or both? Functional Ecology, 10, 44–50.CrossRefGoogle Scholar
Gehring, C., Denich, M., Kanishiro, M., & Vlek, P. L. G. (1999). Response of secondary vegetation in eastern Amazonia to relaxed nutrient availability constraints. Biogeochemistry, 45, 223–41.CrossRefGoogle Scholar
Gehring, C. A. & Whitham, T. G. (1991). Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature, 35, 556–7.CrossRefGoogle Scholar
Gehring, C. A., Wolf, J. E., & Theimer, J. C. (2002). Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecology Letters, 5, 540–8.CrossRefGoogle Scholar
Geneve, R. L. (2005). Vigor testing in flower seeds. In Flower Seeds: Biology and Technology, ed. McDonald, M. B. & Kwong, F. Y.. Wallingford: CAB International, pp. 311–32.CrossRefGoogle Scholar
Gentry, A. H. (1983). Macfadyena unguis-cati (Uña de Gato, Cat-claw Bignone). In Costa Rican Natural History, ed. Janzen, D. H.. Chicago: University of Chicago Press, pp. 272–3.Google Scholar
George, L. O. & Bazzaz, F. A. (1999). The fern understory as an ecological filter: emergence and establishment of canopy-tree seedlings. Ecology, 80, 833–45.CrossRefGoogle Scholar
Geritz, S. A. H. (1995). Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. American Naturalist, 146, 685–707.CrossRefGoogle Scholar
Geritz, S. A. H., Meijden, E., & Metz, J. A. J. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology, 55, 324–43.CrossRefGoogle ScholarPubMed
Germino, M. J., Smith, W. K., & Resor, A. C. (2002). Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology, 162, 157–68.CrossRefGoogle Scholar
Ghazoul, J. (2005). Implications of plant spatial distribution for pollination and seed production. In Biotic Interactions in the Tropics, ed. Burslem, D. F. R. P., Pinard, M. A., & Hartley, S. E.. Cambridge: Cambridge University Press, pp. 241–66.CrossRefGoogle Scholar
Ghazoul, J., Liston, K. A., & Boyle, T. J. B. (1998). Disturbance-induced density-dependent seed set in Shorea siamensis (Dipterocarpaceae), a tropical forest tree. Journal of Ecology, 86, 462–73.CrossRefGoogle Scholar
Gibson, G. (2002). Microarrays in ecology and evolution: a preview. Molecular Ecology, 11, 17–24.CrossRefGoogle ScholarPubMed
Gibson, S. I. (2005). Control of plant development and gene expression by sugar signaling. Current Opinion in Plant Biology, 8, 93–102.CrossRefGoogle ScholarPubMed
Gifford, E. M. (1983). Concept of apical cells in bryophytes and pteridophytes. Annual Review of Plant Physiology, 34, 419–40.CrossRefGoogle Scholar
Gifford, E. M. & Foster, A. S. (1988). Morphology and Evolution of Vascular Plants, 3rd edn. New York: Freeman and Company.Google Scholar
Gilbert, B., Wright, S. J., Muller-Landau, H. C., Kitajima, K., & Hernandéz, A. (2006). Life-history trade-offs in tropical trees and lianas. Ecology, 87, 1281–8.CrossRefGoogle ScholarPubMed
Gilbert, G. S., Foster, R. B., & Hubbell, S. P. (1994). Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia, 98, 100–8.CrossRefGoogle Scholar
Gill, D. S., & Marks, P. L. (1991). Tree and shrub seedling colonization of old fields in central New York. Ecological Monographs, 61, 183–205.CrossRefGoogle Scholar
Giovannetti, M., Azzonlini, D., & Citernesi, A. S. (1999). Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 65, 5571–5.Google ScholarPubMed
Girlanda, M., Selosse, M.-A., Cafasso, et al. (2006). Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Molecular Ecology, 15, 491–504.CrossRefGoogle ScholarPubMed
Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63–92.CrossRefGoogle Scholar
Givnish, T. J. (1995). Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In Plant Stems: Physiology and Functional Morphology, ed. Gartner, B. L.. San Diego: Academic Press, pp. 3–41.Google Scholar
Gleadow, R. M., & Ashton, D. H. (1981). Invasion by Pittosporum undulatum of the forests of Central Victoria. 1. Invasion patterns and plant morphology. Australian Journal of Botany, 29, 705–20.CrossRefGoogle Scholar
Glizenstein, J. S., Platt, W. J., & Streng, D. R. (1995). Effects of fire regime and habitat on tree dynamics in north Florida longleaf pine savannas. Ecological Monographs, 65, 441–76.CrossRefGoogle Scholar
Goebel, K. (1928). Organographie der Pflanzen. Erster Teil, 3rd edn. Jena: G. Fischer.Google Scholar
Goff, F. G., & Zedler, P. H. (1968). Structural gradient analysis of upland forests in the western Great Lakes area. Ecological Monographs, 38, 65–86.CrossRefGoogle Scholar
Goffinet, B. (2000). Origin and phylogenetic relationships of bryophytes. In Bryophyte Biology, ed. Shaw, J., & Goffinet, B.. Cambridge: Cambridge University Press, pp. 124–49.CrossRefGoogle Scholar
Gollotte, A., Tuinen, D., & Atkinson, D. (2004). Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris. Mycorrhiza, 14, 111–17.CrossRefGoogle ScholarPubMed
Golodets, C., & Boeken, B. (2006). Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. Catena, 65, 285–91.CrossRefGoogle Scholar
Gómez, J. M. (2004). Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 58, 71–80.CrossRefGoogle Scholar
Gómez-Aparicio, L., Gómez, J. M., & Zamora, R. (2005). Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. Journal of Ecology, 93, 1194–202.CrossRefGoogle Scholar
Gómez-Aparicio, L., Gómez, J. M., & Zamora, R. (2007). Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp. granatense): implications for regeneration. Ecography, 30, 13–22.CrossRefGoogle Scholar
Gómez-Aparicio, L., Gómez, J. M., Zamora, R., & Boettinger, J. L. (2005). Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science, 16, 191–8.CrossRefGoogle Scholar
Gómez-Aparicio, L., Zamora, R., Gómez, J. M.et al. (2004). Applying plant facilitation to forest restoration in Mediterranean ecosystems: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications, 14, 1128–38.CrossRefGoogle Scholar
Good, R. E., Good, N. F., & Andresen, J. W. (1979). The Pine Barrens plains. In Pine Barrens: Ecosystem and Landscape, ed. Forman, R. T. T.. New York: Academic Press, pp. 283–95.Google Scholar
Gosz, J. R., Likens, G. E., & Bormann, F. H. (1973). Nutrient release from decomposing leaf and branch litter in the Hubbard Brook forest, New Hampshire. Ecological Monographs, 43, 173–91.CrossRefGoogle Scholar
Gotelli, N. J., & Entsminger, G. L. (2006). EcoSim: Null Models Software for Ecology, version 7. VT: Acquired Intelligence Inc. and Keasey-Bear. Jericho (http://garyentsminger.com/ecosim.htm, accessed January 2007).Google Scholar
Gould, A. M. A., & Gorchov, D. L. (2000). Effects of the exotic invasive shrub Lonicera maackii on the survival and fecundity of three species of native annuals. American Midland Naturalist, 144, 36–50.CrossRefGoogle Scholar
Gould, S. J., & Lewontin, R. C. (1979). Spandrels of San Marco and the Panglossian paradigm – a critique of the adaptationist program. Proceedings of the Royal Society, Series B, 205, 581–98.CrossRefGoogle Scholar
Goulet, F. (1995). Frost heaving of forest tree seedlings: a review. New Forests, 9, 67–94.CrossRefGoogle Scholar
Graham, L. E., & Wilcox, L. W. (2000). Algae. Upper Saddle River: Prentice Hall.Google Scholar
Granados, J., & Körner, C. (2002). In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Global Change Biology, 8, 1109–17.CrossRefGoogle Scholar
Grant, C. D., Bell, D. T., Koch, J. M., & Loneragan, W. A. (1996). Implications of seedling emergence to site restoration following bauxite mining in Western Australia. Restoration Ecology, 4, 146–54.CrossRefGoogle Scholar
Grant, M., & Lamb, C. (2006). Systemic immunity. Current Opinion in Plant Biology, 9, 414–20.CrossRefGoogle ScholarPubMed
Graves, J. D., Watkins, N. K., Fitter, A. H., Robinson, D., & Scrimgeour, C. (1997). Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant and Soil, 192, 153–9.CrossRefGoogle Scholar
Gray, A. N., & Spies, T. A. (1996). Gap size, within-gap position and canopy structure effects on conifer seedling establishment. Journal of Ecology, 84, 635–45.CrossRefGoogle Scholar
Greacen, E. L., & Sands, R. (1980). Compaction of forest soils – a review. Australian Journal of Soil Research, 18, 163–89.CrossRefGoogle Scholar
Green, D. S. (2005). Adaptive strategies in seedlings of three co-occurring, ecologically distinct northern coniferous tree species across an elevational gradient. Canadian Journal of Forest Research, 35, 910–17.CrossRefGoogle Scholar
Green, P. T., & Juniper, P. A. (2004a). Seed mass, seedling herbivory and the reserve effect in tropical rainforest seedlings. Functional Ecology, 18, 539–47.CrossRefGoogle Scholar
Green, P. T., & Juniper, P. A. (2004b). Seed-seedling allometry in tropical rain forest trees: seed mass-related patterns of resource allocation and the ‘reserve effect.’Journal of Ecology, 92, 397–408.CrossRefGoogle Scholar
Greene, D. F., & Johnson, E. A. (1994). Estimating the mean annual seed production of trees. Ecology, 75, 642–7.CrossRefGoogle Scholar
Greenlee, J. T., & Callaway, R. M. (1996). Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana. American Naturalist, 148, 386–96.CrossRefGoogle Scholar
Grice, A. C., & Barchia, I. (1992). Does grazing reduce survival of indigenous perennial grasses of the semi-arid woodlands of western New South Wales? Australian Journal of Ecology, 17, 195–205.CrossRefGoogle Scholar
Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–7.CrossRefGoogle Scholar
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–94.CrossRefGoogle Scholar
Grime, J. P. (1979). Plant Strategies and Vegetation Processes, New York: John Wiley & Sons.Google Scholar
Grime, J. P. (1989). Seed banks in ecological perspective. In Ecology of Soil Seed Banks, ed. Leck, M., Parker, V. T., & Simpson, R. L.. San Diego: Academic Press, pp. xv–xxii.Google Scholar
Grime, J. P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. Chichester: Wiley.Google Scholar
Grime, J. P. & Curtis, A. V. (1976). The interaction of drought and mineral nutrient stress in calcareous grassland. Journal of Ecology, 64, 975–88.CrossRefGoogle Scholar
Grime, J. P., Hodgson, J. G., & Hunt, R. (1988). Comparative Plant Ecology: a Functional Approach to Common British Species. London: Unwin Hyman.CrossRefGoogle Scholar
Grime, J. P. & Jeffrey, D. W. (1965). Seedling establishment in vertical gradients of sunlight. Journal of Ecology, 53, 621–42.CrossRefGoogle Scholar
Grime, J. P., Mackey, J. M. L., Hillier, S. H., & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420–2.CrossRefGoogle Scholar
Grime, J. P., Mason, G., Curtis, A. V.et al. (1981). A comparative study of germination characteristics in a local flora. Journal of Ecology, 69, 1017–59.CrossRefGoogle Scholar
Grisez, T. J. (1974). Prunus. In Seeds of Woody Plants in the United States, tech. coord. Scopmeyer, C. S.. Washington: Forest Service, USDA, pp. 658–73.Google Scholar
Groover, A. T. (2005). What genes make a tree a tree? Trends in Plant Science, 10, 210–14.CrossRefGoogle ScholarPubMed
Gross, K. L. (1984). Effects of seed size and growth form on seedling establishment of six monocarpic perennials. Journal of Ecology, 72, 369–87.CrossRefGoogle Scholar
Grotkopp, E., Rejmánek, M., & Rost, T. L. (2002). Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. American Naturalist, 159, 396–419.Google Scholar
Grubb, P. J. (1977). The maintenance of species–richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107–45.CrossRefGoogle Scholar
Grubb, P. J. (1980). Review of Grime (1979) Plant Strategies and Vegetation Processes. New Phytologist, 86, 123–4.Google Scholar
Grubb, P. J. (1985). Plant populations and vegetation in relation to habitat, disturbance and competition: problems of generalisation. In The Population Structure of Vegetation, ed. White, J.. Dordrecht: Junk Publisher, pp. 595–621.CrossRefGoogle Scholar
Grubb, P. J. (1987). Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In Organization of Communities, ed. Gee, J. H. R. & Giller, P. S.. Oxford: Blackwell Scientific Publications, pp. 99–118.Google Scholar
Grubb, P. J. (1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3–31.CrossRefGoogle Scholar
Grubb, P. J. & Coomes, D. A. (1997). Seed mass and nutrient content in nutrient-starved tropical rainforest in Venezuela. Seed Science Research, 7, 269–80.CrossRefGoogle Scholar
Grubb, P. J., Coomes, D. A., & Metcalfe, D. J. (2005). Comment on “A brief history of seed size.” Science, 310, 783a.Google ScholarPubMed
Grubb, P. J., Lee, W. G., Kollmann, J., & Wilson, J. B. (1996). Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall-shrub species and Fagus sylvatica. Journal of Ecology, 84, 827–40.CrossRefGoogle Scholar
Grubb, P. J. & Metcalfe, D. J. (1996). Adaptation and inertia in the Australia tropical lowland rainforest flora: contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Functional Ecology, 10, 512–20.CrossRefGoogle Scholar
Guariguata, M. R., Arias-LeClaire, H., & Jones, G. (2002). Tree seed fate in a logged and fragmented forest landscape, northeastern Costa Rica. Biotropica, 34, 405–15.CrossRefGoogle Scholar
Guariguata, M. R. & Dupuy, J. M. (1997). Forest regeneration in abandoned logging roads in lowland Costa Rica. Biotropica, 29, 15–28.CrossRefGoogle Scholar
Guevara, S., Meave, J., Moreno-Casasola, P., & Laborde, J. (1992). Floristic composition and structure of vegetation under isolated trees in neotropical pastures. Journal of Vegetation Science, 3, 655–64.CrossRefGoogle Scholar
Guidot, A., Debaud, J.-C., Effosse, A., & Marmeisse, R. (2003). Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytologist, 161, 539–47.CrossRefGoogle Scholar
Gulmon, S. L. (1992). Patterns of seed germination in Californian serpentine grassland species. Oecologia, 89, 27–31.CrossRefGoogle ScholarPubMed
Guo, Q., Brown, J. H., Valone, T. J., & Kachman, S. D. (2000). Constraints of seed size on plant distribution and abundance. Ecology, 81, 2149–55.CrossRefGoogle Scholar
Guo, Q., Thompson, D. B., Valone, T. J., & Brown, J. H. (1995). The effects of vertebrate granivores and foliovores on plant community structure in the Chihuahuan Desert. Oikos, 73, 251–9.CrossRefGoogle Scholar
Guppy, H. B. (1906). Observations of a Naturalist in the Pacific between 1896 and 1899, Vol. II, Plant Dispersal. London: Macmillan and Co., Ltd.Google Scholar
Guppy, H. B. (1912). Studies in Seeds and Fruits. London: Williams & Norgate.Google Scholar
Gustafson, D. J., Gibson, D. J., & Nickrent, D. L. (2005). Using local seeds in prairie restoration. Native Plants, 6, 25–8.Google Scholar
Gutterman, Y. (1972). Delayed seed dispersal and rapid germination as survival mechanisms of the desert plant Blepharis persica (Burm.) Kuntze. Oecologia, 10, 145–9.CrossRefGoogle ScholarPubMed
Gutterman, Y. (1982). Observations on the feeding habit of the Indian crested porcupine (Hystrix indica) and the distribution of some hemicryptophytes and geophytes in the Negev Desert Highlands. Journal of Arid Environments, 5, 261–8.Google Scholar
Gutterman, Y. (1990). Do germination mechanisms differ in plants originating in deserts receiving winter or summer rain? Israel Journal of Botany – Basic and Applied Plant Sciences, 39, 355–72.Google Scholar
Gutterman, Y. (1993). Seed Germination in Desert Plants. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Gutterman, Y. (1994). Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review, 60, 373–425.CrossRefGoogle Scholar
Gutterman, Y. (1997). Ibex diggings in the Negev Desert highlands of Israel as microhabitats for annual plants: soil salinity, location and digging depth affecting variety and density of plant species. Journal of Arid Environments, 37, 665–81.CrossRefGoogle Scholar
Gutterman, Y. (2000). Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biology, 15, 113–25.CrossRefGoogle Scholar
Gutterman, Y. (2001). Regeneration of Plants in Arid Ecosystems Resulting from Patch Disturbance. Dordrecht: Kluwer.CrossRefGoogle Scholar
Gutterman, Y. (2002). Survival Strategies of Annual Desert Plants. Heidelberg: Springer.CrossRefGoogle Scholar
Gutterman, Y. & Ginott, S. (1994). Long-term protected “seed bank” in dry inflorescences of Asteriscus pygmaeus: achene dispersal mechanism and germination. Journal of Arid Environments, 26, 149–63.CrossRefGoogle Scholar
Gutterman, Y., Golan, T., & Garsani, M. (1990). Porcupine diggings as a unique ecological system in a desert environment. Oecologia, 85, 122–7.CrossRefGoogle Scholar
Gutterman, Y. & Shem-Tov, S. (1996). Structure and function of the mucilaginous seed coats of Plantago coronopus inhabiting the Negev Desert of Israel. Israel Journal of Plant Sciences, 44, 125–34.CrossRefGoogle Scholar
Gutterman, Y. & Shem-Tov, S. (1997a). Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust. Journal of Arid Environments, 35, 695–705.CrossRefGoogle Scholar
Gutterman, Y. & Shem-Tov, S. (1997b). The efficiency of the strategy of mucilaginous seeds of some common annuals of the Negev adhering to the soil crust to delay collection by ants. Israel Journal of Plant Sciences, 45, 317–27.CrossRefGoogle Scholar
Gworek, J. R., Wall, Vander S. B., & Brussard, P. F. (2007). Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. Forest Ecology and Management, 239, 57–68.CrossRefGoogle Scholar
Haag, R. W. (1983). Emergence of seedlings of aquatic macrophytes from lake sediments. Canadian Journal of Botany, 61, 148–56.CrossRefGoogle Scholar
Haas, C. A. (1995). Dispersal and use of corridors by birds in wooded patches on an agricultural landscape. Conservation Biology, 9, 845–54.CrossRefGoogle Scholar
Haase, P., Pugnaire, F. I., Clark, S. C., & Incoll, L. D. (1999). Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima. Plant Ecology, 145, 327–39.CrossRefGoogle Scholar
Haccius, B. (1952). Die Embryoentwicklung bei Ottelia alismoides und das Problem des terminalen Monokotylen-Keimblatts. Planta, 40, 443–60.CrossRefGoogle Scholar
Haccius, B. (1954). Embryologische und histogenetische studien an “monokotylen dikotylen.” I. Claytonia virginica. Osterreichische Botanische Zeitschrift, 101, 285–303.CrossRefGoogle Scholar
Haccius, B. & Lakshmanan, K. K. (1966). Vergleichende Untersuchung der Entwicklung von Kotyledon und Spross-scheitel bei Pistia stratiotes und Lemna gibba, ein Beitrag zum Problem der sogenannten terminalen Blattorgane. Beiträge zur Biologie der Pflanzen, 42, 425–43.Google Scholar
Hadley, G. (1970). Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytologist, 69, 1015–23.CrossRefGoogle Scholar
Hadley, G. & Williamson, B. (1971). Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytologist, 70, 445–55.CrossRefGoogle Scholar
Hager, H. A. (2004). Competitive effect versus competitive response of invasive and native wetland plant species. Oecologia, 139, 140–9.CrossRefGoogle ScholarPubMed
Haines, R. W. & Lye, K. A. (1975). Seedlings of Nymphaeaceae. Botanical Journal of the Linnean Society, 70, 255–65.CrossRefGoogle Scholar
Halfhill, M. D., Sutherland, J. P., Hong, S. M.et al. (2005). Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 14, 3177–89.CrossRefGoogle ScholarPubMed
Hallé, F. & Oldeman, R. A. A. (1975). Essay on the Architecture and Dynamics of Growth of Tropical Trees. Kuala Lumpur: Penerbit University.Google Scholar
Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical Trees and Forests. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Halter, M. R., Chanway, C. P., & Harper, G. J. (1993). Growth reduction and root deformation of containerized lodgepole pine saplings 11 years after planting. Forest Ecology and Management, 56, 131–46.CrossRefGoogle Scholar
Hamerlynck, E. P., Huxman, T. E., Loik, M. E., & Smith, S. D. (2000). Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology, 148, 183–93.CrossRefGoogle Scholar
Hammond, D. S. (1995). Post-dispersal seed and seedling mortality of tropical dry forest trees after shifting agriculture, Chiapas, Mexico. Journal of Tropical Ecology, 11, 295–313.CrossRefGoogle Scholar
Hammond, D. S. & Brown, V. K. (1998). Disturbance, phenology and life-history characteristics: factors influencing frequency-dependent attach on tropical seeds and seedlings. In Dynamics of Tropical Communities, ed. Newbury, D. M., Brown, N., & Prins, H. H. T.. Oxford: Blackwell Science, pp. 51–78.Google Scholar
Hanf, M. (1990). Ackerunkräuter Europas mit ihren Keimlingen und Samen. München: BLV.Google Scholar
Hanley, M. E. (1998). Seedling herbivory, community composition and plant life history traits. Perspectives in Plant Ecology, Evolution and Systematics, 1, 191–205.CrossRefGoogle Scholar
Hanley, M. E. (2004). Seedling herbivory and the influence of plant species richness in seedling neighbourhoods. Plant Ecology, 170, 35–41.CrossRefGoogle Scholar
Hanley, M. E. & Fenner, M. (1997). Seedling growth of four fire-following Mediterranean plant species deprived of single mineral nutrients. Functional Ecology, 11, 398–405.CrossRefGoogle Scholar
Hanley, M. E., Fenner, M., & Edwards, P. J. (1995). The effect of seedling age on the likelihood of herbivory by the slug Deroceras reticulatum. Functional Ecology, 9, 754–9.CrossRefGoogle Scholar
Hanley, M. E., Fenner, M., Whibley, H., & Darvill, B. (2004). Early plant growth: identifying the end point of the seedling phase. New Phytologist, 163, 61–6.CrossRefGoogle Scholar
Hanley, M. E., Hilhorst, H. W. M., & Karssen, C. M. (2000). Effect of chemical environment on seed germination. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn., ed. Fenner, M.. Wallingford: CAB International, pp. 293–310.CrossRefGoogle Scholar
Hanley, M. E. & Lamont, B. B. (2001). Herbivory, serotiny and seedling defense in Western Australian Proteaceae. Oecologia, 126, 409–17.CrossRefGoogle Scholar
Hanley, M. E. & Lamont, B. B. (2002). Relationships between physical and chemical attributes of congeneric seedlings: how important is seedling defense? Functional Ecology, 16, 216–22.CrossRefGoogle Scholar
Hanley, M. E. & May, O. C. (2006). Cotyledon damage at the seedling stage affects growth and flowering potential in mature plants. New Phytologist, 169, 243–50.CrossRefGoogle ScholarPubMed
Hanslin, H. M. & Karlsson, P. S. (1996). Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia, 106, 370–5.CrossRefGoogle ScholarPubMed
Hanson, T., Brunsfeld, S., & Finegan, B. (2006). Variation in seedling density and seed predation indicators for the emergent tree Dipteryx panamensis in continuous and fragmented rain forest. Biotropica, 38, 770–4.CrossRefGoogle Scholar
Hara, M. (1985). Analysis of seedling banks of a climax beech forest: ecological importance of seedlings sprouts. Vegetatio, 71, 67–74.Google Scholar
Hardesty, B. D., Hubbell, S. P., & Bermingham, E. (2006). Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecology Letters, 9, 516–25.CrossRefGoogle Scholar
Harley, J. L. & Harley, E. L. (1987). A checklist of mycorrhiza in the British flora. New Phytologist, 105, 1–102.CrossRefGoogle Scholar
Harley, J. L. & Smith, S. E. (1983). Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Harms, K. E. & Dalling, J. W. (1997). Damage and herbivory tolerance through resprouting as an advantage of large seed size in tropical trees and lianas. Journal of Tropical Ecology, 13, 617–21.CrossRefGoogle Scholar
Harms, K. E., Dalling, J. W., & Aizprua, R. (1997). Regeneration from cotyledons in Gustavia superba (Lecythidaceae). Biotropica, 29, 234–7.Google Scholar
Harms, K. E., Wright, S. J., Calderon, O., Hernandez, A., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493–5.CrossRefGoogle Scholar
Harper, J. L. (1977). Population Biology of Plants. London: Academic Press.Google Scholar
Harper, J. L., Lovell, P. H., & Moore, K. G. (1970). The shapes and sizes of seeds. Annual Review of Ecology and Systematics, 1, 327–56.CrossRefGoogle Scholar
Harper, J. L. & Ogden, J. (1970). The reproductive strategy of higher plants. I. The concept of strategy with special reference to Senecio vulgaris L. Journal of Ecology, 58, 681–98.CrossRefGoogle Scholar
Harper, J. L. & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5, 419–63.CrossRefGoogle Scholar
Harper, J. L., Williams, J. T., & Sagar, G. R. (1965). The behaviour of seeds in soil. 1. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. Journal of Ecology, 53, 273–86.CrossRefGoogle Scholar
Harris, D. & Davy, A. J. (1987). Seedling growth in Elymus farctus after episodes of burial with sand. Annals of Botany, 60, 587–93.CrossRefGoogle Scholar
Harrison, C. R. & Arditti, J. (1978). Physiological changes during the germination of Cattleya aurantiaca (Orchidaceae). Botanical Gazette, 139, 180–9.CrossRefGoogle Scholar
Hartman, K. M. & McCarthy, B. C. (2004). Restoration of a forest understory after the removal of an invasive shrub, Amur honeysuckle (Lonicera maackii). Restoration Ecology, 12, 154–65.CrossRefGoogle Scholar
Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T., & Gibson, D. J. (1993). Mycorrhizal influence on intraspecific and interspecific neighbor interactions among co-occurring prairie grasses. Journal of Ecology, 81, 787–95.CrossRefGoogle Scholar
Hartshorn, G. S. (1980). Neotropical forest dynamics. Biotropica, 12, S23–30.CrossRefGoogle Scholar
Hartshorn, G. S. (1983). Pentaclethra macroloba (Gavilán). In Costa Rican Natural History, ed. Janzen, D. H.. Chicago. University of Chicago Press, pp. 301–3.Google Scholar
Harvis, G. & Hadley, G. (1967). The relation between host and endophyte in orchid mycorrhiza. New Phytologist, 66, 205–15.CrossRefGoogle Scholar
Hastwell, G. T. & Facelli, J. M. (2003). Facilitation in a pulsed environment: Differing effects of facilitation on growth and survivorship of the chenopod shrub Enchylaena tomentosa. Journal of Ecology, 91, 941–50.CrossRefGoogle Scholar
Hatcher, P. E., Moore, J., Taylor, J. E., Tinney, G. W., & Paul, N. D. (2004). Phytohormones and plant–herbivore–pathogen interactions: integrating the molecular with the ecological. Ecology, 85, 59–69.CrossRefGoogle Scholar
Hättenschwiler, S. (2001). Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia, 129, 31–42.CrossRefGoogle ScholarPubMed
Hättenschwiler, S. & Körner, C. (2003). Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Functional Ecology, 17, 778–85.CrossRefGoogle Scholar
He, X., Critchley, C., Ng, H., & Bledsoe, C. (2005). Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Ecualyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3− supplied as ammonium nitrate. New Phytologist, 167, 897–912.CrossRefGoogle ScholarPubMed
Heggie, L. & Halliday, K. J. (2005). The highs and lows of plant life: temperature and light interactions in development. International Journal of Developmental Biology, 49, 675–87.CrossRefGoogle ScholarPubMed
Heinemann, K. & Kitzberger, T. (2006). Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. Journal of Biogeography, 33, 1357–67.CrossRefGoogle Scholar
Heisey, R. M. (1990). Allelopathic and herbicidal effects of extracts from Tree of Heaven (Ailanthus altissima). American Journal of Botany, 77, 662–70.CrossRefGoogle Scholar
Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. Y. (1998). Ploughing up the wood-wide web? Nature, 394, 431.CrossRefGoogle ScholarPubMed
Helm, D. J., Allen, E. B., & Trappe, J. M. (1996). Mycorrhizal chronosequence near Exit Glacier, Alaska. Canadian Journal of Botany, 74, 1496–506.CrossRefGoogle Scholar
Henderson, F. M. (2006). Morphology and anatomy of palm seedlings. Botanical Review, 72, 273–329.CrossRefGoogle Scholar
Hendrix, S. D. (1991). Are seedlings from small seeds always inferior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytologist, 119, 299–306.CrossRefGoogle Scholar
Hendrix, S. D. & Sun, I. F. (1989). Inter- and intraspecific variation in seed mass in seven species of umbellifers. New Phylologist, 112, 445–52.CrossRefGoogle Scholar
Henery, M. L. & Westoby, M. (2001). Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos, 92, 479–90.CrossRefGoogle Scholar
Hensen, I. (1999). Reproductive patterns in five semi-desert perennials of southeastern Spain. Botanische Jahrbuecher fuer Systematik, Pflanzengeschichte und Pflanzengeographie, 121, 491–505.Google Scholar
Hensen, I. & Oberprieler, C. (2005). Effects of population size on genetic diversity and seed production in the rare Dictamnus albus (Rutaceae) in central Germany. Conservation Genetics, 6, 63–73.CrossRefGoogle Scholar
Hernández, J. C. C., Wolf, J. H. D., Garcia-Franco, J. G., & González-Espinosa, M. (1999). The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Revista de Biologia Tropical, 47, 763–73.Google Scholar
Herrera, C. M. (2000). Flower-to-seedling consequences of different pollination regimes in an insect-pollinated shrub. Ecology, 81, 15–29.CrossRefGoogle Scholar
Herrera, C. M. & Jordano, P. (1981). Prunus mahaleb and birds, the high-efficiency seed dispersal system of a temperate fruiting tree. Ecological Monographs, 51, 203–18.CrossRefGoogle Scholar
Herrera, C. M., Jordano, P., López-Soria, L., & Amat, J. A. (1994). Recruitment of a mast-fruiting, bird-dispersed tree: bridging frugivore activity and seedling establishment. Ecological Monographs, 64, 315–44.CrossRefGoogle Scholar
Hetrick, B. A. D., Wilson, G. W. T., & Hartnett, D. C. (1989). Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 67, 2608–15.CrossRefGoogle Scholar
Hetrick, B. A. D., Wilson, G. W. T., & Todd, T. C. (1992). Relationship of mycorrhizal symbiosis, rooting strategy and phenology among tall grass prairie forbs. Canadian Journal of Botany, 70, 1521–8.CrossRefGoogle Scholar
Hett, J. M. & Loucks, O. L. (1971). Sugar maple (Acer saccharum Marsh.) seedling mortality. Journal of Ecology, 59, 507–20.CrossRefGoogle Scholar
Hewitt, N. (1998). Seed size and shade-tolerance: a comparative analysis of North American temperate trees. Oecologia, 114, 432–40.CrossRefGoogle ScholarPubMed
Heydecker, W. (1956). Establishment of seedlings in the field. I. Influence of sowing depth on seedling emergence. Journal of Horticultural Science, 31, 76–87.CrossRefGoogle Scholar
Heywood, V. H., ed. (1978). Flowering Plants of the World. Oxford: Oxford University Press.Google Scholar
Hickey, L. J. & Doyle, J. A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review, 43, 1–104.CrossRefGoogle Scholar
Hierro, J. L., Maron, J. L., & Callaway, R. M. (2005). A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15.CrossRefGoogle Scholar
Hietz, P. & Hietz, U. S. (1995). Intra- and interspecific relations within an epiphyte community in a Mexican humid montane forest. Selbyana, 16, 135–40.Google Scholar
Hilger, H. H., Weigend, M., & Frey, W. (2002). The gametophyte–sporophyte junction in Isoëtes boliviensis (Isoëtales, Lycopodiophyta). Phyton, 42, 149–57.Google Scholar
Hilhorst, H. W. M., & Karssen, C. M. (2000). Effects of chemical environment on seed germination. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd. edn., ed. Fenner, M., Wallingford, CAB International, pp. 293–310.CrossRefGoogle Scholar
Lambers, Hille Ris J., Clark, J. S., & Beckage, B. (2002). Density dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732–5.CrossRefGoogle ScholarPubMed
Hladik, A. & Miquel, S. (1990). Seedling types and plant establishment in an African rain forest. In Reproductive Ecology of Tropical Forest Plants, ed. Bawa, K. S. & Hadley, M.. Carnforth: Parthenon, pp. 261–82.Google Scholar
Hobbie, E. A. (2006). Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology, 87, 563–9.CrossRefGoogle ScholarPubMed
Hobbie, J. E. & Hobbie, E. A. (2006). 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology, 87, 816–22.CrossRefGoogle ScholarPubMed
Hobbs, R. J. & Huenneke, L. F. (1992). Disturbance, diversity and invasion: implications for conservation. Conservation Biology, 6, 324–37.CrossRefGoogle Scholar
Hobbs, R. J. & Mooney, H. A. (1998). Broadening the extinction debate: population deletions and additions in California and western Australia. Conservation Biology, 12, 271–83.CrossRefGoogle Scholar
Hoekstra, T. W., Allen, T. F. H., & Flather, L. H. (1991) Implicit scaling in ecological research. BioScience, 41, 148–54.CrossRefGoogle Scholar
Hoffmann, W. A. (2000). Post-establishment seedling success in the Brazilian cerrado: a comparison of savanna and forest species. Biotropica, 32, 62–9.CrossRefGoogle Scholar
Hoffmann, W. A., Orthen, B., & Franco, A. C. (2004). Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia, 140, 252–60.CrossRefGoogle ScholarPubMed
Hofmeister, W. (1862). On the Germination, Development, and Fructification of the Higher Cryptogamia and on the Fructification of the Coniferae. London: Ray Society.CrossRefGoogle Scholar
Hogarth, P. J. (1999). The Biology of Mangroves. Oxford: Oxford University Press.Google Scholar
Holdaway, R. J. & Sparrow, A. D. (2006). Assembly rules operating along a primary riverbed grassland successional sequence. Journal of Ecology, 94, 1092–102.CrossRefGoogle Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T., & Tosi, J. A. (1971). Forest Environments in Tropical Life Zones. Oxford: Pergamon Press.Google Scholar
Holdsworth, A. R. & Uhl, C. (1997). Fire in the eastern Amazonian logged rain forest and the potential for fire reduction. Ecological Applications, 7, 713–25.CrossRefGoogle Scholar
Holl, K. D. (2003). Tropical moist forest. In Handbook of Ecological Restoration, ed. Perrow, M. & Davy, A.. Cambridge: Cambridge University Press, pp. 539–58.Google Scholar
Holl, K. D., Loik, M. E., Lin, E. H. V., & Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology, 8, 339–49.CrossRefGoogle Scholar
Holla, T. A. & Knowles, P. (1988). Age structure analysis of a virgin white pine, Pinus strobus, population. Canadian Field-Naturalist, 102, 221–6.Google Scholar
Holmes, P. M. & Newton, R. J. (2004). Patterns of seed persistence in South African fynbos. Plant Ecology, 172, 143–58.CrossRefGoogle Scholar
Holmes, P. M. & Richardson, D. M. (1999). Protocols for restoration based on recruitment dynamics, community structure, and ecosystem function: perspectives from South African fynbos. Restoration Ecology, 7, 215–30.CrossRefGoogle Scholar
Holmgren, M. (2000). Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation? Oikos, 90, 67–78.CrossRefGoogle Scholar
Holmgren, M., Scheffer, M., & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. Ecology, 78, 1966–75.CrossRefGoogle Scholar
Holzapfel, C. & Mahall, B. E. (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology, 80, 1747–61.CrossRefGoogle Scholar
Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B., & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, 5, 525–30.CrossRefGoogle Scholar
Hooper, E., Condit, R., & Legendre, P. (2002). Responses of 20 native species to reforestation strategies for abandoned farmland in Panama. Ecological Applications, 12, 1626–41.CrossRefGoogle Scholar
Hori, H., Lim, B.-L., & Osawa, S. (1985). Evolution of green plants as deduced from 5S rRNA sequences. Proceedings of the National Academy of Sciences (USA), 82, 820–3.CrossRefGoogle ScholarPubMed
Horsley, S. B., Stout, S. L., & Calesta, D. S. (2003). White-tailed deer impact on the vegetation dynamics of a northern hardwood forest. Ecological Applications, 13, 98–118.CrossRefGoogle Scholar
Horton, J. L. & Hart, S. C. (1998). Hydraulic lift: A potentially important ecosystem process. Trends in Ecology & Evolution, 13, 232–5.CrossRefGoogle ScholarPubMed
Horton, T. R. & Bruns, T. D. (1998). Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudostuga menziesii) and bishop pine (Pinus muricata). New Phytologist, 139, 331–9.CrossRefGoogle Scholar
Horton, T. R. & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10, 1855–71.CrossRefGoogle ScholarPubMed
Horton, T. R., Bruns, T. D., & Parker, V. T. (1999). Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Canadian Journal of Botany, 77, 93–102.CrossRefGoogle Scholar
Horton, T. R., Cázares, E., & Bruns, T. D. (1998). Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza, 8, 11–18.CrossRefGoogle Scholar
Horton, T. R., Molina, R., & Hood, K. (2005). Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza, 15, 393–403.CrossRefGoogle ScholarPubMed
Horvitz, C. C. & Schemske, D. W. (1995). Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analysis. Ecological Monographs, 65, 155–92.CrossRefGoogle Scholar
Horvitz, C. C., Schemske, D. W., & Caswell, H. (1997). The relative “importance” of life-history stages to population growth: prospective and retrospective analyses. In Structured Population Models in Marine, Terrestrial and Freshwater Systems, ed. Tuljapurkar, S. & Caswell, H.. New York: Chapman and Hall, pp. 247–72.CrossRefGoogle Scholar
Hoshizaki, K., Suzuki, W., & Sasaki, S. (1997). Impacts of secondary seed dispersal and herbivory on seedling survival in Aesculus turbinata. Journal of Vegetation Science, 8, 735–42.CrossRefGoogle Scholar
Houlé, G. (1991). Regenerative traits of tree species in a deciduous forest of northeastern North America. Holoartic Ecology, 14, 142–51.Google Scholar
Houlé, G. (1992). Spatial relationship between seed and seedling abundance and mortality in a deciduous forest of north-eastern North America. Journal of Ecology, 80, 99–108.CrossRefGoogle Scholar
Houlé, G. (1994). Spatiotemporal patterns in the components of regeneration of four sympatric tree species – Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. Journal of Ecology, 82, 39–53.CrossRefGoogle Scholar
Houter, N. C. & Pons, T. L. (2005). Gap size effects on photoinhibition in understorey saplings in tropical rainforest. Plant Ecology, 179, 43–51.CrossRefGoogle Scholar
Howard, T. G. & Goldberg, D. E. (2001). Competitive response hierarchies for germination, growth, and survival, and their influence on abundance. Ecology, 82, 979–90.CrossRefGoogle Scholar
Howe, H. F., Brown, J. S., & Zorn-Arnold, B. (2002). A rodent plague on prairie diversity. Ecology Letters, 5, 30–6.CrossRefGoogle Scholar
Howe, H. F. & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–28.CrossRefGoogle Scholar
Howlett, B. E. & Davidson, D. W. (2003). Effects of seed availability, site conditions, and herbivory on pioneer recruitment after logging in Sabah, Malaysia. Forest Ecology and Management, 184, 369–83.CrossRefGoogle Scholar
Huang, Z. & Gutterman, Y. (1998). Artemisia monosperma achene germination in sand: effects of sand depth, sand/water content, cyanobacterial sand crust and temperature. Journal of Arid Environments, 38, 27–43.CrossRefGoogle Scholar
Huang, Z. & Gutterman, Y. (2004). Seedling desiccation tolerance of Leymus racemous (Poaceae) (wild rye), a perennial sand-dune grass inhabiting the Junggar Basin of Xinjiang, China. Seed Science Research, 14, 233–9.Google Scholar
Huante, P., Rincón, E., & Acosta, I. (1995). Nutrient availability and growth rate of 34 woody species from a tropical deciduous forest in Mexico. Functional Ecology, 9, 849–58.CrossRefGoogle Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.Google Scholar
Hubbell, S. P. (2004). Two decades of research on the BCI forest dynamics plot: where have we been and where are we going. In Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network, ed. Loso, E. C. & Leigh, E. G. Jr.Chicago: University of Chicago Press, pp. 8–30.Google Scholar
Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–72.CrossRefGoogle Scholar
Hubbell, S. P. & Foster, R. B. (1992). Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos, 63, 48–61.CrossRefGoogle Scholar
Hubbell, S. P., Foster, R. B., Brien, O' S. T.et al. (1999). Light gaps, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554–7.CrossRefGoogle Scholar
Huber-Sanwald, E. & Pike, D. A. (2005). Establishing native grasses in a big sagebrush-dominated site: an intermediate restoration step. Restoration Ecology, 13, 292–301.CrossRefGoogle Scholar
Hulme, P. E. (1994). Seedling herbivory in grassland: relative importance of vertebrate and invertebrate herbivores. Journal of Ecology, 82, 873–80.CrossRefGoogle Scholar
Hulme, P. E. (1996). Herbivory, plant regeneration, and species coexistence. Journal of Ecology, 84, 609–15.CrossRefGoogle Scholar
Hulme, P. E. & Kollmann, J. (2005). Seed predator guilds, spatial variation in post-dispersal seed predation and potential effects on plant demography – a temperate perspective. In Seed Fate: Predation, Dispersal and Seedling Establishment, ed. Forget, P.-M., Lambert, J. E., Hulme, P. E., & Wall, S. B. Vander. Wallingford: CAB International, pp. 9–30.CrossRefGoogle Scholar
Hultine, K. R., Scott, R. L., Cable, W. L., Goodrich, D. C., & Williams, D. G. (2004). Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Functional Ecology, 18, 530–8.CrossRefGoogle Scholar
Humbert, L., Gagnon, D., Kneeshaw, D. D., & Messier, C. (2007). A shade tolerance index for common understory species of northeastern North America. Ecological Indicators, 7, 195–207.CrossRefGoogle Scholar
Hupy, J. P. (2004). Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate. Journal of Arid Environments, 58, 167–79.CrossRefGoogle Scholar
Hurtt, G. C. & Pacala, S. W. (1995). The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology, 176, 1–12.CrossRefGoogle Scholar
Husband, R., Herre, E. A., & Young, J. P. W. (2002). Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiology Ecology, 42, 131–6.CrossRefGoogle Scholar
Huxman, T. E., Wilcox, B. P., Breshears, D. D.et al. (2005). Ecohydrological implications of woody plant encroachment. Ecology, 86, 308–19.CrossRefGoogle Scholar
Hyatt, L. A. & Araki, S. (2006). Comparative population dynamics of an invading species in its native and novel ranges. Biological Invasions, 8, 261–75.CrossRefGoogle Scholar
Hyatt, L. A., Rosenberg, M. S., Howard, T. G.et al. (2003). The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos, 103, 590–602.CrossRefGoogle Scholar
Ibarra-Manríquez, G., Ramos, M. M., & Oyama, K. (2001). Seedling functional types in a lowland rain forest in Mexico. American Journal of Botany, 88, 1801–12.CrossRefGoogle Scholar
Ichie, T., Ninomiya, I., & Ogino, K. (2001). Utilization of seed reserves during germination and early seedling growth by Dryobalanops lanceolata (Dipterocarpaceae). Journal of Tropical Ecology, 17, 371–8.CrossRefGoogle Scholar
Ickes, K. (2001). Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of Peninsular Malaysia. Biotropica, 33, 682–90.CrossRefGoogle Scholar
Inderjit, & Callaway, R. M. (2003). Experimental designs for the study of allelopathy. Plant and Soil, 256, 1–11.Google Scholar
Inderjit & Weston, L. A. (2003). Root exudates: an overview. In Root Ecology, ed. Kroon, H. & Visser, E. J. W.. Berlin: Springer-Verlag, pp. 235–55.CrossRefGoogle Scholar
Inghe, O. & Tamm, C. O. (1985). Survival and flowering of perennial herbs. IV. The behaviour of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–81. Oikos, 45, 400–20.CrossRefGoogle Scholar
IPCC. (2007). Impacts, adaptation and vulnerability. Working Group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for policymakers, Geneva: Intergovernmental Panel on Climate Change.
Isaac, F. M. (1969). Floral structure and germination in Cymodocea ciliata. Phytomorphology, 19, 44–51.Google Scholar
Ishida, T. A., Nara, K., & Hogetsu, T. (2006). Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytologist, 174, 430–40.CrossRefGoogle Scholar
Izhaki, I., Walton, P. B., & Safriel, U. N. (1991). Seed shadows generated by frugivorous birds in an eastern Mediterranean scrub. Journal of Ecology, 79, 575–90.CrossRefGoogle Scholar
Jackson, M. W., Stinchcombe, J. R., Korves, T. M., & Schmitt, J. (2004). Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Molecular Ecology, 13, 3609–15.CrossRefGoogle ScholarPubMed
Jacquemyn, H., Brys, R., & Hermy, M. (2001). Within and between plant variation in seed number, seed mass and germinability of Primula elatior: Effect of population size. Plant Biology, 3, 561–8.CrossRefGoogle Scholar
Jaffe, K., Michelangeli, F., Gonzalez, J. M., Miras, B., & Ruiz, M. C. (1992). Carnivory in pitcher plants of the genus Heliamphora (Sarraceniaceae). New Phytologist, 122, 733–44.CrossRefGoogle Scholar
Jakobsen, I. (1999). Transport of phosphorus and carbon in arbuscular mycorrhizas. In Mycorrhiza. Structure, Function, Molecular Biology and Biotechnology, ed. Varma, A. & Hock, B.. Berlin: Springer-Verlag, pp. 305–32.Google Scholar
Jakobsen, I., Abbott, L. K., & Robson, A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120, 371–80.CrossRefGoogle Scholar
Jakobsson, A. & Eriksson, O. (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos, 88, 493–502.CrossRefGoogle Scholar
Jakobsson, A., Bruun, H. H., & Eriksson, O. (2006). Local seed rain and seed bank in species-rich grassland: effects of plant abundance and seed size. Canadian Journal Botany, 84, 1870–81.CrossRefGoogle Scholar
Jambois, A., Dauphin, A., Kawano, T.et al. (2005). Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to regulate ontogenesis. Physiologia Plantarum, 123, 120–9.CrossRefGoogle Scholar
James, C. D., Landsberg, J., & Morton, S. R. (1999). Provision of watering points in the Australian arid zone: a review of effects on biota. Journal of Arid Environments, 41, 87–121.CrossRefGoogle Scholar
James, T. Y., Kauff, F., Schoch, C.et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature, 433, 818–22.CrossRefGoogle Scholar
Janos, D. P. (1980a). Mycorrhizae influence tropical succession. Biotropica, 12, 56–95.CrossRefGoogle Scholar
Janos, D. P. (1980b). Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology, 61, 151–62.CrossRefGoogle Scholar
Janos, D. P., Sahley, C. T., & Emmons, L. H. (1995). Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology, 76, 1852–8.CrossRefGoogle Scholar
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–28.CrossRefGoogle Scholar
Janzen, D. H. (1983). Mora megistosperma (Alcornoque, Mora). In Costa Rican Natural History, ed. Janzen, D. H.. Chicago: University of Chicago Press, pp. 280–2.Google Scholar
Ji, X.-B. & Ye, N.-G. (2003). The seedling types of dicots and their evolutionary relationships. Acta Phytotaxonomica Sinica, 41, 447–64 (in Chinese).Google Scholar
Jiménez, J. A. (1994). Los Manglares del Pacifico de Centroamérica. Heredia, Costa Rica: EFUNA.Google Scholar
Johansen, D. A. (1950). Plant Embryology. Waltham: Chronica Botanica.Google Scholar
John, R., Dalling, J. W., Harms, K. E.et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences (USA), 104, 864–9.CrossRefGoogle ScholarPubMed
Johns, A. D. (1992). Species conservation in managed tropical forests. In Tropical Deforestation and Species Extinctions, ed. Whitmore, T. C. & Sayer, J. A.. London: Chapman and Hall, pp. 59–77.Google Scholar
Johns, A. D. (1997). Timber Production and Biodiversity Conservation in Tropical Rain Forests. Oxford: Oxford University Press.CrossRefGoogle Scholar
Johnsen, T. N. Jr., & Alexander, R. A. (1974). Juniperus L. Juniper. In Seeds of Woody Plants in the United States, Agriculture Handbook No. 450, tech. coord. C. S. Schopmeyer. Washington, D.C.: Forest Service, U. S. Department of Agriculture, pp. 460–9.Google Scholar
Johnson, D., Leake, J. R., & Read, D. J. (2001). Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 152, 555–62.CrossRefGoogle Scholar
Johnson, D. A. (1986). Seed and seedling relations of crested wheatgrass: a review. In Crested Wheatgrass: Its Values, Problems, and Myths. ed. Johnson, K., Logan: Utah State University, pp. 65–90.Google Scholar
Johnson, J. D., Tognetti, R., Michelozzi, M.et al. (1997). Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. 2. The interaction of light environment and soil fertility on seedling physiology. Physiologia Plantarum, 101, 124–34.CrossRefGoogle Scholar
Johnson, N. C. (1993). Can fertilization of soil select less mutualistic mycorrhizae. Ecological Applications, 3, 749–57.CrossRefGoogle ScholarPubMed
Johnson, N. C., Graham, J. H., & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135, 575–85.CrossRefGoogle Scholar
Jones, M. D., Durall, D. M., & Tinker, P. B. (1991). Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytologist, 119, 99–106.CrossRefGoogle Scholar
Jordan, P. W. & Nobel, P. S. (1979). Infrequent establishment of seedlings of Agave desertii (Agavaceae) in the northwestern Sonoran Desert. American Journal of Botany, 66, 1079–84.CrossRefGoogle Scholar
Jordano, P. (1992). Fruits and frugivory. In Seeds: the Ecology of Regeneration in Natural Plant Communities, ed. Fenner, M.. Wallingford: CAB International, pp. 105–50.Google Scholar
Jordano, P. & Godoy, J. A. (2002). Frugivore-generated seed shadows: a landscape view of demographic and genetic effects. In Seed Dispersal and Frugivory: Ecology, Evolution and Conservation, ed. Levey, D. J., Silva, W. R., & Galetti, M.. Wallingford: CAB International, pp. 305–21.Google Scholar
Jordano, P. & Schupp, E. W. (2000). Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecological Monographs, 70, 591–615.CrossRefGoogle Scholar
Joshi, G. V., Pimlaskar, M., & Bhosale, L. J. (1972). Physiological studies in germination of mangroves. Botanica Marina, 5, 91–5.Google Scholar
Jouve, L., Gaspar, T., Kevers, C., Greppin, H., & Agosti, Degi R. (1999). Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta, 209, 136–42.CrossRefGoogle ScholarPubMed
Jubinsky, G. & Anderson, L. C. (1996). The invasive potential of Chinese tallow-tree (Sapium sebiferum Roxb.) in the Southeast. Castanea, 61, 226–31.Google Scholar
Jumpponen, A. (2003). Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytologist, 158, 569–78.CrossRefGoogle Scholar
Juniper, B. E. & Jeffree, C. E. (1983). Plant Surfaces. London: Edward Arnold.Google Scholar
Juniper, B. E., Robins, R. J., & Joel, D. M. (1989). The Carnivorous Plants. London: Academic Press.Google Scholar
Jurado, E. & Flores, J. (2005). Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science, 16, 559–64.CrossRefGoogle Scholar
Jurado, E. & Westoby, M. (1992). Seedling growth in relation to seed size among species of arid Australia. Journal of Ecology, 80, 407–16.CrossRefGoogle Scholar
Jurado, E., Westoby, M., & Nelson, D. (1991). Diaspore weight, dispersal, growth form and perenniality of central Australian plants. Journal of Ecology, 79, 811–30.CrossRefGoogle Scholar
Jurik, T. W., Wang, S. C., & Valk, A. G. (1994). Effects of sediment load on seedling emergence from wetland seed banks. Wetlands, 14, 159–65.CrossRefGoogle Scholar
Jusoff, K. & Majid, N. M. (1992). An analysis of soil disturbance from a logging operation in a hill forest of peninsular Malaysia. Forest Ecology and Management, 47, 323–33.CrossRefGoogle Scholar
Kabeya, D. & Sakai, S. (2003). The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Annals of Botany, 92, 537–45.CrossRefGoogle ScholarPubMed
Kadmon, R. (1993). Population dynamic consequences of habitat heterogeneity: an experimental study. Ecology, 74, 816–25.CrossRefGoogle Scholar
Kang, H., Jaschek, G., & Bawa, K. S. (1992). Variation in seed and seedling traits in Pithecellobium pedicellare, a tropical rain-forest tree. Oecologia, 91, 239–44.CrossRefGoogle ScholarPubMed
Karlsson, P. S., Nordell, K. O., Eirefelt, S., & Svensson, A. (1987). Trapping efficiency of three carnivorous Pinguicula species. Oecologia, 73, 518–21.CrossRefGoogle ScholarPubMed
Karnieli, A., Kidron, G. J., Glaesser, C., & Ben-Dor, E. (1999). Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sensing of Environment, 69, 67–75.CrossRefGoogle Scholar
Karrenberg, S., Blaser, S., Kollmann, J., Speck, T., & Edwards, P. J. (2003). Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Functional Ecology, 17, 170–7.CrossRefGoogle Scholar
Karrenberg, S., Edwards, P. J., & Kollmann, J. (2002). The life history of Salicaceae living in the active zone of flood plains. Freshwater Biology, 47, 733–48.CrossRefGoogle Scholar
Karrenberg, S. & Suter, M. (2003). Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. American Journal of Botany, 90, 749–54.CrossRefGoogle ScholarPubMed
Kato, M. & Akiyama, H. (2005). Interpolation hypothesis for origin of the vegetative sporophyte of land plants. Taxon, 54, 443–50.CrossRefGoogle Scholar
Katoh, K., Takeuchi, K., Jiang, D., Nan, Y., & Kou, Z. (1998). Vegetation restoration by seasonal exclosure in the Kerqin Sandy Land, Inner Mongolia. Plant Ecology, 139, 133–44.CrossRefGoogle Scholar
Keddy, P. A., Fraser, L. H., & Wisheu, I. C. (1998). A comparative approach to examine competitive response of 48 wetland plant species. Journal of Vegetation Science, 9, 777–86.CrossRefGoogle Scholar
Keddy, P. A. & Reznicek, A. A. (1982). The role of seed banks in the persistence of Ontario's coastal plain flora. American Journal of Botany, 69, 13–22.CrossRefGoogle Scholar
Keddy, P. A, Twolan-Strutt, L., & Wisheu, I. C. (1994). Competitive effect and response rankings in 20 wetland plants: are they consistent across three environments? Journal of Ecology, 82, 635–43.CrossRefGoogle Scholar
Keeley, J. E. (1991). Seed germination and life history syndromes in the California Chaparral. Botanical Review, 57, 81–116.CrossRefGoogle Scholar
Keeley, J. E. (l992). Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology, 73, 1194–208.CrossRefGoogle Scholar
Keeley, J. E. (1998). Coupling demography, physiology and evolution in chaparral shrubs. In Landscape Degradation and Biodiversity in Mediterranean-Type Ecosystems, ed. Rundel, P. W., Montenegro, G., & Jaksic, F. M.. New York: Springer, pp. 257–64.CrossRefGoogle Scholar
Keeley, J. E. (2000). Chaparral. In North American Terrestrial Vegetation, 2nd edn., ed. Barbour, M. G. & Billings, W. D.. Cambridge: Cambridge University Press, pp. 203–53.Google Scholar
Keeley, J. E. (2002). Fire management of California shrubland landscapes. Environmental Management, 29, 395–408.CrossRefGoogle ScholarPubMed
Keeley, J. E. & Bond, W. J. (1999). Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis. American Naturalist, 154, 383–91.CrossRefGoogle ScholarPubMed
Keeley, J. E. & Bond, W. J. (2001). On incorporating fire into our thinking about natural ecosystems: a response to Saha and Howe. American Naturalist, 158, 664–70.CrossRefGoogle ScholarPubMed
Keeley, J. E. & Fotheringham, C. J. (2006). Wildfire management on a human dominated landscape: California chaparral wildfires. In Wildlife – A Century of Failed Forest Policy, ed. Wuerther, G.. Covelo: Island Press, pp. 69–75.Google Scholar
Keeley, J. E., Fotheringham, C. J., & Baer-Keeley, M. (2006). Demographic patterns of postfire regeneration in mediterranean-climate shrublands of California. Ecological Monographs, 76, 235–55.CrossRefGoogle Scholar
Keeley, J. E. & Rundel, P. H. (2005). Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8, 683–90.CrossRefGoogle Scholar
Keeley, J. E. & Stephenson, N. L. (2000). Restoring natural fire regimes in the Sierra Nevada in an era of global change. In Wilderness Science in a Time of Change Conference, ed. Cole, D. N., McCool, S. F., & Loughlin, J. O', RMRS-P-15, Vol. 5. Missoula: USDA Forest Service, Rocky Mountain Research Station, pp. 255–65.Google Scholar
Keenan, R., Lamb, D., Woldring, O., Irvine, T., & Jensen, R. (1997). Restoration of plant biodiversity beneath tropical tree plantations in northern Australia. Forest Ecology and Management, 99, 117–31.CrossRefGoogle Scholar
Keller, M. & Kollmann, J. (1999). Effects of seed provenance on germination of herbs for agricultural compensation sites. Agriculture, Ecosystems and Environment, 72, 87–99.CrossRefGoogle Scholar
Keller, M., Kollmann, J., & Edwards, P. J. (1999). Palatability of weeds from different European origins to the slugs Deroceras reticulatum Muller and Arion lusitanicus Mabille. Acta Oecologica, 20, 109–18.CrossRefGoogle Scholar
Keller, M., Kollmann, J., & Edwards, P. J. (2000). Genetic introgression from distant provenances reduces fitness in local weed populations. Journal of Applied Ecology, 37, 647–59.CrossRefGoogle Scholar
Kelly, D. & Sork, V. L. (2002). Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics, 33, 427–47.CrossRefGoogle Scholar
Kennedy, D. N. & Swaine, M. D. (1992). Germination and growth of colonizing species in artificial gaps of different sizes in dipterocarp rain forest. Philosophical Transactions of Royal Society London, Series B, 335, 357–66.CrossRefGoogle Scholar
Kennedy, P. G., Hausmann, N. J., Wenk, E. H., & Dawson, T. E. (2004). The importance of seed reserves for seedling performance: an integrated approach using morphological, physiological, and stable isotope techniques. Oecologia, 141, 547–54.CrossRefGoogle ScholarPubMed
Kennedy, P. G., Izzo, A. D., & Bruns, T. D. (2003). There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. Journal of Ecology, 91, 1071–80.CrossRefGoogle Scholar
Kennedy, P. G. & Sousa, W. P. (2006). Forest encroachment into a Californian grassland: examining the simultaneous effects of facilitation and competition on tree seedling recruitment. Oecologia, 148, 464–74.CrossRefGoogle ScholarPubMed
Kepinski, S. (2006). Integrating hormone signaling and patterning mechanisms in plant development. Current Opinion in Plant Biology, 9, 28–34.CrossRefGoogle ScholarPubMed
Kerley, G. I. H. (1991). Seed removal by rodents, birds and ants in the semi-arid Karoo, South Africa. Journal of Arid Environments, 20, 63–9.Google Scholar
Kern, R. A. (1996). A comparative field study of growth and survival of Sierran conifer seedlings. PhD dissertation, Duke University, USA.CrossRef
Kéry, M., Gregg, K. B., & Schaub, M. (2005). Demographic estimation methods for plants with unobservable life-states. Oikos, 108, 307–20.CrossRefGoogle Scholar
Kery, M., Matthies, D., & Spillmann, H.-H. (2000). Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. Journal of Ecology, 88, 17–30.CrossRefGoogle Scholar
Kettenring, K. (2006). Seed ecology of wetland Carex spp. – implications for restoration. PhD dissertation, University of Minnesota-Twin Cities, USA.
Khan, R. (1943). Contributions to the morphology of Ephedra foliata Boss. II. Fertilization and embryogeny. Proceedings of the National Academy of Sciences (India), 13, 357–75.Google Scholar
Khurana, E. & Singh, J. S. (2001a). Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Current Science, 80, 748–57.Google Scholar
Khurana, E. & Singh, J. S. (2001b). Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation, 28, 39–52.CrossRefGoogle Scholar
Khurana, E. & Singh, J. S. (2006). Impact of life-history traits on response of seedlings of five tree species of tropical dry forest to shade. Journal of Tropical Ecology, 22, 653–61.CrossRefGoogle Scholar
Kidd, F. (1914). The controlling influence of carbon dioxide in the maturation, dormancy and germination of seeds. Proceedings of the Royal Society of London (Series B), 87, 609–25.CrossRefGoogle Scholar
Kidron, G. J., Yaalon, D. H., & Vonshak, A. (1999). Two causes for runoff initiation on microbiotic crusts: Hydrophobicity and pore clogging. Soil Science, 164, 18–27.CrossRefGoogle Scholar
Kidson, R. & Westoby, M. (2000). Seed mass and seedling dimensions in relation to seedling establishment. Oecologia, 125, 11–17.CrossRefGoogle ScholarPubMed
Kiers, E. T., Lovelock, C, E., Krueger, E. L., & Herre, E. A. (2000). Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters, 3, 106–13.CrossRefGoogle Scholar
Kiers, E. T. & Heijden, M. G. A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: Exploring hypotheses of evolutionary cooperation. Ecology, 87, 1627–37.CrossRefGoogle ScholarPubMed
King, D. A. (2003). Allocation of above-ground growth is related to light in temperate deciduous saplings. Functional Ecology, 17, 482–8.CrossRefGoogle Scholar
Kirby, K. R., Laurance, W. F., Albernaz, A. K.et al. (2006). The future of deforestation in the Brazilian Amazon. Futures, 38, 432–53.CrossRefGoogle Scholar
Kistner, C. & Parniske, M. (2002). Evolution of signal transduction in intracellular symbiosis. Trends in Plant Science, 7, 511–18.CrossRefGoogle ScholarPubMed
Kitajima, K. (1992a). The importance of cotyledon functional morphology and patterns of seed reserve utilization for the physiological ecology of neotropcial tree seedlings. PhD thesis, University of Illinois, USA.
Kitajima, K. (1992b). Relationship between photosynthesis and thickness of cotyledons for tropical tree species. Functional Ecology, 6, 582–9.CrossRefGoogle Scholar
Kitajima, K. (1994). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419–28.CrossRefGoogle ScholarPubMed
Kitajima, K. (1996a). Cotyledon functional morphology, patterns of seed reserve utilisation and regeneration niches of tropical tree seedlings. In The Ecology of Tropical Forest Tree Seedlings, ed. Swaine, M. D.. New York: Pantheon, pp. 193–210.Google Scholar
Kitajima, K. (1996b). Ecophysiology of tropical tree seedlings. In Tropical Forest Plant Ecophysiology, ed. Mulkey, S. S., Chazdon, R. L., & Smith, A. P.. New York: Chapman and Hall, pp. 559–96.CrossRefGoogle Scholar
Kitajima, K. (2002). Do shade-tolerant tropical tree seedlings depend longer on seed reserves? Functional growth analysis of three Bignoniaceae species. Functional Ecology, 16, 433–44.CrossRefGoogle Scholar
Kitajima, K. (2007). Seed and seedling ecology. In Functional Plant Ecology, 2nd edn., ed. Pugnaire, F. I. & Valladores, V.. New York: Marcel Deckker, pp. 549–79.Google Scholar
Kitajima, K. & Bolker, B. M. (2003). Testing performance rank reversals among coexisting species: crossover point irradiance analysis by Sack & Grubb (2001) and alternatives. Functional Ecology, 17, 276–81.CrossRefGoogle Scholar
Kitajima, K. & Fenner, M. (2000). Ecology of seed regeneration. In The Ecology of Seed Regeneration in Plant Communities, ed. Fenner, M.. Wallingford: CAB International, pp. 331–59.CrossRefGoogle Scholar
Kitajima, K., Fox, A. M., Sato, T., & Nagamatsu, D. (2006). Cultivar selection prior to introduction may increase invasiveness: evidence from Ardisia crenata. Biological Invasions, 8, 1471–82.CrossRefGoogle Scholar
Kitajima, K. & Hogan, K. P. (2003). Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell and Environment, 26, 857–65.CrossRefGoogle ScholarPubMed
Kiviniemi, K. (2001). Evolution of recruitment features in plants: a comparative study of species in the Rosaceae. Oikos, 94, 250–62.CrossRefGoogle Scholar
Kling, J. (1996). Could transgenic supercrops one day breed superweeds? Science, 274, 180–1.CrossRefGoogle Scholar
Klironomos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70.CrossRefGoogle ScholarPubMed
Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–301.CrossRefGoogle Scholar
Kneeshaw, D. D., Kobe, R. K., Coates, K. D., & Messier, C. (2006). Sapling size influences shade tolerance ranking among southern boreal tree species. Journal of Ecology, 94, 471–80.CrossRefGoogle Scholar
Knevel, I. C, Bekker, R. M., Bakker, J. P., & Kleyer, M. (2003). Life-history traits of the northwest European flora: The LEDA database. Journal of Vegetation Science, 14, 611–14.CrossRefGoogle Scholar
Knight, H., Zarka, D. G., Okamoto, H., Thomashow, M. E., & Knight, M. R. (2004). Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiology, 135, 1710–17.CrossRefGoogle ScholarPubMed
Knoll, A. H. (1986). Patterns of change in plant communities through geological time. In Community Ecology, ed. Diamond, J. & Case, T. J.. New York: Harper & Row, pp. 126–41.Google Scholar
Kobe, R. K. (1997). Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos, 80, 226–33.CrossRefGoogle Scholar
Kobe, R. K. (1999). Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology, 80, 187–201.CrossRefGoogle Scholar
Koch, J. M., Richardson, J., & Lamont, B. B. (2004). Grazing by kangaroo limits the establishment of grass trees Xanthorroea gracilis and X. priesii in restored bauxite mines in eucalypt forest of southwestern Australia. Restoration Ecology, 12, 297–305.CrossRefGoogle Scholar
Koenig, W. D. & Knops, J. M. H. (2002). The behavioral ecology of masting in oaks. In Oak Forest Ecosystems. Ecology and Management for Wildlife, ed. McShea, W. J. & Healy, W. M.. Baltimore: Johns Hopkins University Press, pp. 129–48.Google Scholar
Kollmann, J. (1995). Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience, 2, 213–22.CrossRefGoogle Scholar
Kollmann, J. (2000). Dispersal of fleshy-fruited species: a matter of spatial scale? Perspectives in Plant Ecology, Evolution and Systematics, 3, 29–51.CrossRefGoogle Scholar
Kollmann, J. & Bañuelos, M. J. (2004). Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Diversity and Distributions, 10, 377–85.CrossRefGoogle Scholar
Kollmann, J., Frederiksen, L., Vestergaard, P., & Bruun, H. H. (2006). Limiting factors for emergence and establishment of the invasive non-native Rosa rugosa in a coastal dune system. Biological Invasions, 9, 31–42.CrossRefGoogle Scholar
Kollmann, J. & Grubb, P. J. (1999). Recruitment of fleshy-fruited species under different shrub species: control by under-canopy environment. Ecological Research, 14, 63–74.CrossRefGoogle Scholar
Kollmann, J. & Reiner, S. A. (1996). Light demands of shrub seedlings and their establishment within scrublands. Flora, 191, 191–200.CrossRefGoogle Scholar
Kollmann, J. & Schill, H.-P. (1996). Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana. Vegetatio, 125, 193–205.CrossRefGoogle Scholar
Kollmann, J. & Schneider, B. (1997). Effects of landscape structure on seed dispersal of fleshy-fruited species along forest edges. Bulletin of the Geobotanical Institute ETH, 63, 77–86.Google Scholar
Kollmann, J. & Schneider, B. (1999). Landscape structure and diversity of fleshy-fruited species at forest edges. Plant Ecology, 144, 37–48.CrossRefGoogle Scholar
Končalová, H. (1990). Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawback. Aquatic Botany, 38, 127–34.CrossRefGoogle Scholar
Kondo, K., Segawa, M., & Nehira, K. (1978). Anatomical studies on seeds and seedlings of some Utricularia (Lentibulariaceae). Brittonia, 30, 89–95.CrossRefGoogle Scholar
Koop, A. L. & Horvitz, C. C. (2005). Projection matrix analysis of the demography of an invasive, nonnative shrub (Ardisia elliptica). Ecology, 86, 2661–72.CrossRefGoogle Scholar
Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.CrossRefGoogle Scholar
Kosovsky, A. (1994). Generation of runoff in first order drainage basins in a semi-arid region, Lahav hills, Negev, Israel. MSc thesis, The Hebrew University of Jerusalem, Israel.
Kost, C. & Heil, M. (2006). Herbivore-induced plant volatiles induce an indirect defense in neighboring plants. Journal of Ecology, 94, 619–28.CrossRefGoogle Scholar
Kostel-Hughes, F., Young, T. P., & Wehr, J. D. (2005). Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. Journal of the Torrey Botanical Society, 132, 50–61.CrossRefGoogle Scholar
Kotler, B. P., Ayal, Y., & Subach, A. (1994). Effects of predatory risk and resource renewal on the timing of foraging activity in a gerbil community. Oecologia, 100, 391–6.CrossRefGoogle Scholar
Kotler, B. P. & Brown, J. S. (1999). Mechanisms of coexistence of optimal foragers as determinants of local abundances and distributions of desert granivores. Journal of Mammalogy, 80, 361–74.CrossRefGoogle Scholar
Kozlowski, T. T. & Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. Botanical Review, 68, 270–334.CrossRefGoogle Scholar
Krannitz, P. G., Aarssen, L. W., & Dow, J. M. (1991). The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 78, 446–50.CrossRefGoogle Scholar
Krause, A., Ramakumar, A., Bartels, D.et al. (2006). Complete genome of the mutualistic, N 2-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology, 24, 1385–91.CrossRefGoogle Scholar
Krause, G. H., Gallé, A., Virgo, A.et al. (2006). High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.). Plant Biology, 8, 31–41.CrossRefGoogle Scholar
Krause, G. H., Koroleva, O. Y., Dalling, J. W., & Winter, K. (2001). Acclimation of tropical tree seedlings to excessive light in simulated treefall gaps. Plant Cell and Environment, 24, 1345–52.CrossRefGoogle Scholar
Kretzer, A., Dunham, S., Molina, R., & Spatafora, J. W. (2004). Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytologist, 161, 313–20.CrossRefGoogle Scholar
Kretzer, A., Li, Y., Szaro, T. M., & Bruns, T. D. (1996). Internal transcibed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia, 88, 776–85.CrossRefGoogle Scholar
Kretzer, A. M., Dunham, S., Molina, R., & Spatafora, J. W. (2005). Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota). Molecular Ecology, 14, 2259–68.CrossRefGoogle Scholar
Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22, 289–97.CrossRefGoogle ScholarPubMed
Krueger, L. M. & Peterson, C. J. (2006). Effects of white-tailed deer on Tsuga canadensis regeneration: evidence of microsites as refugia from browsing. American Midland Naturalist, 156, 353–62.CrossRefGoogle Scholar
Kubo, K., Iwama, K., Yanagisawa, A.et al. (2006). Genotypic variation of the ability of roots to penetrate hard soil layers among Japanese wheat cultivars. Plant Production Science, 9, 47–55.CrossRefGoogle Scholar
Kubota, M., McGonigle, T. P., & Hyakumachi, M. (2001). Clethra barbinervis, a member of the order Ericales, forms arbuscular mycorrhizae. Canadian Journal of Botany, 79, 300–6.CrossRefGoogle Scholar
Kuijt, J. (1969). The Biology of Parasitic Flowering Plants. Berkeley: University of California Press.Google Scholar
Kuijt, J. (1982). Seedling morphology and its systematic significance in Loranthaceae of the New World, with supplementary comments on Eremolepidaceae. Botanische Jahrbücher, 103, 305–42.Google Scholar
Kummer, A. P. (1951). Weed Seedlings. Chicago: The University of Chicago Press.Google Scholar
Kuo, J. & Kirkman, H. (1990). Anatomy of the viviparous seagrass seedlings of Amphibolus and Thallasodendron and their nutrient supply. Botanica Marina, 33, 117–26.CrossRefGoogle Scholar
Kursar, T. A. & Coley, P. D. (1991). Nitrogen content and expansion rate of young leaves of rain forest species: implications for herbivory. Biotropica, 23, 140–50.CrossRefGoogle Scholar
Kurtz, H. D. Jr., & Netoff, D. I. (2001). Stabilization of friable sandstone surfaces in a desiccating, wind-abraded environment of south-central Utah by rock surface microorganisms. Journal of Arid Environments, 48, 89–100.CrossRefGoogle Scholar
Kutiel, P. (1998). Possible role of biogenic crusts in plant succession on the Sharon Sand Dunes, Israel. Israel Journal of Plant Sciences, 46, 279–86.CrossRefGoogle Scholar
Kwit, C., Schwartz, M. W., Platt, W. J., & Geaghan, J. P. (1998). The distribution of tree species in steepheads of the Apalachicola River Bluffs, Florida. Journal of the Torrey Botanical Society, 125, 309–18.CrossRefGoogle Scholar
Kytoviita, M. M., Vestberg, M., & Tuom, J. (2003). A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology, 84, 898–906.CrossRefGoogle Scholar
Ladd, B. M. & Facelli, J. M. (2005). Effects of competition, resource availability and invertebrates on tree seedling establishment. Journal of Ecology, 93, 968–77.CrossRefGoogle Scholar
Lal, R. (1987). Tropical Ecology and Physical Edaphology, London: Wiley.Google Scholar
Lamattina, L., García-Mata, C., Graziano, M., & Pagnussat, G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annual Review of Plant Biology, 54, 109–36.CrossRefGoogle ScholarPubMed
Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of degraded tropical forest landscapes. Science, 310, 1628–32.CrossRefGoogle ScholarPubMed
Lamb, E. G. & Cahill, J. F. (2006). Consequences of differing competitive abilities between juvenile and adult plants. Oikos, 112, 502–12.CrossRefGoogle Scholar
Lambers, H., Chapin, F. S. III, & Pons, T. J. (1998). Plant Physiological Ecology. New York: Springer.CrossRefGoogle Scholar
Lambers, J. H. R. & Clark, J. S. (2005). The benefits of seed banking for red maple (Acer rubrum): maximizing seedling recruitment. Canadian Journal of Forest Research, 35, 806–13.CrossRefGoogle Scholar
Lambers, J. H. R., Clark, J. S., & Beckage, B. (2002). Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732–5.CrossRefGoogle ScholarPubMed
Lambrecht-McDowell, S. C. & Radosevich, S. R. (2005). Population demographics and trade-offs to reproduction of an invasive and noninvasive species of Rubus. Biological Invasions, 7, 281–95.CrossRefGoogle Scholar
Lambrinos, J. G. (2006). Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia, 147, 327–34.CrossRefGoogle ScholarPubMed
Lamont, B. (1983). Germination of mistletoes. In The Biology of Mistletoes, ed. Calder, M. & Bernhardt, P.. Sydney: Academic Press, pp. 129–43.Google Scholar
Lamont, B. & Perry, M. (1977). The effects of light, osmotic potential and atmospheric gases on germination of the mistletoe, Amyema preisii. Annals of Botany, 41, 203–9.CrossRefGoogle Scholar
Lamont, B. B., Witkowski, E. T. F., & Enright, N. J. (1993). Post-fire litter microsites: safe for seeds, unsafe for seedlings. Ecology, 74, 501–12.CrossRefGoogle Scholar
Motte, C. (1933). Morphology of the megagametophyte and the embryo sporophyte of Isoetes lithophila. American Journal of Botany, 20, 217–33.CrossRefGoogle Scholar
Motte, C. (1937). Morphology and orientation of the embryo of Isoetes. Annals of Botany (n.s.), 1, 695–716.CrossRefGoogle Scholar
Land, W. J. G. (1907). Fertilization and embryology in Ephedra trifurca. Botanical Gazette, 44, 273–92.CrossRefGoogle Scholar
Lange, R. T. & Purdie, R. (1976). Western myall (Acacia sowdenii), its survival prospects and management needs. Australian Rangeland Journal, 1, 64–9.CrossRefGoogle Scholar
Langenheim, J. H., Osmond, C. B., Brooks, A., & Ferrar, P. J. (1984). Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Oecologia, 63, 215–24.CrossRefGoogle ScholarPubMed
Lapeyrie, F. F. & Chilvers, G. A. (1985). An endomycorrhiza–ectomycorrhiza succession associated with enhanced growth of Eucalyptus domosa seedlings planted in a calcereous soil. New Phytologist, 100, 93–104.CrossRefGoogle Scholar
Laroche, J. (1968). Contributions à l'étude de l'Equisetum arvense L. II. Etude embryologique. Caractères morphologiques, histologiques et anatomiques de la première pousse transitorie. Review Cytolologie et de Biologie Végétales, 31, 155–216.Google Scholar
Laube, S. & Zotz, G. (2003). Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology, 17, 598–604.CrossRefGoogle Scholar
Lauenroth, W. K. & Gill, R. (2003). Turnover of root systems. In Root Ecology, ed. Kroon, H. & Visser, E. J. W.. Berlin: Springer-Verlag, pp. 61–89.CrossRefGoogle Scholar
Laurance, W. F. (1991). Edge effects in tropical forest fragments: application of a model for the design of nature reserves. Biological Conservation, 57, 205–19.CrossRefGoogle Scholar
Laurance, W. F. (1998). A crisis in the making: responses of Amazonian forests to land use and climate change. Trends in Ecology & Evolution, 13, 411–5.CrossRefGoogle ScholarPubMed
Laurance, W. F. (2003). Slow burn: the insidious effects of surface fires on tropical forests. Trends in Ecology & Evolution, 18, 209–12.CrossRefGoogle Scholar
Laurance, W. F. (2005). The alteration of biotic interactions in fragmented tropical forests. In Biotic Interactions in the Tropics, ed. Burslem, D. F. R. P, Pinard, M. A., & Hartley, S. E.. Cambridge: Cambridge University Press, pp. 442–58.CrossRefGoogle Scholar
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L.et al. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605–18.CrossRefGoogle Scholar
Laurance, W. F., Nascimento, H. E. M, Laurance, S. G.et al. (2006). Rain forest fragmentation and the proliferation of successional trees. Ecology, 87, 469–82.CrossRefGoogle ScholarPubMed
Laurance, W. F., Pérez-Salicrup, D., Delamônica, P.et al. (2001). Rain forest fragmentation and the structure of liana communities. Ecology, 82, 105–16.CrossRefGoogle Scholar
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12, 474–8.CrossRefGoogle ScholarPubMed
Lawrence, J. G., Colwell, A., & Sexton, O. J. (1991). The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). American Journal of Botany, 78, 948–58.CrossRefGoogle Scholar
Lazaro, A., Traveset, A., & Castillo, A. (2006). Spatial concordance at a regional scale in the regeneration process of a circum-Mediterranean relict (Buxus balearica): connecting seed dispersal to seedling establishment. Ecography, 29, 683–96.CrossRefGoogle Scholar
Leake, J. R. (1994). The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist, 127, 171–216.CrossRefGoogle Scholar
Leake, J. R., McKendrick, S. L., Bidartondo, B. I., & Read, D. J. (2004). Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytologist, 163, 405–23.CrossRefGoogle Scholar
Leck, M. A. (1996). Germination of macrophytes from a Delaware River wetland. Bulletin of the Torrey Botanical Club, 123, 48–67.CrossRefGoogle Scholar
Leck, M. A. & Brock, M. A. (2000). Ecological and evolutionary trends in wetlands: evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USA. Plant Species Biology, 15, 97–112. [Corrigendum. (2001). 16, 183–4.]CrossRefGoogle Scholar
Leck, M. A. & Schütz, W. (2005). Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspectives in Plant Ecology, Evolution and Systematics, 7, 95–133.CrossRefGoogle Scholar
Leck, M. A. & Simpson, R. L. (1993). Seeds and seedlings of the Hamilton Marshes, a Delaware River tidal freshwater wetland. Proceedings of the Academy of Natural Sciences of Philadelphia, 144, 267–81.Google Scholar
Leck, M. A. & Simpson, R. L. (1994). Tidal freshwater wetland zonation: seed and seedling dynamics. Aquatic Botany, 47, 61–75.CrossRefGoogle Scholar
Leck, M. A. & Simpson, R. L. (1995). Ten year seed bank and vegetation dynamics of a tidal freshwater wetland. American Journal of Botany, 82, 1547–57.CrossRefGoogle Scholar
Leck, M. A., Parker, V. T., & Simpson, R. L., ed. (1989a). Ecology of Soil Seed Banks. San Diego: Academic Press.Google Scholar
Leck, M. A., Simpson, R. L., & Parker, V. T. (1989b). The seed bank of a freshwater tidal wetland and its relationship to vegetation dynamics. In Proceedings Symposium on Freshwater Wetlands and Wildlife, ed. Sharitz, R. & Gibbons, J. W.. Oak Ridge: USDOE Office of Scientific and Technical Information, pp. 198–205.Google Scholar
Lee, D. (2007). Nature's Palette: The Science of Plant Color. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
Lee, D. W., Baskaran, K., Mansor, M., Mohamad, H., & Yap, S. K. (1996). Irradiance and spectral quality affect Asian tropical rain forest tree seedling development. Ecology, 77, 568–80.CrossRefGoogle Scholar
Lee, D. W., Oberbauer, S. F., Krishnapilay, B.et al. (1997). Effects of irradiance and spectral quality on seedling development of two southeast Asian Hopea species. Oecologia, 110, 1–9.CrossRefGoogle ScholarPubMed
Lee, J. A. & Harmer, R. (1980). Vivipary, a reproductive strategy in response to environmental stress? Oikos, 35, 254–65.CrossRefGoogle Scholar
Lee, S. S., Alexander, I. J., Moura-Costa, P., & Yap, S. W. (1996). Mycorrhizal infection of dipterocarp seedlings in logged and undisturbed forest. In Proceedings of Fifth Round-Table Conference on Dipterocarps, ed. Appanah, S. & Khoo, K. C.. Kuala Lumpur: Forest Research Institute of Malaysia, pp. 157–64.Google Scholar
Lee, W. G. & Fenner, M. (1989). Mineral nutrient allocation in seeds and shoots of twelve Chionochloa species in relation to soil fertility. Journal of Ecology, 77, 704–16.CrossRefGoogle Scholar
Legard, N. J. (1979). First-year loses of Pinus mugo seed and seedlings on an exposed high country subsoil. New Zealand Journal of Forestry, 24, 90–100.Google Scholar
Lehmann–Baerts, M. (1967). Etudes sur les Gnétales. Ⅻ. Ovule, gamétophyte femelle et embryogenèse chezEphedra distachya. Cellule, 67, 51–87.Google Scholar
Houérou, H. N. (1992). The role of saltbushes Atriplex spp. in arid land rehabilitation in the mediterranean basin. A review. Agroforestry Systems, 18, 107–48.CrossRefGoogle Scholar
Lehtilä, K., Syrjänen, K., Leimu, R., Garcia, M. B., & Ehrlén, J. (2006). Land use and population growth of Primula veris: an experimental demographic approach. Conservation Biology, 20, 833–43.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N.et al. (2004). The metacommunity concept: a framework for multi-scale ecology. Ecology Letters, 7, 601–13.CrossRefGoogle Scholar
Leigh, E. G., Dividar, P., Dick, C. W.et al. (2004). Why do some tropical forests have so many species of trees? Biotropica, 33, 447–73.Google Scholar
Leigh, E. G. Jr., Herre, E. A., & Putz, F. E. (1993). The decline of tree diversity on newly isolated tropical islands: a test of a null hypothesis and the implications. Evolutionary Ecology, 7, 76–102.CrossRefGoogle Scholar
Leimu, R. (2004). Variation in the mating system of Vincetoxicum hirundinaria (Asclepiadaceae) in peripherial island populations. Annals of Botany, 93, 107–13.CrossRefGoogle ScholarPubMed
Leishman, M. R. (2001). Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 93, 294–302.CrossRefGoogle Scholar
Leishman, M. R. & Westoby, M. (1994a). Hypotheses on seed size tests using the semiarid flora of Western New South Wales, Australia. American Naturalist, 143, 890–906.CrossRefGoogle Scholar
Leishman, M. R. & Westoby, M. (1994b). The role of large seed size in shaded conditions – experimental-evidence. Functional Ecology, 8, 205–14.CrossRefGoogle Scholar
Leishman, M. R. & Westoby, M. (1998). Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Functional Ecology, 12, 480–5.CrossRefGoogle Scholar
Leishman, M. R., Westoby, M., & Jurado, E. (1995). Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology, 83, 517–30.CrossRefGoogle Scholar
Leishman, M. R., Wright, I. J., Moles, A. T., & Westoby, M. (2000). The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn., ed. Fenner, M.. Wallingford: CAB International, pp. 31–57.CrossRefGoogle Scholar
Leite, A. M. C. & Rankin, J. M. (1981). Ecologia de sementes de Pithecelobium racemosum Ducke. Acta Amazonica, 11, 309–18.CrossRefGoogle Scholar
Le Maitre, D. C. & Midgely, J. J. (1992). Plant reproductive ecology. In The Ecology of Fynbos: Nutrients, Fire and Diversity, ed. Cowling, R.. Cape Town: Oxford University Press, pp. 135–74.Google Scholar
Lerat, S., Rachel, R., Catford, J. G.et al. (2002). 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia, 132, 181–7.CrossRefGoogle ScholarPubMed
Leroux, G., Barabé, D., & Vieth, J. (1997). Morphogenesis of the protocorm of Cypripedium acaule (Orchidaceae). Plant Systematics and Evolution, 205, 53–72.CrossRefGoogle Scholar
Lesica, P. & Antibus, R. K. (1990). The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica, 22, 250–8.CrossRefGoogle Scholar
Leuchtmann, A. (1992). Systematics, distribution and host specificity of grass endophytes. Natural Toxins, 1, 150–62.CrossRefGoogle ScholarPubMed
Leverenz, J. W. (1996). Shade-shoot structure, photosynthetic performance in the field, and photosynthetic capacity of evergreen conifers. Tree Physiology, 16, 109–14.CrossRefGoogle ScholarPubMed
Levey, D. J. & Byrne, M. M. (1993). Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology, 74, 1802–12.CrossRefGoogle Scholar
Levin, D. A. (1974). The oil content of seeds: an ecological perspective. American Naturalist, 108, 193–206.CrossRefGoogle Scholar
Levin, S. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–67.CrossRefGoogle Scholar
Levine, J. M. & Murrell, D. J. (2003). The community-level consequences of seed dispersal patterns. Annual Review of Ecology and Systematics, 34, 549–74.CrossRefGoogle Scholar
Lewis, S. L. & Tanner, E. V. J. (2000). Effects of above- and below-ground competition on the growth and survival of rain forest tree seedlings. Ecology, 81, 2525–38.CrossRefGoogle Scholar
Leyser, O. & Day, S. (2003). Mechanisms in Plant Development. Oxford: Blackwell Science, Ltd.Google Scholar
Li, F. R., Zhang, H., Zhao, L. Y., Shirato, Y., & Wang, X. Z. (2003). Pedoecological effects of a sand-fixing poplar (Populus simonii Carr.) forest in a desertified sandy land of Inner Mongolia, China. Plant and Soil, 256, 431–42.CrossRefGoogle Scholar
Li, X.-L., George, E., & Marschner, H. (1991). Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 136, 41–8.CrossRefGoogle Scholar
Li, X. R., Wang, X. P., Li, T., & Zhang, J. G. (2002). Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biology and Fertility of Soils, 35, 147–54.Google Scholar
Li, X. R., Xiao, H. L., Zhang, J. G., & Wang, X. P. (2004). Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, northern China. Restoration Ecology, 12, 376–90.CrossRefGoogle Scholar
Lian, C. L., Narimatsu, M., Nara, K., & Hogetsu, T. (2006). Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytologist, 171, 825–36.CrossRefGoogle Scholar
Lienert, J. & Fischer, M. (2004). Experimental inbreeding reduces seed production and germination independent of fragmentation of populations of Swertia perennis. Basic and Applied Ecology, 5, 43–52.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G., & Renzaglia, K. S. (1993). The gametophyte-sporophyte junction in land plants. Advances in Botanical Research, 19, 231–317.CrossRefGoogle Scholar
Lin, C. (2002). Blue light receptors and signal transduction. The Plant Cell, 14, S207–25.CrossRefGoogle ScholarPubMed
Lindquist, E. S. & Carroll, C. R. (2004). Differential seed and seedling predation by crabs: impacts on tropical coastal forest composition. Oecologia, 141, 661–71.CrossRefGoogle ScholarPubMed
Linhart, Y. B. (1988). Intrapopulational differentiation in annual plants. 3. The contrasting effects of intraspecific and interspecific competition. Evolution, 42, 1042–64.CrossRefGoogle Scholar
Linhart, Y. B. & Baker, I. (1973). Intrapopulation differentiation of physiological response to flooding in a population of Veronica peregrina L. Nature, 242, 275–7.CrossRefGoogle Scholar
Lipow, S. R. & Wyatt, R. (2000). Towards an understanding of the mixed breeding system of swamp milkweed (Asclepias incarnata). Journal of the Torrey Botanical Society, 127, 193–9.CrossRefGoogle Scholar
Liptay, A. & Geier, T. (1983). Mechanism of emergence of tomato (Lycopersicon esculentum L.) seedlings through surface–crusted or compressed soil. Annals of Botany, 51, 409–12.CrossRefGoogle Scholar
Liu, Z. M., Thompson, K., Spencer, R. E., & Reider, R. J. (2000). A comparative study of morphological responses of seedling roots to drying soil in 20 species from different habitats. Acta Botanica Sinica, 42, 628–35.Google Scholar
Lloret, F., Peñuelas, J., & Estiarte, M. (2005). Effects of vegetation canopy and climate on seedling establishment in Mediterranean shrubland. Journal of Vegetation Science, 16, 67–76.CrossRefGoogle Scholar
Lloyd, F. E. (1976). The Carnivorous Plants. New York: Dover Publications Inc.Google Scholar
Loach, K. (1967). Shade tolerance in tree seedlings. I. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytologist, 66, 607–21.CrossRefGoogle Scholar
Loffler, C., Czygan, F. C., & Proksch, P. (1999). Role of indole-3-acetic acid in the interaction of the phanerogamic parasite Cuscuta and host plants. Plant Biology, 1, 613–7.CrossRefGoogle Scholar
Loha, A., Tigabu, M., Teketey, D., Lundkvist, K., & Fries, A. (2006). Provenance variation in seed morphometric traits, germination, and seedling growth of Cordia africana Lam. New Forests, 32, 71–86.CrossRefGoogle Scholar
Lohne, C., Brosch, T., & Wiersema, J. H. (2007). Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Botanical Journal of the Linnean Society, 154, 141–63.CrossRefGoogle Scholar
Lokesha, R., Hegde, S. G., Shaanker, R. U., & Ganeshaiah, K. N. (1992). Dispersal mode as a selective force in shaping the chemical composition of seeds. American Naturalist, 140, 520–5.CrossRefGoogle Scholar
Long, J. A., Ohio, C., Smith, Z. R., & Meyerowitz, E. M. (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science, 312, 1520–3.CrossRefGoogle ScholarPubMed
Lonsdale, W. M. & Abrecht, D. G. (1989). Seedling mortality in Mimosa pigra, an invasive tropical shrub. Journal of Ecology, 77, 371–85.CrossRefGoogle Scholar
López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280–7.CrossRefGoogle ScholarPubMed
Buen, López L. & Ornelas, J. F. (2002). Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in central Veracruz, Mexico. American Journal of Botany, 89, 95–102.CrossRefGoogle ScholarPubMed
López-Molina, L., Mongrand, S., & Chua, N.-H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences (USA), 98, 4782–7.CrossRefGoogle ScholarPubMed
Lortie, C. J. & Aarssen, L. W. (1996). The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Sciences, 157, 484–7.CrossRefGoogle Scholar
Louda, S. M. (1989). Predation in the dynamics of seed regeneration. In Ecology of Soil Seed Banks, ed. Leck, M. A., Parker, V. T., & Simpson, R. L.. San Diego: Academic Press, pp. 25–51.Google Scholar
Lovelock, C.Kyllo, D., Popp, M.et al. (1997). Symbiotic vesicular-arbuscular mycorrhizae influence maximum rates of photosynthesis in tropical tree seedlings grown under elevated CO2. Australian Journal of Plant Physiology, 24, 185–94.CrossRefGoogle Scholar
Lubbock, J. (1892). A Contribution to Our Knowledge of Seedlings. Vols. 1 & 2 (Kegan Paul, Trench, Trubner & Co.) Reprinted 1978. New York: Allanheld, Osmun / Universe Books.Google Scholar
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., & Imeson, A. C. (2005). Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86, 288–97.CrossRefGoogle Scholar
Lugo, A. E. (1997). The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest Ecology and Management, 99, 9–19.CrossRefGoogle Scholar
Lugo, A. E. & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5, 39–64.CrossRefGoogle Scholar
Luken, J. O. (2005a). Habitats of Dionaea muscipula (Venus' Fly Trap), Droseraceae, associated with Carolina Bays. Southeastern Naturalist, 4, 573–84.CrossRefGoogle Scholar
Luken, J. O. (2005b). Dionaea muscipula (Venus flytrap) establishment, release, and response of associated species in mowed patches on the rims of Carolina Bays. Restoration Ecology, 13, 678–84.CrossRefGoogle Scholar
Lumba, S. & McCourt, P. (2005). Preventing leaf identity theft with hormones. Current Opinion in Plant Biology, 8, 501–5.CrossRefGoogle ScholarPubMed
Lundgren, M. R. & Sultan, S. E. (2005). Seedling expression of cross-generational plasticity depends on reproductive architecture. American Journal of Botany, 92, 377–81.CrossRefGoogle ScholarPubMed
Lunt, P. H. & Hedger, J. N. (2003). Effects of organic enrichment of mine spoil on growth and nutrient uptake in oak seedlings inoculated with selected ectomycorrhizal fungi. Restoration Ecology, 11, 125–30.CrossRefGoogle Scholar
Lupia, R., Lidgard, S., & Crane, P. R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305–40.CrossRefGoogle Scholar
Lusk, C. H. (2004) Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Functional Ecology, 18, 820–8.CrossRefGoogle Scholar
Lusk, C. H., Contreras, O., & Figueroa, J. (1997). Growth, biomass allocation and plant nitrogen concentration in Chilean temperate rainforest tree seedlings: effects of nutrient availability. Oecologia, 109, 49–58.CrossRefGoogle Scholar
Lusk, C. H. & Pozo, Del A. (2002). Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecology, 27, 173–82.CrossRefGoogle Scholar
Lusk, C. H., Falster, D. S., Perez-Millaqueo, M., & Saldana, A. (2006). Ontogenetic variation in light interception, self-shading and biomass distribution of seedlings of the conifer Araucaria araucana (Molina) K. Koch. Revista Chilena De Historia Natural, 79, 321–8.CrossRefGoogle Scholar
Lusk, C. H. & Kelly, C. K. (2003). Interspecific variation in seed size and safe sites in a temperate rain forest. New Phytologist, 158, 535–41.CrossRefGoogle Scholar
Lusk, C. H. & Piper, F. I. (2007). Seedling size influences relationships of shade tolerance with carbohydrate-storage patterns in a temperate rainforest. Functional Ecology, 21, 78–86.CrossRefGoogle Scholar
Lüttge, U. (1983). Ecophysiology of carnivorous plants. In Encyclopedia of Plant Physiology, Vol. 12C, ed. Lange, O. L., Nobel, P. S., Osmond, C. B., & Ziegler, H.. Berlin: Springer-Verlag, pp. 489–517.Google Scholar
Lwanga, J. S. (2003). Forest succession in Kibale National Park, Uganda: implications for forest restoration and management. African Journal of Ecology, 41, 9–22.CrossRefGoogle Scholar
Mabberley, D. J. (1997). The Plant Book. Cambridge: Cambridge University Press.Google Scholar
MacArthur, R. H. & Levins, R. (1964). Competition, habitat selection and character displacement. Proceedings of the National Academy of Sciences (USA), 51, 2581–93.CrossRefGoogle ScholarPubMed
Mack, A. L. (1997). Spatial distribution, fruit production and seed removal of a rare, dioecious canopy tree species (Aglaia aff. flavida Merr. et Perr.) in Papua New Guinea. Journal of Tropical Ecology, 13, 305–16.CrossRefGoogle Scholar
Mack, R. N. (1996). Predicting the identity and fate of plant invasives: emergent and emerging approaches. Biological Conservation, 78, 107–21.CrossRefGoogle Scholar
Mack, R. N. & Pyke, D. A. (1984). The demography of Bromus tectorum: the role of microclimate, grazing and disease. Journal of Ecology, 72, 731–48.CrossRefGoogle Scholar
Madison, M. (1977). Vascular epiphytes: their systematic occurrence and salient features. Selbyana, 2, 1–13.Google Scholar
Maguire, D. A. & Forman, R. T. T. (1983). Herb cover effects on tree seedling patterns in a mature hemlock-hardwood forest. Ecology, 64, 1367–80.CrossRefGoogle Scholar
Maheshwari, P. (1950). An Introduction to the Embryology of Angiosperms. New York: McGraw-Hill.CrossRefGoogle Scholar
Main, R. R. (1981). Plants as animal food. In The Biology of Australian Plants, ed. Pate, J. S. & McComb, A. J.. Nedlands: University of Western Australia Press, pp. 342–60.Google Scholar
Maiti, R. K., Ramaiah, K. V., Bisen, S. S., & Chidley, V. L. (1984). Comparative study of the haustorial development of Striga asiatica on Sorhum cultivars. Annals of Botany, 54, 447–58.CrossRefGoogle Scholar
Makana, J. R. & Thomas, S. C. (2004). Dispersal limits natural recruitment of African mahoganies. Oikos, 106, 67–72.CrossRefGoogle Scholar
Malm, T. (2006). Reproduction and recruitment of the seagrass Halophila stipulacea. Aquatic Botany, 85, 345–9.CrossRefGoogle Scholar
Malmer, A. & Grip, H. (1990). Soil disturbance and loss of infiltratability caused by mechanized and manual extractions of tropical rainforest in Sabah, Malaysia. Forest Ecology and Management, 38, 1–12.CrossRefGoogle Scholar
Mangan, J. M., Overpeck, J. T., Webb, R. S., Wessman, C., & Goetz, A. F. H. (2004). Response of Nebraska Sand Hills natural vegetation to drought, fire, grazing, and plant functional type shifts as simulated by the century model. Climatic Change, 63, 49–90.CrossRefGoogle Scholar
Mangan, S. A., & Adler, G. H. (1999). Consumption of arbuscular mycorrhizal fungi by spiny rats (Proechimys semispinosus) in eight isolated populations. Journal of Tropical Ecology, 15, 779–90.CrossRefGoogle Scholar
Mantegazza, R., Möller, M., Harrison, C. J.et al. (2007). Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta, 225, 653–63.CrossRefGoogle Scholar
Mapes, G., Rothwell, G. W., & Haworth, M. T. (1989). Evolution of seed dormancy. Nature, 337, 645–6.CrossRefGoogle Scholar
Maranon, T. & Grubb, P. J. (1993). Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Functional Ecology, 7, 591–9.CrossRefGoogle Scholar
Marcar, N. E., Crawford, D. F., Saunders, A.et al. (2002). Genetic variation among and within provenances and families of Eucalyptus grandis W. Hill and E. globulus Labill. subsp. globulus seedlings in response to salinity and waterlogging. Forest Ecology and Management, 162, 231–49.CrossRefGoogle Scholar
Mares, M. A. & Rosenzweig, M. L. (1978). Granivory in North and South American deserts: rodents, birds, and ants. Ecology, 59, 235–41.CrossRefGoogle Scholar
Marks, P. L. & Gardescu, S. (1998). A case study of sugar maple (Acer saccharum) as a forest seedling bank species. Journal of the Torrey Botanical Society, 125, 287–96.CrossRefGoogle Scholar
Marlette, G. M. & Anderson, J. E. (1986). Seed banks and propagule dispersal in crested-wheatgrass stands. Journal of Applied Ecology, 23, 161–75.CrossRefGoogle Scholar
Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S., & Beardsley, P. (2004). Rapid evolution of an invasive plant. Ecological Monographs, 74, 261–80.CrossRefGoogle Scholar
Marr, D. L. & Marshall, M. L. (2006). The role of fungal pathogens in flower size and seed mass variation in three species of Hydrophyllum (Hydrophyllaceae). American Journal of Botany, 93, 389–98.CrossRefGoogle Scholar
Marrero, J. (1942). A seed storage study of Maga. Caribbean Forester, 3, 173–84.Google Scholar
Marshall, J. D. & Ehleringer, J. R. (1990). Are xylem-tapping mistletoes partially heterotrophic? Oecologia, 84, 244–8.CrossRefGoogle ScholarPubMed
Marthews, T. R. (2007). Modelling regeneration in tropical forests. PhD dissertation. Aberdeen University, UK.
Martin, A. C. (1946). The comparative internal morphology of seeds. American Midland Naturalist, 36, 513–660.CrossRefGoogle Scholar
Martin, L. M. & Wilsey, B. J. (2006). Assessing grassland restoration success: relative roles of seed additions and native ungulate activities. Journal of Applied Ecology, 43, 1098–109.CrossRefGoogle Scholar
Martin, P. H. & Marks, P. L. (2006). Intact forests provide only weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). Journal of Ecology, 94, 1070–9.CrossRefGoogle Scholar
Martin, T. J. & Ogden, J. (2002). The seed ecology of Ascarina lucida: a rare New Zealand tree adapted to disturbance. New Zealand Journal of Botany, 40, 397–404.CrossRefGoogle Scholar
Martin, T. J. & Ogden, J. (2005). Experimental studies on the drought, waterlogging, and frost tolerance of Ascarina lucida Hook. f (Chloranthaceae) seedlings. New Zealand Journal of Ecology, 29, 53–9.Google Scholar
Martínez, I., García, D., & Obeso, J. R. (2007). Allometric allocation in fruit and seed packaging conditions the conflict among selective pressures on seed size. Evolutionary Ecology, 21, 517–33.CrossRefGoogle Scholar
Marx, D. H. (1969). The influence of ectotrophic ectomycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology, 59, 153–63.Google Scholar
Marx, D. H. (1973). Mycorrhizae and feeder root diseases. In Ectomycorrhizae: Their Ecology and Physiology, ed. Marks, G. C. & Kozlowski, T. T.. New York: Academic Press, pp. 351–82.Google Scholar
Marx, L. M. & Walters, M. B. (2006). Effects of nitrogen supply and wood species on Tsuga canadensis and Betula alleghaniensis seedling growth on decaying wood. Canadian Journal of Forest Research, 36, 2873–84.CrossRefGoogle Scholar
Massey, F. P., Massey, K., Press, M. C., & Hartley, S. E. (2006). Neighborhood composition determines growth, architecture and herbivory in tropical rain forest tree seedlings. Journal of Ecology, 94, 646–55.CrossRefGoogle Scholar
Masuhara, G. & Katsuya, K. (1994). In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon.) Ames. var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytologist, 127, 711–18.CrossRefGoogle Scholar
Mathews, S. & Donoghue, M. J. (1999). The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286, 947–50.CrossRefGoogle ScholarPubMed
Matsubayashi, Y. & Sakagami, Y. (2006). Peptide hormones in plants. Annual Review of Plant Biology, 57, 649–74.CrossRefGoogle ScholarPubMed
Maun, M. A. (1985). Population biology of Ammophila breviligulata and Calamovilfa longifolia on Lake Huron sand dunes. 1. Habitat, growth form, reproduction, and establishment. Canadian Journal of Botany, 63, 113–24.CrossRefGoogle Scholar
Maun, M. A. (1989). Population biology of Ammophila breviligulata and Calamovilfa longifolia on Lake Huron sand dunes. 3. Dynamic changes in plant community structure. Canadian Journal of Botany, 67, 1267–70.CrossRefGoogle Scholar
Maun, M. A. (1994). Adaptations enhancing survival and establishment of seedlings on coastal dune systems. Vegetatio, 111, 59–70.Google Scholar
Maun, M. A. (1998). Adaptations of plants to burial in coastal sand dunes. Canadian Journal of Botany, 76, 713–38.CrossRefGoogle Scholar
Maun, M. A., Elberling, H., & Ulisse, D' A. (1996). The effects of burial by sand on survival and growth of Pitcher's thistle (Circium pitcheri) along Lake Huron. Journal of Coastal Conservation, 2, 3–12.CrossRefGoogle Scholar
Maun, M. A. & Lapierre, J. (1986). Effects of burial by sand on seed germination and seedling emergence of four dune species. American Journal of Botany, 73, 450–5.CrossRefGoogle Scholar
Maxwell, G. S. (1995). Ecogeographic variation in Kandelia candel from Brunei, Hong Kong and Thailand. Hydrobiologia, 295, 59–65.CrossRefGoogle Scholar
Mayaux, P., Holmgren, P., Achard, F.et al. (2005). Tropical forest cover change in the 1990s and the options for future monitoring. Philosophical Transactions of the Royal Society Series B, 360, 373–84.CrossRefGoogle ScholarPubMed
Mayer, A. M. & Poljakoff-Mayber, A. (1963). The Germination of Seeds. Oxford: Pergamon Press, Ltd.Google Scholar
Mazon, G., Kidron, G. J., Vonshak, A., & Abeliovich, A. (1996). The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 21, 121–30.Google Scholar
McCarthy, B. C. & Facelli, J. M. (1990). Microdisturbances in oldfields and forests: implications for woody seedling establishment. Oikos, 58, 55–60.CrossRefGoogle Scholar
McClure, F. (1966). The Bamboos – a Fresh Perspective. Cambridge: Harvard University Press.CrossRefGoogle Scholar
McComb, A. J., Cambridge, M. L., Kirkman, H., & Kuo, J. (1981). The biology of Australian seagrasses. In The Biology of Australian Plants, ed. Pate, J. S. & McComb, A. J.. Nedlands: University of Western Australia Press, pp. 258–93.Google Scholar
McCormick, J. F. (1995). A review of the population dynamics of selected tree species in the Luquillo experimental forest, Puerto Rico. In Tropical Forests: Management and Ecology, ed. Lugo, A. E. & Lowe, C.. New York: Springer-Verlag, pp. 224–57.CrossRefGoogle Scholar
McCormick, M. K., Whigham, D. F., & Neill, O' J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist, 163, 425–38.CrossRefGoogle Scholar
McCormick, M. K., Whigham, D. F., Sloan, D., Malley, O' K., & Hopkinson, B. (2006). Orchid-fungal fidelity: a marriage meant to last? Ecology, 87, 903–11.CrossRefGoogle Scholar
McCourt, P. (1999). Genetic analysis of hormone signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 219–43.CrossRefGoogle ScholarPubMed
McCourt, P., Lumba, S., Tsuchiya, Y., & Gazzarrini, S. (2005). Crosstalk and abscisic acid: the roles of terpenoid hormones in coordinating development. Physiologia Plantarum, 123, 147–52.CrossRefGoogle Scholar
McEvoy, P. B. & Coombs, E. M. (1999). A parsimonious approach to biological control of plant invaders. Ecological Applications, 9, 387–401.CrossRefGoogle Scholar
McGraw, J. B., Gottschalk, K. W., Vavrek, M. C., & Chester, A. L. (1990). Interactive effects of resource availabilities and defoliation on photosynthesis, growth, and mortality of red oak seedlings. Tree Physiology, 7, 247–54.CrossRefGoogle ScholarPubMed
McKay, J. K., Christian, C. E., Harrison, S., & Rice, K. J. (2005). “How local is local?” – Review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13, 432–40.CrossRefGoogle Scholar
McKendrick, S. L., Leake, J. R., & Read, D. J. (2000a). Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytologist, 145, 539–48.CrossRefGoogle Scholar
McKendrick, S. L., Leake, J. R., Taylor, D. L., & Read, D. J. (2000b). Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist, 145, 523–37.CrossRefGoogle Scholar
McKendrick, S. L., Leake, J. R., Taylor, D. L., & Read, D. J. (2002). Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist, 154, 233–47.CrossRefGoogle Scholar
McLeod, K. W. & McPherson, J. K. (1973). Factors limiting the distribution of Salix nigra. Bulletin of the Torrey Botanical Club, 100, 102–10.CrossRefGoogle Scholar
McMillan, C. (1974). Salt tolerance of mangroves and submerged aquatic plants. In Ecology of Halophytes, ed. Reinold, R. J. & Queen, W. H.. New York: Academic Press, pp. 379–90.Google Scholar
McPherson, K. & Williams, K. (1998). The role of carbohydrate reserves in the growth, resilience, and persistence of cabbage palm seedlings (Sabal palmetto). Oecologia, 117, 460–8.CrossRefGoogle Scholar
Meeuse, A. D. J. 1963. A possible case of interdependence between a mammal and a higher plant. Archives Neerlandaises de Zoologie, 13, 314–18.Google Scholar
Mehra, P. N. & Handoo, O. N. (1953). Morphology of Anthoceros erectus and Anthoceros himalayensis, and the phylogeny of the Anthocerotales. Botanical Gazette, 114, 371–82.CrossRefGoogle Scholar
Meiners, S. J. & Handel, S. N. (2000). Additive and nonadditive effects of herbivory and competition on tree seedling mortality, growth, and allocation. American Journal of Botany, 87, 1821–6.CrossRefGoogle Scholar
Meiners, S. J., Pickett, S. T. A., & Cadenasso, M. L. (2001). Beyond biodiversity: individualistic controls of invasion in a self-assembled community. Ecology Letters, 7, 121–6.CrossRefGoogle Scholar
Meir, A. & Tsoar, H. (1996). International borders and range ecology: the case of Bedouin transborder grazing. Human Ecology, 24, 39–64.CrossRefGoogle Scholar
Mendez, M. (1997). Sources of variation in seed mass in Arum italicum. International Journal of Plant Sciences, 158, 298–305.CrossRefGoogle Scholar
Merryweather, J. & Fitter, A. (1996). Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytologist, 132, 307–11.CrossRefGoogle Scholar
Mesquita, R. C. G., Ickes, K., Ganade, G., & Williamson, G. B. (2001) Alternative successional pathways in the Amazon Basin. Journal of Ecology, 89, 528–37.CrossRefGoogle Scholar
Messier, C., Doucet, R., Ruel, J.-C., Clavewa, Y., Kelly, C., & Lechowicz, M. J. (1999). Functional ecology of advance regeneration in relation to light in boreal forests. Canadian Journal of Forest Research, 29, 812–23.CrossRefGoogle Scholar
Metcalf, C. J. E., Rees, M., Alexander, J. M., & Rose, K. (2006). Growth-survival trade-offs and allometries in rosette-forming perennials. Functional Ecology, 20, 217–25.CrossRefGoogle Scholar
Metcalfe, D. J. (2005). Hedera helix L. Journal of Ecology, 93, 632–48.CrossRefGoogle Scholar
Metcalfe, D. J. & Grubb, P. J. (1997). The responses to shade of seedlings of very small-seeded tree and shrub species from tropical rain forest in Singapore. Functional Ecology, 11, 215–21.CrossRefGoogle Scholar
Metcalfe, D. J., Grubb, P. J., & Turner, I. M. (1998). The ecology of very small-seeded shade-tolerant trees and shrubs in lowland rain forest in Singapore. Plant Ecology, 134, 131–49.CrossRefGoogle Scholar
Meyer, S. E. & Carlson, S. L. (2001). Achene mass variation in Ericameria nauseosus (Asteraceae) in relation to dispersal ability and seedling fitness. Functional Ecology, 15, 274–81.CrossRefGoogle Scholar
Miao, S. L., Borer, R. E., & Sklar, F. H. (1997). Sawgrass seedling responses to transplanting and nutrient additions. Restoration Ecology, 5, 162–8.CrossRefGoogle Scholar
Michaels, H. J., Benner, B., Hartgerinck, A. P.et al. (1988). Seed size variation: magnitude, distribution, and ecological correlates. Evolutionary Ecology, 2, 157–66.CrossRefGoogle Scholar
Mihulka, S., Pyšek, P., Martínková, J., & Jarošík, V (2006). Invasiveness of Oenothera congeners alien to Europe: jack of all trades, master of invasion?Perspectives in Plant Ecology, Evolution & Systematics, 8, 83–96.CrossRefGoogle Scholar
Mikola, P. (1970). Mycorrhizal inoculation in afforestation. International Review of Forest Research, 3, 123–96.CrossRefGoogle Scholar
Milberg, P. & Lamont, B. B. (1997). Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist, 137, 665–72.CrossRefGoogle Scholar
Milcu, A., Schumacher, J., & Scheu, S. (2006). Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity. Functional Ecology, 20, 261–8.CrossRefGoogle Scholar
Miller, G. & Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annals of Botany, 98, 279–88.CrossRefGoogle ScholarPubMed
Miller, J. H. & Miller, K. V. (2005). Food Plants of the Southeast and Their Wildlife Uses. Athens: University of Georgia.Google Scholar
Miller, R. D. (1972). Freezing and heaving of saturated and unsaturated soils. Highway Research Record, 393, 1–11.Google Scholar
Milton, S. J. & Dean, W. R. J. (2000). Disturbance, drought and dynamics of desert dune grassland, South Africa. Plant Ecology, 150, 37–51.CrossRefGoogle Scholar
Milton, S. J., Dean, W. R. J., & Klotz, S. (1997). Thicket formation in abandoned fruit orchards: processes and implications for the conservation of semi-dry grasslands in Central Germany. Biodiversity and Conservation, 6, 275–90.CrossRefGoogle Scholar
Milton, S. J., Yeaton, R. I., Dean, W. R. J., & Vlok, J. H. H. (1997). Succulent karoo. In Vegetation of Southern Africa, ed. Cowling, R., Richardson, D., & Pierce, S.. Cambridge: Cambridge University Press. pp. 131–66.Google Scholar
Miquel, S. (1987). Morphologie fonctionnelle de plantules d'espèces forestières du Gabon. Bulletin du Musèum National d'Histoire Naturelle, 4c série, section B, Andansonia, 9, 101–21.Google Scholar
Miriti, M. N. (2006). Ontogenic shift from facilitation to competition in a desert shrub. Journal of Ecology, 94, 973–9.CrossRefGoogle Scholar
Mischler, B. D., Lewis, L. A., Buchheim, M. A.et al. (1994). Phylogenetic relationships of the “green algae” and “bryophytes.”Annals of the Missouri Botanical Garden, 81, 451–83.CrossRefGoogle Scholar
Mitchell-Olds, T. (2001). Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends in Ecology & Evolution, 16, 693–700.CrossRefGoogle Scholar
Miyanishi, K. & Kellman, M. (1986). The role of root nutrient reserves in regrowth of two savanna shrubs. Canadian Journal of Botany, 64, 1244–8.CrossRefGoogle Scholar
Modjo, H. S. & Hendrix, J. W. (1986). The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease. Phytopathology, 76, 688–91.CrossRefGoogle Scholar
Moegenburg, S. M. (1996). Sabal palmetto seed size – causes of variation, choices of predators, and consequences for seedlings. Oecologia, 106, 539–43.CrossRefGoogle ScholarPubMed
Mogie, M., Latham, J. R., & Warman, E. A. (1990). Genotype-independent aspects of seed ecology in Taraxacum. Oikos, 59, 175–82.CrossRefGoogle Scholar
Molau, U. (1992). On the occurrence of sexual reproduction in Saxifraga ceruna and S. foliolosa (Saxifragaceae). Nordic Journal of Botany, 12, 197–203.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Tweddle, J. C.et al. (2007). Global patterns in seed size. Global Ecology and Biogeography, 16, 106–16.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Webb, C. O.et al. (2005a). Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences (USA), 102, 10540–4.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Webb, C. O.et al. (2005b). A brief history of seed size. Science, 307, 576–80.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Webb, C. O.et al. (2005c). Response to comment on “A brief history of seed size.” Science, 310, 783.CrossRefGoogle Scholar
Moles, A. T., Falster, D. S., Leishman, M. R., & Westoby, M. (2004). Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology, 92, 384–96.CrossRefGoogle Scholar
Moles, A. T., Hodson, D. W., & Webb, C. J. (2000). Do seed size and shape predict persistence in soil in New Zealand? Oikos, 89, 541–5.CrossRefGoogle Scholar
Moles, A. T., Warton, D. I., Stevens, R. D., & Westoby, M. (2004). Does a latitudinal gradient in seedling survival favor larger seeds in the tropics? Ecology Letters, 7, 911–14.CrossRefGoogle Scholar
Moles, A. T., Warton, D. I., & Westoby, M. (2003). Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology, 84, 3148–61.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2002). Seed addition experiments are more likely to increase recruitment in larger-seeded species. Oikos, 99, 241–8.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2003). Latitude, seed predation and seed mass. Journal of Biogeography, 30, 105–28.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2004a). Seedling survival and seed size: a synthesis of the literature. Journal of Ecology, 92, 372–83.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2004b). Seedling establishment after fire in Ku-ring-gai Chase National Park, Sydney, Australia. Austral Ecology, 29, 383–90.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2004c). What do seedlings die from, and what are the implications for evolution of seed size? Oikos, 106, 193–9.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2006a). Seed size and plant strategy across the whole life cycle. Oikos, 113, 91–105.CrossRefGoogle Scholar
Moles, A. T. & Westoby, M. (2006b). Seedling survival and seed size: a synthesis of the literature. Journal of Ecology, 92, 372–83.CrossRefGoogle Scholar
Molina, R., Massicotte, H., & Trappe, J. M. (1992). Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In Mycorrhizal Functioning: An Integrative Plant-fungal Process, ed. Allen, M. F.. New York: Chapman and Hall, pp. 357–423.Google Scholar
Molina, R. & Trappe, J. M. (1982). Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytologist, 90, 485–509.CrossRefGoogle Scholar
Molina, R. & Trappe, J. M. (1994). Biology of the ectomycorrhizal genus, Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytologist, 126, 653–75.CrossRefGoogle Scholar
Molina, R., Trappe, J. M., Grubisha, L. C., & Spatafora, J. W. (1999). Rhizopogon. In Ectomycorrhizal Fungi: Key Genera in Profile, ed. Cairney, J. W. G. & Chambers, S. M.. Berlin: Springer-Verlag, pp. 129–61.CrossRefGoogle Scholar
Molino, J.-F. & Sabatier, D. (2001). Tree diversity in a tropical rain forest: a validation of the intermediate disturbance hypothesis. Science, 294, 1702–4.CrossRefGoogle Scholar
Montagnini, F., Gonzalez, E., Porras, C., & Rheingans, R. (1995). Mixed and pure forest plantations in the humid neotropics: a comparison of early growth, pest damage and establishment costs. Commonwealth Forestry Review, 74, 306–14.Google Scholar
Montaña, C. (1992). The colonization of bare areas in two-phase mosaics of an arid ecosystem. Journal of Ecology, 80, 315–27.CrossRefGoogle Scholar
Mooney, H. A. & Drake, J. A. (1989). Biological invasions: a SCOPE program overview. In Biological Invasions: A Global Perspective, ed. Drake, J. A., Mooney, H. A., Castri, F. diet al., New York: John Wiley & Sons, pp. 491–507.Google Scholar
Mooney, H. A., Gulmon, L., & Johnson, N. D. (1983). Physiological constraints on plant chemical defenses. In Plant Resistance to Insects, ed. Hedin, P. A.. Washington: American Chemical Society, pp. 21–36.CrossRefGoogle Scholar
Mopper, S. & Agrawal, A. A. (2004). Phytohormonal ecology. Ecology, 85, 3–4.CrossRefGoogle Scholar
Mopper, S., Wang, Y., Criner, C., & Hasenstein, K. (2004). Iris hexagona hormonal responses to salinity stress, leaf miner herbivory, and phenology. Ecology, 85, 38–47.CrossRefGoogle Scholar
Morris, A. B., Bell, C. D., Clayton, J. W.et al. (2007). Phylogeny and divergence time estimation in Illicium with implications for New World biogeography. Systematic Botany, 32, 236–49.CrossRefGoogle Scholar
Morse, D. H. & Schmitt, J. (1985). Propagule size, dispersal ability, and seedling performance in Asclepias syriaca. Oecologia, 67, 372–9.CrossRefGoogle ScholarPubMed
Mott, J. J. (1972). Germination studies on some annual species from arid region of Western Australia. Journal of Ecology, 60, 293–304.CrossRefGoogle Scholar
Mousseau, T. A. & Fox, C. W., ed. (1998). Maternal Effects as Adaptations. New York: Oxford University Press.Google Scholar
Moyes, A. B., Witter, M. S., & Gamon, J. A. (2005). Restoration of native perennials in a California annual grassland after prescribed spring burning and solarization. Restoration Ecology, 13, 659–66.CrossRefGoogle Scholar
Mrkvicka, A. C. (1990). Neue Bobachtungen zu Samenkeimung und Entwicklung von Liparis loeselii (L.) Rich. Mitteilungsblatt des Arbeitskreis heimische Orchideen Baden-Württembert, 22, 172–80.Google Scholar
Muenscher, W. C. (1944). Aquatic Plants of the United States. Ithaca: Comstock Publishing Co., Inc.Google Scholar
Mukhammedov, G., Durikov, M., & Nechaeva, N. T. (1999). The technology of desert pasture improvement. In Desert Problems and Desertification in Central Asia, ed. Babaev, A. G.. Berlin: Springer, pp. 101–14.CrossRefGoogle Scholar
Mulder, L., Hogg, B., Bersoult, A., & Cullimore, J. V. (2005). Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiologia Plantarum, 123, 207–18.CrossRefGoogle Scholar
Muller, F. M. (1978). Seedlings of the North-western European Lowland: A Flora of Seedlings. Wageningen: Dr. W. Junk B. V. Publishers.CrossRefGoogle Scholar
Muller-Landau, H. C. (2004). Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 36, 20–32.Google Scholar
Muller-Landau, H. C., Wright, S. J., Calderón, O., Hubbell, S. P., & Foster, R. (2002). Assessing recruitment limitation: concepts, methods and case-studies from a tropical forest. In Seed Dispersal and Frugivory: Ecology, Evolution and Conservation, ed. Levey, D. J., Silva, W. R. & Galetti, M.. Wallingford: CAB International, pp. 35–53.Google Scholar
Münzbergová, Z. & Herben, T. (2005). Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia, 145, 1–8.CrossRefGoogle Scholar
Murawski, D. A., Gunatilleke, I. A. U. N., & Bawa, K. S. (1994). The effects of selective logging on inbreeding in Shorea megistophylla (Dipterocarpaceae) from Sri Lanka. Conservation Biology, 8, 997–1002.CrossRefGoogle Scholar
Musselman, L. J. & Dickison, W. C. (1975). The structure and development of the haustorium in parasitic Scrophulariaceae. Botanical Journal of the Linnean Society, 70, 183–212.CrossRefGoogle Scholar
Musselman, L. J. & Press, M. C. (1995). Introduction to parasitic plants. In Parasitic Plants, ed. Press, M. C. & Graves, J. D.. London: Chapman and Hall, pp. 1–13.Google Scholar
Mutch, L. S. & Parsons, D. J. (1998). Mixed conifer forest mortality and establishment before and after prescribed fire in Sequoia National Park, California. Forest Science, 44, 341–55.Google Scholar
Myers, J. A. & Kitajima, K. (2007). Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 95, 383–95.CrossRefGoogle Scholar
Myster, R. W. (1993). Tree invasion and establishment in old fields at Hutcheson Memorial Forest. Botanical Review, 59, 251–72.CrossRefGoogle Scholar
Nadarajah, P. & Nawawi, A. (1993). Mycorrhizal status of epiphytes in Malaysian oil palm plantations. Mycorrhiza, 4, 21–5.CrossRefGoogle Scholar
Nagalingum, N., Drinnan, A. N., McLoughlin, S., & Lupia, R. (2002). Patterns of fem diversification in the Cretaceous of Australia. Review of Palaeobotany and Palynology, 119, 69–92.CrossRefGoogle Scholar
Napier, R., M., David, K. M., & Perrot-Rechenmann, C. (2002). A short history of auxin-binding proteins. Plant Molecular Biology, 49, 339–48.CrossRefGoogle Scholar
Nara, K. (2006a). Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytologist, 169, 169–78.CrossRefGoogle Scholar
Nara, K. (2006b). Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic dessert. New Phytologist, 171, 187–98.CrossRefGoogle Scholar
Nara, K. & Hogetsu, T. (2004). Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology, 85, 1700–7.CrossRefGoogle Scholar
Nathan, R. & Muller-Landau, H. C. (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278–85.CrossRefGoogle ScholarPubMed
Nechaeva, N. T. (1985). Improvement of Desert Ranges in Soviet Central Asia. Chur: Harwood Academic Publishers.Google Scholar
Neill, S. J., Horgan, R., & Rees, A. G. (1987). Seed development and vivipary in Zea mays L. Planta, 171, 358–64.CrossRefGoogle ScholarPubMed
Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126, 467–75.CrossRefGoogle ScholarPubMed
Nepstad, D. C., Uhl, C., & Serrão, E. A. S. (1991). Recuperation of a degraded Amazonian landscape: forest recovery and agricultural restoration. Ambio, 20, 248–55.Google Scholar
Nepstad, D. C., Verissimo, A., Alencar, A.et al. (1999). Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505–8.CrossRefGoogle Scholar
Newberry, D. M., Alexander, I. J., & Rother, J. A. (2000). Does proximity to conspecific adults influence the establishment of ectomycorrhizal trees in rain forest. New Phytologist, 147, 401–9.CrossRefGoogle Scholar
Newell, E. A., McDonald, E. P., Strain, B. R., & Denslow, J. S. (1993). Photosynthetic responses of Miconia species to canopy openings in a lowland tropical rain forest. Oecologia, 94, 49–56.CrossRefGoogle Scholar
Newman, E. I. (1988). Mycorrhizal links between plants: their functioning and ecological significance. Advances in Ecological Research, 18, 243–70.CrossRefGoogle Scholar
Newsham, K. K., Fitter, A. H., & Merryweather, J. W. (1995). Multifunctionality and biodiversity in arbuscular mycorrhizas. Tree, 10, 407–11.Google Scholar
Newton, A. C., Baker, P., Ramnarine, S., Mesen, J. F., & Leakey, R. R. B. (1993). The mahogany shoot borer: prospects for control. Forest Ecology and Management, 57, 301–28.CrossRefGoogle Scholar
Ng, F. S. P. (1978). Strategies of establishment in Malayan forest trees. In Tropical Trees as Living Systems, ed. Tomlinson, P. B. & Zimmermann, M. H.. Cambridge: Cambridge University Press, pp. 129–62.Google Scholar
Ng, F. S. P. (1992). Manual of Forest Fruits, Seeds and Seedlings. Kuala Lumpur: Forest Research Institute of Malaysia.Google Scholar
Nichols, J. D., Wagner, M. R., Agyeman, V. K., Bosu, P., & Cobbinah, J. R. (1998). Influence of artificial gaps in tropical forest on the survival, growth and Phytolyma lata attack on Milicia excelsa. Forest Ecology and Management, 110, 353–62.CrossRefGoogle Scholar
Nickrent, D. L. (2003). Parasitic Plant Connection. Southern Illinois University at Carbondale (http://www.parasiticplants.siu.edu/ParPlantNumbers.pdf; November 6, 2006).Google Scholar
Nickrent, D. L., Duff, R. J., Colwell, A. E., et al. (1998). Molecular phylogenetic and evolutionary studies of parasitic plants. In Molecular Systematics of Plants. II. DNA Sequencing, ed. Soltis, D. E., Soltis, P. S., & Doyle, J. J.. Boston: Kluwer Academic, pp. 211–41.CrossRefGoogle Scholar
Nicotra, A. B., Babicka, N., & Westoby, M. (2002). Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia, 130, 136–45.CrossRefGoogle ScholarPubMed
Nicotra, A. B., Chazdon, R. L., & Iriate, S. V. B. (1999). Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology, 80: 1908–26.CrossRefGoogle Scholar
Niering, W. A., Whittaker, R. H., & Lowe, C. H. (1963). The saguaro: a population in relation to its environment. Science, 142, 15–23.CrossRefGoogle ScholarPubMed
Nieuwland, J. A. (1916). Habits of waterlily seedlings. American Midland Naturalist, 4, 291–7.CrossRefGoogle Scholar
Nievola, C. C. & Mercier, H. (1996). The importance of leaf and root systems in nitrate assimilation in Vriesea fosteriana. Bromélia, 3, 14–17.Google Scholar
Niinemets, Ü. (2006). The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. Journal of Ecology, 94, 464–70.CrossRefGoogle Scholar
Niinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant Cell and Environment, 21, 1205–18.CrossRefGoogle Scholar
Niinemets, Ü. & Kull, K. (1994). Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability. Forest Ecology and Management, 70, 1–10.CrossRefGoogle Scholar
Niklas, K. J. (1983). The influence of Paleozoic ovule and cupule morphologies on wind pollination. Evolution, 37, 968–86.CrossRefGoogle ScholarPubMed
Niklas, K. J. (1997). The Evolutionary Biology of Plants. Chicago: University of Chicago Press.Google Scholar
Niklas, K. J. & Paolillo, D. J. Jr. (1990). Biomechanical and morphometric differences in Triticum aestivum seedlings differing in Rht gene-dosage. Annals of Botany, 65, 365–77.CrossRefGoogle Scholar
Nilsen, E. T. & Orcutt, D. M. (1996). Physiology of Plants Under Stress. New York: John Wiley & Sons, Inc.Google Scholar
Nishiyama, T. & Kato, M. (1999). Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Molecular Biology and Evolution, 16, 1027–36.CrossRefGoogle ScholarPubMed
Nobel, P. S. (1984). Extreme temperatures and thermal tolerances for seedlings of desert succulents. Oecologia, 62, 310–17.CrossRefGoogle ScholarPubMed
Nobel, P. S. (1989). Temperature, water availability, and nutrient levels at various soil depths consequences for shallow-rooted desert succulents, including nurse plant effects. American Journal of Botany, 76, 1486–92.CrossRefGoogle Scholar
Nobel, P. S. & Bobich, E. G. (2002). Plant frequency, stem and root characteristics, and CO2 uptake for Opuntia acanthocarpa: elevational correlates in the northwestern Sonoran Desert. Oecologia, 130, 165–72.CrossRefGoogle ScholarPubMed
Nobel, P. S. & Linton, M. J. (1997). Frequencies, microclimate and root properties for three codominant perennials in the northwestern Sonoran Desert on north- vs. south-facing slopes. Annals of Botany, 80, 731–9.CrossRefGoogle Scholar
Nobel, P. S. & Zutta, B. R. (2005). Morphology, ecophysiology, and seedling establishment for Fouquieria splendens in the northwestern Sonoran Desert. Journal of Arid Environments, 62, 251–65.CrossRefGoogle Scholar
North, G. B. & Nobel, P. S. (1997). Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant and Soil, 191, 249–58.CrossRefGoogle Scholar
North, M., Hurteau, M., Fiegener, R., & Barbour, M. (2005). Influence of fire and El Niño on tree recruitment varies by species in Sierran mixed conifer. Forest Science, 51, 186–97.Google Scholar
Norton, D. A. & Carpenter, M. A. (1998). Mistletoes as parasites: host specificity and speciation. Trends in Ecology & Evolution, 13, 101–5.CrossRefGoogle ScholarPubMed
Noy-Meir, I. (1974). Desert ecosystems: higher trophic levels. Annual Review of Ecology and Systematics, 5, 195–214.CrossRefGoogle Scholar
Noy-Meir, I. (1993). Compensating growth of grazed plants and its relevance to the use of rangelands. Ecological Applications, 3, 32–4.CrossRefGoogle ScholarPubMed
Nozue, K. & Maloof, J. N. (2006). Diurnal regulation of plant growth. Plant, Cell and Environment, 29, 396–408.CrossRefGoogle ScholarPubMed
Nussbaum, R., Anderson, J., & Spencer, T. (1995a). Effects of selective logging on soil characteristics and growth of planted dipterocarp seedlings in Sabah. In Ecology, Conservation and Management of Southeast Asian Rainforests, ed. Primack, R. B. & Lovejoy, T. E.. New Haven: Yale University Press, pp. 105–15.CrossRefGoogle Scholar
Nussbaum, R., Anderson, J., & Spencer, T. (1995b). Factors limiting the growth of indigenous tree seedlings planted on degraded rainforest soils in Sabah, Malaysia. Forest Ecology and Management, 74, 149–59.CrossRefGoogle Scholar
Obeso, J. R. (1993). Seed mass variation in the perennial herb Asphodelus albus: sources of variation and position effect. Oecologia, 93, 571–5.CrossRefGoogle ScholarPubMed
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction. The Neglected Process in Evolution. Princeton: Princeton University Press.Google Scholar
Offer, Z. Y., Zaady, E., & Shachak, M. (1998). Aeolian particle input to the soil surface at the northern limit of the Negev Desert. Arid Soil Research and Rehabilitation, 12, 55–62.CrossRefGoogle Scholar
Oh, I.-C., Denk, T., & Friis, E. M. (2003). Evolution of Illicium (Illiciaceae): mapping morphological characters on the molecular tree. Plant Systematics and Evolution, 240, 175–209.CrossRefGoogle Scholar
Ohara, M., Tomimatsu, H., Takada, T., & Kawano, S. (2006). Importance of life history studies for conservation of fragmented population: a case study of the understory herb, Trillium camschatcense. Plant Species Biology, 21, 1–12.CrossRefGoogle Scholar
Ohlson, M., Okland, R. H., Nordbakken, J. F., & Dahlberg, B. (2001). Fatal interactions between Scots pine and Sphagnum mosses in bog ecosystems. Oikos, 94, 425–32.CrossRefGoogle Scholar
Okonkwo, S. N. C. & Nwoke, F. I. O. (1978). Initiation, development and structure of the primary haustorium in Striga gesnerioides (Scrophulariacae). Annals of Botany, 42, 455–63.CrossRefGoogle Scholar
Olff, H., Vera, F. W. M., Bokdam, J.et al. (1999). Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biology, 1, 127–37.CrossRefGoogle Scholar
Olmstead, R. G., Depamphilis, C. W., Wolfe, A. D.et al. (2001). Disintegration of the Scrophulariaceae. American Journal of Botany, 88, 348–61.CrossRefGoogle ScholarPubMed
Olson, B. E. & Wallander, R. T. (2002). Effects of invasive forb litter on seed germination, seedling growth and survival. Basic and Applied Ecology, 3, 309–17.CrossRefGoogle Scholar
Olsson, P. A., Jakobsen, I., & Wallander, H. (2002). Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment, In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I. R.. Berlin: Springer-Verlag, pp. 93–115.Google Scholar
Olszyk, D., Wise, C.VanEss, E., & Tingey, D. (1998). Elevated temperature but not elevated CO2 affects long-term patterns of stem diameter and height of Douglas-fir seedlings. Canadian Journal of Forest Research, 28, 1046–54.CrossRefGoogle Scholar
O'Neill, R. V. (1989). Perspectives in hierarchy and scale. In Perspectives in Ecological Theory, ed. Roughgarden, J., May, R. M., & Levin, S. A.. Princeton: Princeton University Press, pp. 140–56.CrossRefGoogle Scholar
Onguene, N. A. & Kuyper, T. W. (2002). Importance of the ectomycorrhizal network for seedling survival and ectomycorrhizal formation in rain forests of south Cameroon. Mycorrhiza, 12, 13–17.CrossRefGoogle ScholarPubMed
Opik, M., Moora, M., Liira, J., & Zobel, M. (2006). Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology, 94, 778–90.CrossRefGoogle Scholar
Oren, Y. (2000). Patchiness, disturbances, and flows of matter and organisms in an arid landscape: a multiscale experimental approach. PhD thesis, Ben-Gurion University of the Negev, Israel.
Orlovsky, L., Dourikov, M., & Babaev, A. (2004). Temporal dynamics and productivity of biogenic soil crusts in the central Karakum desert, Turkmenistan. Journal of Arid Environments, 56, 579–601.CrossRefGoogle Scholar
Orr, G. L., Haidar, M. A., & Orr, D. A. (1996). Smallseed dodder (Cuscuta planiflora) phototropism toward far-red when in white light. Weed Science, 44, 233–40.Google Scholar
Osborne, D. J. & Berjak, P. (1997). The making of mangroves: the remarkable pioneering role played by seeds of Avicennia marina. Endeavour, 21, 143–7.CrossRefGoogle Scholar
Osem, Y., Perevolotsky, A., & Kigel, J. (2002). Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. Journal of Ecology, 90, 936–46.CrossRefGoogle Scholar
Osmond, C. B. (1981). Photo-respiration and photoinhibition some implications for the energetics of photosynthesis. Biochimica and Biophysica Acta, 639, 77–98.CrossRefGoogle Scholar
Osumi, K. & Sakurai, S. (2002). The unstable fate of seedlings of the small-seeded pioneer tree species, Betula maximowicziana. Forest Ecology and Management, 160, 85–95.CrossRefGoogle Scholar
Osunkoya, O. O., Ash, J. E., Hopkins, M. S., & Graham, A. W. (1994). Influence of seed size and seedling ecological attributes on shade-tolerance of rain-forest tree species in northern Queensland. Journal of Ecology, 82, 149–63.CrossRefGoogle Scholar
Osunkoya, O. O., Othman, F. E., & Kahar, R. S. (2005). Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Melastoma beccarianum. Ecological Research, 20, 205–14.CrossRefGoogle Scholar
Outred, H. A. (1973). Studies on the respiration of mangrove seedlings. PhD thesis, University of Auckland, NZ.
Ozinga, W. A., VanAndel, J., & McDonnell-Alexander, M. P. (1997). Nutritional soil heterogeneity and mycorrhiza as determinants of plant species diversity. Acta Botanica Neerlandica, 46, 237–54.CrossRefGoogle Scholar
Pacala, S. W., Canham, C. D., Saponara, J., Silander, J. A., & Kobe, R. K. (1996). Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs, 66, 1–43.CrossRefGoogle Scholar
Packer, A. & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–81.CrossRefGoogle Scholar
Packer, A. & Clay, K, (2003). Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Journal of Ecology, 84, 108–19.CrossRefGoogle Scholar
Packer, A. & Clay, K. (2004). Development of negative feedback during successive growth cycles of black cherry. Proceedings of the Royal Society Series B, 271, 317–24.CrossRefGoogle ScholarPubMed
Padilla, F. M. & Pugnaire, F. I. (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4, 196–202.CrossRefGoogle Scholar
Pake, C. E. & Venable, D. L. (1995). Is coexistence of Sonoran Desert annuals mediated by temporal variability in reproductive success? Ecology, 76, 246–61.CrossRefGoogle Scholar
Pake, C. E. & Venable, D. L. (1996). Seed banks in desert annuals: implications for persistence and coexistence in variable environments. Ecology, 77, 1427–35.CrossRefGoogle Scholar
Palmer, J. D., Soltis, D. E., & Chase, M. W. (2004). The plant tree of life: an overview and some points of view. American Journal of Botany, 91, 1437–45.CrossRefGoogle ScholarPubMed
Pannier, F. & Rodriguez, M. D. P. (1967). The ß-inhibitor complex and its relation to vivipary in Rhizophora mangle L. Internationale Revue der Gesamten Hydrobiologie, 52, 783–92.CrossRefGoogle Scholar
Parciak, W. (2002). Seed size, number, and habitat of a fleshy-fruited plant: Consequences for seedling establishment. Ecology, 83, 794–808.CrossRefGoogle Scholar
Pareliussen, I., Olsson, E. G. A., & Armbruster, W. S. (2006). Factors limiting the survival of native tree seedlings used in conservation efforts at the edges of forest fragments in upland Madagascar. Restoration Ecology, 14, 196–203.CrossRefGoogle Scholar
Parihar, N. S. (1962). An Introduction to Embryophyta. Vol. 1. Bryophyta. Allahabad: Central Book Depot.Google Scholar
Parker, I. M., Simberloff, D., Lonsdale, W. M.et al. (1999). Impact: Toward a framework for understanding the ecological effects of invasives. Biological Invasions, 1, 3–19.CrossRefGoogle Scholar
Parker, I. M. (2000). Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecological Applications, 10, 726–43.CrossRefGoogle Scholar
Parker, M. A., Malek, W., & Parker, I. M. (2006). Growth of an invasive legume is symbiont limited in newly occupied habitats. Diversity and Distributions, 12, 563–71.CrossRefGoogle Scholar
Parker, V. T. (1990). Problems encountered while mimicking nature in vegetation management: an example from fire-prone vegetation. In Ecosystem Management: Rare Species and Significant Habitats, ed. Mitchell, R., Sheviak, C. & Leopold, D.. Proceedings of the 15th Annual Natural Areas Conference, New York State Museum Bulletin, 471, 231–4.
Parker, V. T. & Leck, M. A. (1985). Relationship of seed banks to plant distribution patterns in a freshwater tidal wetland. American Journal of Botany, 72, 161–74.CrossRefGoogle Scholar
Parker, V. T., Simpson, R. L., & Leck, M. A. (1989). Pattern and process in the dynamics of seed banks. In Ecology of Soil Seed Banks, ed. Leck, M. A., Parker, V. T., & Simpson, R. L.. San Diego: Academic Press, pp. 367–84.Google Scholar
Parrish, J. A. D. & Bazzaz, F. A. (1985). Ontogenetic niche shifts in old-field annuals. Ecology, 66, 1296–302.CrossRefGoogle Scholar
Parrotta, J. A. (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems, and Environment, 41, 115–33.CrossRefGoogle Scholar
Parson, W. F. J., Ehrenfeld, J. G., & Handel, S. N. (1998). Vertical growth and mycorrhizal infection of woody plant roots as potential limits to the restoration of woodlands on landfills. Restoration Ecology, 6, 280–9.CrossRefGoogle Scholar
Parsons, D. J. & DeBenedetti, S. H. (1979). Impact of fire suppression on a mixed-conifer forest. Forest Ecology and Management, 2, 21–33.CrossRefGoogle Scholar
Pate, J. S. (1989). Australian micro stilt plants. TREE, 4, 45–9.Google ScholarPubMed
Pate, J. S. (1995). Mineral relationships of parasites and their hosts. In Parasitic Plants, ed. Press, M. C. & Graves, J. D.. London: Chapman and Hall, pp. 80–102.Google Scholar
Pate, J. S. & Dixon, K. W. (1981). Plants with fleshy underground storage organs – a Western Australian survey. In The Biology of Australian Plants, ed. Pate, J. S. & McComb, A. J.. Nedlands: University of Western Australia Press, pp. 181–215.Google Scholar
Pate, J. S. & Dixon, K. W. (1982). Tuberous, Cormous and Bulbous Plants: Biology of an Adaptive Strategy in Western Australia. Perth: University of Western Australia Press.Google Scholar
Pate, J. S., Rasins, E., Rullo, J., & Kuo, J. (1985). Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Annals of Botany, 57, 747–70.CrossRefGoogle Scholar
Pate, J. S., True, K. C., & Kuo, J. (1991). Xylem transport and storage of amino acids by S. W. Australian mistletoes and their hosts. Journal of Experimental Botany, 42, 441–51.CrossRefGoogle Scholar
Paz, H. (2003). Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups. Biotropica, 35, 318–32.CrossRefGoogle Scholar
Paz, H., Mazer, S. J., & Martinez-Ramos, M. (2005). Comparative ecology of seed mass in Psychotria (Rubiaceae): within- and between-species effects of seed mass on early performance. Functional Ecology, 19, 707–18.CrossRefGoogle Scholar
Pearson, A. K., Pearson, O. P., & Gomez, I. A. (1994). Biology of the bamboo Chusquea culeou (Poaceae: Bambusoideae) in southern Argentina. Vegetatio, 111, 93–126.CrossRefGoogle Scholar
Pearson, T. R. H., Burslem, D., Mullins, C. E., & Dalling, J. W. (2002). Germination ecology of neotropical pioneers: interacting effects of environmental conditions and seed size. Ecology, 83, 2798–807.CrossRefGoogle Scholar
Pearson, T. R. H., Burslem, D., Goeriz, R. E., & Dalling, J. W. (2003a). Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia, 137, 456–65.CrossRefGoogle Scholar
Pearson, T. R. H., Burslem, D. F. R. P., Goeriz, R. E., & Dalling, J. W. (2003b). Interactions of gap size and herbivory on establishment, growth and survival of three species of neotropical pioneer trees. Journal of Ecology, 91, 785–96.CrossRefGoogle Scholar
Peco, B., Traba, J., Levassor, C., Sanchez, A. M., & Azcarate, F. M. (2003). Seed size, shape and persistence in dry Mediterranean grass and scrublands. Seed Science Research, 13, 87–95.CrossRefGoogle Scholar
Pemadasa, M. A. & Lovell, P. H. (1975). Factors controlling germination of some dune annuals. Journal of Ecology, 63, 41–59.CrossRefGoogle Scholar
Perala, D. A. & Alm, A. A. (1990). Reproductive ecology of birch: a review. Forest Ecology and Management, 32, 1–38.CrossRefGoogle Scholar
Peres, C. A. (2000). Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conservation Biology, 14, 240–53.CrossRefGoogle Scholar
Peres, C. A. (2001). Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15, 1490–505.CrossRefGoogle Scholar
Perez-Salicrup, D. R. & Barker, M. G. (2000). Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia, 124, 469–75.CrossRefGoogle Scholar
Perry, D. A., Amaranthus, M. P., Borcher, J. G., Borcher, S. L., & Brainerd, R. E. (1989). Bootstrapping in ecosystems. BioScience, 39, 230–7.CrossRefGoogle Scholar
Perry, L. G., Galatowitsch, S. M., & Rosen, C. J. (2004). Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soil. Journal of Applied Ecology, 41, 151–62.CrossRefGoogle Scholar
Peters, H. A. (2003). Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757–65.CrossRefGoogle Scholar
Peters, V. S., MacDonald, E., & Dale, M. R. T. (2005). The interaction between masting and fire is key to white spruce regeneration. Ecology, 86, 1744–50.CrossRefGoogle Scholar
Peterson, C. J. & Facelli, J. M. (1992). Contrasting germination and seedling growth of Betula alleghaniensis and Rhus typhina subjected to various amounts and types of plant litter. American Journal of Botany, 79, 1209–16.CrossRefGoogle Scholar
Peterson, C. J. & Haines, B. L. (2000a). Patterns and potential facilitation of woody plant colonization by rotting logs in premontane Costa Rican pastures. Restoration Ecology, 8, 361–9.CrossRefGoogle Scholar
Peterson, C. J. & Haines, B. L. (2000b). Early successional patterns and potential facilitation of woody plant colonization by rotting logs in premontane Costa Rican pastures. Restoration Ecology, 8, 361–9.CrossRefGoogle Scholar
Petersen, J. E., Cornwell, J. C., & Kemp, W. M. (1999). Implicit scaling in the design of experimental aquatic ecosystems. Oikos, 85, 3–18.CrossRefGoogle Scholar
Peterson, L. R., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: Anatomy and Cell Biology. Ottawa: NRC Research Press.Google Scholar
Peterson, R. L., Uetake, Y., & Armstrong, L. N. (1998). Fungal symbioses with orchid protocorms. Symbiosis, 25, 29–55.Google Scholar
Philbrick, C. T. & Novelo, R. A. (2004). Monograph of Podostemum (Podostemaceae). Systematic Botany Monographs, 70, 1–106.CrossRefGoogle Scholar
Philipp, M. (1992). Reproductive biology of Geranium sessifolium. III. Population ecology of two populations and three leaf colour morphs. New Zealand Journal of Botany, 30, 151–61.CrossRefGoogle Scholar
Phillips, H. R. (1985). Growing and Propagating Wild Flowers. Chapel Hill: The University of North Carolina Press.Google Scholar
Phillips, O. L., Núñez, P., Monteagudo, L. A.et al. (2003). Habitat association among Amazonian tree species, a landscape-scale approach. Journal of Ecology, 91, 757–75.CrossRefGoogle Scholar
Phillips, O. L., Vásquez, M. R., Arroyo, L.et al. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–4.CrossRefGoogle ScholarPubMed
Phillips, T. L. (1979). Reproduction of heterosporous arborescent lycopods in the Mississippian-Pennsylvanian of Euramerica. Review of Palaeobotany and Palynology, 27, 239–89.CrossRefGoogle Scholar
Phillips, T. L., Avcin, M. J., & Schopf, J. M. (1975). Gametophytes and young sporophyte development in Lepidocarpon (abstract). Corvallis, Oregon: Botanical Society of America, p. 23.Google Scholar
Phoenix, G. K. & Press, M. C. (2005). Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 93, 67–78.CrossRefGoogle Scholar
Pianka, E. R. (1970). On r- and K-selection. American Naturalist, 104, 492–597.CrossRefGoogle Scholar
Pickett, S. T. A., Collins, S. L., & Armesto, J. J. (1987). A hierarchical consideration of causes and mechanisms of succession. Vegetatio, 69, 109–14.CrossRefGoogle Scholar
Pierik, R., Tholen, D., Poorter, H, Visser, E. J. W., & Voesenek, L. A. C. J. (2006). The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Science, 11, 176–83.CrossRefGoogle ScholarPubMed
Pigliucci, M. (1998). Developmental phenotypic plasticity: where internal programming meets the external environment. Current Opinion in Plant Biology, 1, 87–91.CrossRefGoogle ScholarPubMed
Pimentel, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53–64.CrossRefGoogle Scholar
Pinard, M. A., Barker, M. G., & Tay, J. (2000). Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia. Forest Ecology and Management, 130, 213–25.CrossRefGoogle Scholar
Pinard, M. A., Howlett, B., & Davidson, D. (1996). Site conditions limit pioneer tree recruitment after logging of Dipterocarp forests in Sabah Malaysia. Biotropica, 28, 2–12.CrossRefGoogle Scholar
Piper, F. I., Cavieres, L. A., Reyes-Diaz, M., & Corcuera, L. J. (2006). Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecology, 185, 29–39.CrossRefGoogle Scholar
Pizo, M. A., Allmen, C., & Morellato, P. C. (2006). Seed size variation in the palm Euterpe edulis and the effects of seed predators on germination and seedling survival. Acta Oecologica, 29, 311–15.CrossRefGoogle Scholar
Platt, W. J. & Strong, D. R. (1989). Special feature – treefall gaps and forest dynamics – gaps in forest ecology. Ecology, 70, 535–76.CrossRefGoogle Scholar
Platt, W. J. & Weis, I. M. (1977). Resource partitioning and competition within a guild of fugitive prairie plants. American Naturalist, 111, 479–513.CrossRefGoogle Scholar
Plattner, I. & Hall, I. R. (1995). Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum. Mycological Research, 99, 1367–70.CrossRefGoogle Scholar
Pluess, A. R. & Stöcklin, J. (2004). Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. American Journal of Botany, 91, 2013–21.CrossRefGoogle ScholarPubMed
Pohlman, C. L., Nicotra, A. B., & Murray, B. R. (2005). Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species. Journal of Biogeography, 32, 341–51.CrossRefGoogle Scholar
Poljakoff-Mayber, A., Somers, G. F., Werker, E., & Gallagher, J. L. (1994). Seeds of Kosteletzkya virginica (Malvaceae) – their structure, germination, and salt tolerance. 2. Germination and salt tolerance. American Journal of Botany, 81, 54–9.CrossRefGoogle Scholar
Poore, M. E. D. (1964). Integration in the plant community. Journal of Animal Ecology, 33, 213–26.CrossRefGoogle Scholar
Poorter, H. & Garnier, E. (1999). Ecological significance of inherent variation in relative growth rate and its components. In Handbook of Functional Plant Ecology, ed. Pugnaire, F. I. & Valladares, F.. New York: Marcel Dekker, Inc., pp. 81–120.Google Scholar
Poorter, H. & Garnier, E. (2007). Ecological significance of inherent variation in relative growth rate. In Functional Plant Ecology, 2nd edn., Pugnaire, F. I. & Valladares, F.. New York: CRC Press, pp. 67–100.Google Scholar
Poorter, H. & Remkes, C. (1990). Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83, 553–9.CrossRefGoogle ScholarPubMed
Poorter, L. (1999). Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13, 396–410.CrossRefGoogle Scholar
Poorter, L. (2007). Are species adapted to their regeneration niche, adult niche, or both? American Naturalist, 169, 433–42.CrossRefGoogle ScholarPubMed
Poorter, L. & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733–43.CrossRefGoogle ScholarPubMed
Poorter, L. & Kitajima, K. (2007). Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88, 1000–11.CrossRefGoogle ScholarPubMed
Poorter, L. & Rose, S. (2005). Light-dependent changes in the relationship between seed mass and seedling traits: a meta-analysis for rain forest tree species. Oecologia, 142, 378–87.CrossRefGoogle ScholarPubMed
Poorter, L., Wright, S. J., Paz, H.et al. (in press). Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology.Google Scholar
Popma, J., Bongers, F., & Werger, M. J. A. (1992). Gap-dependence and leaf characteristics of trees in a tropical lowland rain-forest in Mexico. Oikos, 63, 207–14.CrossRefGoogle Scholar
Portsmuth, A. & Niinemets, U. (2007). Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology, 21, 61–77.CrossRefGoogle Scholar
Posada, J. M., Aide, T. M., & Cavelier, J. (2000). Cattle and weedy shrubs as restoration tools of tropical montane rain forest. Restoration Ecology, 8, 370–9.CrossRefGoogle Scholar
Prasse, R. & Bornkamm, R. (2000). Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology, 150, 65–75.CrossRefGoogle Scholar
Prentice, I. C., Sykes, M. T., & Cramer, W. (1993). A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling, 65, 51–70.CrossRefGoogle Scholar
Press, M. C. (1995). Carbon and nitrogen relations. In Parasitic Plants, ed. Press, M. C. & Graves, J. D.. London: Chapman and Hall, pp. 103–40.Google Scholar
Press, M. C. & Graves, J. D., ed. (1995). Parasitic Plants. London: Chapman and Hall.Google Scholar
Press, M. C. & Phoenix, G. K. (2005). Impacts of parasitic plants on natural communities. New Phytologist, 166, 737–51.CrossRefGoogle ScholarPubMed
Pridgeon, A. (2003). Modern species concepts and practical consideration for conservation of Orchidaceae. In Orchid Conservation, ed. Dixon, K. W., Kell, S. P., Barrett, R. L., & Cribb, P. J.. Sabah: Natural History Publications, pp. 43–53.Google Scholar
Pryer, K. M., Schneider, H., Smith, A. R.et al. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–22.CrossRefGoogle ScholarPubMed
Pryer, K. M., Schuettpelz, E., Wolf, P. G.et al. (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91, 1582–98.CrossRefGoogle ScholarPubMed
Pujol, B., Muhlen, G., Garwood, N.et al. (2005). Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relative. New Phytologist, 166, 305–18.CrossRefGoogle Scholar
Putz, F. E. (1984). The natural history of lianas on Barro Colorado Island. Ecology, 65, 1713–24.CrossRefGoogle Scholar
Pywell, R. F., Bullock, J. M., Hopkins, A.et al. (2002). Restoration of a species-rich grassland on arable land: assigning the limiting processes using a multi-species experiment. Journal of Applied Ecology, 39, 294–309.CrossRefGoogle Scholar
Pywell, R. F., Bullock, J. M., Roy, D. B.et al. (2003). Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology, 40, 65–77.CrossRefGoogle Scholar
Pywell, R. F., Bullock, J. M., Walker, K. J.et al. (2004). Facilitating grassland diversification using the hemiparasitic plant Rhinanthus minor. Journal of Applied Ecology, 41, 880–7.CrossRefGoogle Scholar
Quested, H. & Eriksson, O. (2006). Litter species composition influences the performance of seedlings of grassland herbs. Functional Ecology, 20, 522–32.CrossRefGoogle Scholar
Rabatin, S. C., Stinner, B. R., & Paoletti, M. G. (1993). Vesicular-arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza, 4, 17–20.CrossRefGoogle Scholar
Rabinowitz, D. (1978a). Dispersal properties of mangrove propagules. Biotropica, 10, 47–57.CrossRefGoogle Scholar
Rabinowitz, D. (1978b). Early growth of mangrove seedlings in Panama and an hypothesis concerning the relationship of dispersal and germination. Journal of Biogeography, 5, 113–33.CrossRefGoogle Scholar
Rafferty, C., Lamont, B. B., & Hanley, M. E. (2005). Selective feeding by Kangaroos (Macropus fuliginosus) on seedlings of Hakea species: effects of chemical and physical defenses. Plant Ecology, 177, 201–8.CrossRefGoogle Scholar
Raghavan, V. (1986). Embryogenesis in Angiosperms: A Developmental and Experimental Study. Cambridge: Cambridge University Press.Google Scholar
Rai, A. N., Soderback, E., & Bergman, B. (2000). Cyanobacterium-plant symbioses. New Phytologist, 147, 449–81.CrossRefGoogle Scholar
Rains, K. C., Nadkarni, N. M., & Bledsoe, C. S. (2003). Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza, 13, 257–64.CrossRefGoogle Scholar
Raju, M. V. S. (1975). Experimental studies on leafy spurge (Euphorbia esula L.). I. Ontogeny and distribution of buds and shoots on the hypocotyl. Botanical Gazette, 136, 254–61.CrossRefGoogle Scholar
Ranwell, D. S. (1972). Ecology of Salt Marshes and Sand Dunes. London: Chapman & Hall.Google Scholar
Rao, M., Terborgh, J., & Nuñez, P. (2001). Increased herbivory in forest isolates: Implications for plant community structure and composition. Conservation Biology, 15, 624–33.CrossRefGoogle Scholar
Rashotte, A. M., Chae, H. S., Maxwell, B. B., & Kieber, J. J. (2005). The interaction of cytokinin with other signals. Physiologia Plantarum, 123, 184–94.CrossRefGoogle Scholar
Rasmussen, H. N. (1994). The roles of fungi in orchid life history. In Proceedings of the 14th World Orchid Conference, ed. Pridgeon, A.. London: HMSO, pp. 130–7.Google Scholar
Rasmussen, H. N. (1995). Terrestrial Orchids from Seed to Mycotrophic Plant. London: Cambridge University Press.CrossRefGoogle Scholar
Rasmussen, H. N. & Whigham, D. F. (1993). Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany, 80, 1374–8.CrossRefGoogle Scholar
Rasmussen, H. N. & Whigham, D. F. (1998a). The underground phase: a special challenge in studies of terrestrial orchid populations. Botanical Journal of the Linnean Society, 126, 49–64.CrossRefGoogle Scholar
Rasmussen, H. N. & Whigham, D. F. (1998b). Importance of woody debris in seed germination of Tipularia discolor (Orchidaceae). American Journal of Botany, 85, 829–34.CrossRefGoogle Scholar
Raubeson, L. A. & Jansen, R. K. (1992). Chloroplast DNA evidence on their ancient evolutionary split in vascular land plants. Science, 255, 1697–9.CrossRefGoogle ScholarPubMed
Rauh, R. A. & Basile, D. V. (2000). Induction of phyletic phenocopies in Streptocarpus (Gesneriaceae) by three antagonists of hydroxyproline-protein synthesis. In Cell and Developmental Biology of Arabinogalactan Proteins, ed. Nothnagel, E. A., Bacic, A., & Clarke, A. E.. New York: Kluwer Academic/Plenum Publishers, pp. 191–203.CrossRefGoogle Scholar
Raunkiær, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Oxford: Clarendon Press.Google Scholar
Raven, J. A. (1983). Phytophages of xylem and phloem: a comparison between animal and plant sap-feeders. Advances in Ecological Research, 13, 135–235.CrossRefGoogle Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.CrossRefGoogle Scholar
Read, D. J. & Birch, C. P. D. (1988). The effects and implications of disturbance of mycorrhizal mycelial systems. Proceedings of the Royal Society of Edinburgh, 94B, 13–24.Google Scholar
Read, D. J., Francis, R., & Finlay, R. D. (1985). Mycorrhizal mycelia and nutrient cycling in plant communities. In Ecological Interactions in Soil, ed. Fitter, A. H., Atkinson, D., Read, D. J., & Usher, M. B.. Oxford: Blackwell Science Publishers, pp. 193–217.Google Scholar
Reader, R. J., Jalili, A., Grime, J. P., Spencer, R. E., & Matthews, N. (1993). A comparative study of plasticity in seedling rooting depth in drying soil. Journal of Ecology, 81, 543–50.CrossRefGoogle Scholar
Rebetzke, G. J., Richards, R. A., Sirault, X. R. R., & Morrison, A. D. (2004). Genetic analysis of coleoptile length and diameter in wheat. Australian Journal of Agricultural Research, 55, 733–43.CrossRefGoogle Scholar
Reddell, P., Spain, A. V., & Hopkins, M. (1997). Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of northeastern Australia. Biotropica, 29, 184–92.CrossRefGoogle Scholar
Reddy, A. S., Komariah, M., & Reddy, S. M. (1980). Cellulase activity in haustoria of Cassytha filiformis L. Current Science, 49, 670–1.Google Scholar
Reddy, A. S., Komariah, M., & Reddy, S. M. (1981). Production of pectin enzymes in Cassytha filiformis L. Current Science, 50, 283.Google Scholar
Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1.CrossRefGoogle ScholarPubMed
Redecker, D., Szaro, T. M., Bowman, R. J., & Bruns, T. D. (2001). Small genets of Lactarius xanthogalactus, Russula cemoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Molecular Ecology, 10, 1025–34.CrossRefGoogle ScholarPubMed
Rees, M. & Westoby, M. (1997). Game theoretical evolution of seed mass in multi-species ecological models. Oikos, 78, 116–26.CrossRefGoogle Scholar
Reich, P. B. (2000). Do tall trees scale physiological heights? Trends in Ecology & Evolution, 15, 41–2.CrossRefGoogle ScholarPubMed
Reich, P. B., Buschena, C., Tjoelker, M. G.et al. (2003). Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytologist, 157, 617–31.CrossRefGoogle Scholar
Reich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W., & Bushena, C. (1998). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 12, 327–38.CrossRefGoogle Scholar
Reich, P. B., Wright, I. J., Cavender-Bares, J.et al. (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143–64.CrossRefGoogle Scholar
Reichman, O. J. (1984). Spatial and temporal variation of seed distributions in Sonoran Desert soils. Journal of Biogeography, 11, 26–30.CrossRefGoogle Scholar
Reid, N., Stafford Smith, M., & Yan, Z. (1995). Ecology and population biology of mistletoes. In Forest Canopies, ed. Lowman, M. D. & Nadkarni, N. M.. San Diego: Academic Press, pp. 285–310.Google Scholar
Reilly, A. (1978). Park's Success with Seeds. Greenwood: Geo. W. Park Seed Co., Inc.Google Scholar
Reinhardt, C. (2004). Effectively controlling Phalaris arundinacea L. in wet meadow restorations and subsequent native species establishment. PhD dissertation, University of Minnesota-Twin Cities, USA.
Reinhart, K. O., Greene, E., & Callaway, R. M. (2005a). Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the northern Rocky Mountains. Ecography, 28, 573–82.CrossRefGoogle Scholar
Reinhart, K. O., Royo, A. A., Putten, W. H., & Clay, K. (2005b). Soil feedback and pathogen activity associated with Prunus serotina throughout its native geographic range. Journal of Ecology, 93, 890–8.CrossRefGoogle Scholar
Reisman-Berman, O. (2004). Mechanisms controlling spatiotemporal patterns of shrubland patchiness: the case study of Sarcopoterium spinosum (L.) Spach. PhD thesis, Ben-Gurion University of the Negev, Israel.
Renker C., Zobel, M., Öpik, M., et al. (2004). Structure, dynamics, and restoration of plant communities: do arbuscular mycorrhizae matter? In Assembly Rules and Restoration Ecology, ed. Temperton, V., Hobbs, R., Nuttle, T., & Halle, S.. London: Island Press, pp. 189–229.Google Scholar
Renzaglia, K. S., Duff, R. J., Nickrent, D. L., & Garbary, D. (2000). Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Transactions of the Royal Society, London, 355, 769–93.CrossRefGoogle ScholarPubMed
Restrepo, C., Sargent, S., Levey, D. J., & Watson, D. M. (2002). The role of vertebrates in the diversification of New World mistletoes. In Seed Dispersal and Frugivory: Ecology, Evolution and Conservation, ed. Levey, D. J., Silva, W. R., & Galetti, M.. Wallingford: CAB International, pp. 83–98.Google Scholar
Restrepo, C. & Vargas, A. (1999). Seeds and seedlings of two neotropical montane understory shrubs respond differently to anthropogenic edges and treefall gaps. Oecologia, 119, 419–26.CrossRefGoogle ScholarPubMed
Retallack, G. J. & Dilcher, D. L. (1988). Reconstructions of selected seed ferns. Annals of the Missouri Botanical Garden, 75, 1010–57.CrossRefGoogle Scholar
Rey, P. J. & Alcantara, J. M. (2000). Recruitment dynamics of a fleshy-fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment. Journal of Ecology, 88, 622–33.CrossRefGoogle Scholar
Rhoades, C. C., Eckert, G. E., & Coleman, D. C. (1998). Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restoration Ecology, 6, 262–70.CrossRefGoogle Scholar
Rice, B. A. (2006). Growing Carnivorous Plants. Portland: Timber Press.Google Scholar
Rice, K. J. & Emery, N. C. (2003). Managing microevolution: restoration in the face of global change. Frontiers in Ecology and the Environment, 9, 469–78.CrossRefGoogle Scholar
Richardson, K. A., Peterson, R. L., & Currah, R. S. (1992). Seed reserves and early symbiotic protocorm development of Platanthera hyperborea (Orchidaceae). Canadian Journal of Botany, 70, 291–300.CrossRefGoogle Scholar
Riches, C. R. & Parker, C. (1995). Parasitic plants as weeds. In Parasitic Plants, ed. Press, M. C. & Graves, J. D.. London: Chapman and Hall, pp. 226–55.Google Scholar
Ridley, H. N. (1930). The Dispersal of Plants Throughout the World. Ashford: L. Reeve & Co., Ltd.Google Scholar
Riopel, J. L. & Timko, M. P. (1995). Haustorial initiation and differentiation. In Parasitic Plants, ed. Press, M. C. & Graves, J. D.. London: Chapman and Hall, pp. 39–79.Google Scholar
Riviere, T., Natarajan, K., & Dreyfus, B. (2006). Spatial distribution of ectomycorrhizal Basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest. Mycorrhiza, 16, 143–8.CrossRefGoogle Scholar
Roberts, M. L. & Haynes, R. R. (1983). Ballistic seed dispersal in Illicium (Illiciaceae). Plant Systematics and Evolution, 143, 227–32.CrossRefGoogle Scholar
Roberts, P. R. & Oosting, H. J. (1958). Responses of venus fly trap (Dionaea muscipula) to factors involved in its endemism. Ecological Monographs, 28, 193–218.CrossRefGoogle Scholar
Robichaux, R. H., Rundel, P. W., Stemmermann, L., et al. (1984). Tissue water deficits and plant growth in wet tropical environments. In Plants of the Wet Tropics, ed. Medina, E. H., Mooney, H. C., & Vasquez-Yanez, C.. The Hague: W. Junk, pp. 99–112.Google Scholar
Robinson, D., Hodge, A., & Fitter, A. (2003). Constraints on the form and function of root systems. In Root Ecology, ed. Kroon, H. & Visser, E. J. W.. Berlin: Springer-Verlag, pp. 1–31.CrossRefGoogle Scholar
Robinson, J. G., Redford, K. H., & Bennett, E. L. (1999). Wildlife harvest in logged tropical forests. Science, 284, 595–6.CrossRefGoogle Scholar
Roche, S., Koche, J., & Dixon, K. W. (1997). Smoke-enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Restoration Ecology, 5, 191–203.CrossRefGoogle Scholar
Rochefort, L., Quinty, F., Campeau, S., Johnson, K., & Malterer, T. (2003). North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11, 3–20.CrossRefGoogle Scholar
Roels, B., Donders, S., Werger, M. J. A., & Dong, M. (2001). Relation of wind-induced sand displacement to plant biomass and plant sand-binding capacity. Acta Botanica Sinica, 43, 979–82.Google Scholar
Rogers, D. L. & Montalvo, A. M. (2004). Genetically appropriate choices for plant materials to maintain biological diversity. Report to the USDA Forest Service, Rocky Mountain Region, Lakewood, CO (http://www.fs.fed.us/r2/publications/botany/plantgenetics.pdf).
Rogers, W. E. & Siemann, E. (2004). Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. Journal of Applied Ecology, 41, 561–70.CrossRefGoogle Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514–27.CrossRefGoogle Scholar
Rokich, D. P., Dixon, K. W., Sivasithamparam, K., & Meney, K. A. (2002). Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology, 10, 185–94.CrossRefGoogle Scholar
Roldán, A. I. & Simonetti, J. A. (2001). Plant–mammal interactions in tropical Bolivian forests with different hunting pressures. Conservation Biology, 15, 617–23.CrossRefGoogle Scholar
Rolland, F., Moore, B., & Sheen, J. (2002). Sugar sensing and signaling in plants. The Plant Cell, 14, S185–205.CrossRefGoogle ScholarPubMed
Romme, W. H., Turner, M. G., Tuskan, G. A., & Reed, R. A. (2005). Establishment, persistence, and growth of aspen (Populus tremuloides) seedlings in Yellowstone National Park. Ecology, 86, 404–18.CrossRefGoogle Scholar
Rooney, T. P., McCormick, R. J., Solheim, S. L., & Waller, D. M. (2000). Regional variation in recruitment of hemlock seedlings and saplings in the upper Great Lakes, USA. Ecological Applications, 10, 1119–32.CrossRefGoogle Scholar
Rooney, T. P., Solheim, S. L., & Waller, D. M. (2002). Factors affecting the regeneration of northern white cedar in lowland forests of the upper Great Lakes region, USA. Forest Ecology and Management, 163, 119–30.CrossRefGoogle Scholar
Roques, K. G., Connor, O' T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38, 268–80.CrossRefGoogle Scholar
Rothwell, G. W. & Nixon, K. C. (2006). How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? International Journal of Plant Science, 167, 737–49.CrossRefGoogle Scholar
Rothwell, G. W., Scheckler, S. E., & Gillespie, W. H. (1989). Elkinsia gen. Nov., a late Devonian gymnosperm with cupulate ovules. Botanical Gazette, 150, 170–89.CrossRefGoogle Scholar
Room, P. M. (1971). Some physiological aspects of the relationship between cocoa, Theobroma cacao, and the mistletoe Tapinanthus bangwensis (Engl. and K. Krause). Annals of Botany, 35, 169–74.CrossRefGoogle Scholar
Roundy, B. A. & Call, C. A. (1988). Revegetation of arid and semiarid rangelands. In Vegetation Science Applications for Rangeland Analysis and Management, ed. Tueller, P.. Dordrecht: Kluwer Academic Publishers, pp. 607–35.CrossRefGoogle Scholar
Roxburgh, L. & Nicolson, S. W. (2005). Patterns of host use in two African mistletoes: the importance of mistletoe–host compatibility and avian disperser behaviour. Functional Ecology, 19, 865–73.CrossRefGoogle Scholar
Roy, J. (1990). In search of the characteristics of plant invaders. In Biological Invasions in Europe and the Mediterranean, ed. Castri, F., Hansen, A. J., & Debussche, M.. Dordrecht: Kluwer, pp. 335–52.CrossRefGoogle Scholar
Royo, A. A. & Carson, W. P. (2006). On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Canadian Journal of Forest Research, 36, 1345–62.CrossRefGoogle Scholar
Rudgers, J. A., Mattingly, W. B., & Koslow, J. M. (2005). Mutualistic fungus promotes plant invasion into diverse communities. Oecologia, 144, 462–71.CrossRefGoogle ScholarPubMed
Rudolf, P. O. (1974). Taxus. In Seeds of Woody Plants of the United States, Agriculture Handbook No. 450, tech. coord. Scopmeyer, C. S.. Washington, D.C.: Forest Service, U. S. Department of Agriculture, pp. 799–802.Google Scholar
Runyon, J. B., Mescher, M. C., & Moraes, C. M. (2006). Volatile chemical cues guide host location and host selection by parasitic plants. Science, 313, 1964–8.CrossRefGoogle ScholarPubMed
Russo, S. E., Portnoy, S., & Augspurger, C. K. (2006). Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology, 87, 3160–74.CrossRefGoogle ScholarPubMed
Ryan, C. A., Pearce, G., Scheer, J., & Moura, D. S. (2002). Polypeptide hormones. The Plant Cell, 14, S251–64.CrossRefGoogle ScholarPubMed
Ryser, P. (1993). Influences of neighbouring plants on seedling establishment in limestone grassland. Journal of Vegetation Science, 4, 195–202.CrossRefGoogle Scholar
Ryser, P. & Eek, L. (2000). Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American Journal of Botany, 87, 402–11.CrossRefGoogle ScholarPubMed
Saarela, J. M., Rai, H. S., Doyle, J. A.et al. (2007). A new branch emerges near the root of angiosperm phylogeny. Nature, 446, 312–15.CrossRefGoogle Scholar
Sacchi, D. F. & Price, P. W. (1992). The relative roles of abiotic and biotic factors in seedling demography of arroyo willow (Salix lasiolepis: Salicaceae). American Journal of Botany, 79, 395–405.CrossRefGoogle Scholar
Sack, L. & Grubb, P. J. (2001). Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Functional Ecology, 15, 145–54.CrossRefGoogle Scholar
Sack, L. & Grubb, P. J. (2002). The combined impacts of deep shade and drought on the growth and biomass of shade-tolerant woody seedlings. Oecologia, 131, 175–85.CrossRefGoogle ScholarPubMed
Sack, L. & Grubb, P. J. (2003). Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential (reply to Kitajima & Bolker 2003). Functional Ecology, 17, 281–7.CrossRefGoogle Scholar
Sadebeck, R. (1902). Equisetales. In Die Natürlichen Pflanzen Famalien, Bd. I, ed. Engler, A. & Prantl, K.. Leipzig: W. Engelmann Verlag, pp. 520–58.Google Scholar
Saenz-Romero, C. & Guries, R. P. (2002). Landscape genetic structure of Pinus banksiana: seedling traits. Silvae Genetica, 51, 26–35.Google Scholar
Saha, S. & Howe, H. F. (2001). The bamboo fire cycle hypothesis: a comment. American Naturalist, 158, 659–63.CrossRefGoogle ScholarPubMed
Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319–43.CrossRefGoogle Scholar
Sakai, A. & Larcher, W. (1987). Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sakai, S. & Sakai, A. (2005). Nature of size–number trade-off: test of the terminal-stream-limitation model for seed production of Cardiocrium cordatum. Oikos, 108, 105–14.CrossRefGoogle Scholar
Sakakibara, H., Takei, K., & Hirose, N. (2006). Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 11, 440–8.CrossRefGoogle ScholarPubMed
Sala, O. E., Chapin, F. S., Armesto, J. J.et al. (2000). Biodiversity – global biodiversity scenarios for the year 2100. Science, 287, 1770–4.CrossRefGoogle ScholarPubMed
Salmon, B. (2001). Carnivorous Plants of New Zealand. Auckland: Ecosphere Publications.Google Scholar
Salmon, J. T. (1991). Native New Zealand Flowering Plants. Auckland: Reed Books.Google Scholar
Sanders, D., Pelloux, J., Brownlee, C., & Harper, J. F. (2002). Calcium at the crossroads of signaling. The Plant Cell, 14, S401–17.CrossRefGoogle ScholarPubMed
Sandquist, D. R., Schuster, W. S. F., Donovan, L. A., Phillips, S. L., & Ehleringer, J. R. (1993). Differences in carbon isotope discrimination between seedlings and adults of southwestern desert perennial plants. Southwestern Naturalist, 38, 212–7.CrossRefGoogle Scholar
Sangster, T. A. & Queitsch, C. (2005). The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Current Opinion in Plant Biology, 8, 86–92.CrossRefGoogle ScholarPubMed
Sansen, U. & Koedam, N. (1996). Use of sod cutting for restoration of wet heathlands: revegetation and establishment of typical species in relation to soil conditions. Journal of Vegetation Science, 7, 483–6.CrossRefGoogle Scholar
Saunders, R. M. K. (1998). Monograph of Kadsura (Schisandraceae). Systematic Botany Monographs, 54, 1–106.CrossRefGoogle Scholar
Saunders, R. M. K. (2000). Monograph of Schisandra (Schisandraceae). Systematic Botany Monographs, 58, 1–146.CrossRefGoogle Scholar
Saverimuttu, T. & Westoby, M. (1996a). Seedling longevity under deep shade in relation to seed size. Journal of Ecology, 84, 681–9.CrossRefGoogle Scholar
Saverimuttu, T. & Westoby, M. (1996b). Components of variation in seedling potential relative growth rate – phylogenetically independent contrasts. Oecologia, 105, 281–5.CrossRefGoogle Scholar
Sbrana, C., Nuti, M. P., & Giovannetti, M. (2007). Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolates. Mycorrhiza, 17, 667–75.CrossRefGoogle ScholarPubMed
Schaal, B. A. (1980). Reproductive capacity and seed size in Lupinus texensis. American Journal of Botany, 67, 703–9.CrossRefGoogle Scholar
Schaefer, M. (1992). Wörterbücher der Biologie. Okologie. Jena: Gustav Fischer.Google Scholar
Schardl, C. L., Leuchtmann, A., & Spiering, M. J. (2004). Symbioses of grasses with seed borne fungal endophytes. Annual Review of Plant Biology, 55, 315–40.CrossRefGoogle Scholar
Schimel, J. P. & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
Schimpf, D. J. (1977). Seed weight of Amaranthus retroflexus in relation to moisture and length of the flowering season. Ecology, 58, 450–3.CrossRefGoogle Scholar
Schlesinger, W. H., Abrahams, A. D., Parsons, A. J., & Wainwright, J. (1999). Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. rainfall simulation experiments. Biogeochemistry, 45, 21–34.CrossRefGoogle Scholar
Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L.et al. (1990). Biological feedbacks in global desertification. Science, 247, 1043–8.CrossRefGoogle ScholarPubMed
Schlising, R. A. (1969). Seedling morphology in Marah (Cucurbitaceae) related to the Californian Mediterranean climate. American Journal of Botany, 56, 552–60.CrossRefGoogle Scholar
Schmidt, G. & Zotz, G. (2002). Inherently slow growth in two Caribbean epiphytic species: a demographic approach. Journal of Vegetation Science, 13, 527–34.CrossRefGoogle Scholar
Schmitt, J., Stinchrcombe, J. R., Heschel, M. S., & Huber, H. (2003). The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integrative and Comparative Biology, 43, 459–69.CrossRefGoogle ScholarPubMed
Schnarf, K. (1929). Embryologie der Angiospermen. In Handbuch der Pflanzenanatomie (II. Abteilung 2. Teil: Archegoniaten. Band X/2), ed. Linsbauer, K.. Berlin: Gebrüder Borntraeger, pp. 1–689.Google Scholar
Schneider, D. C. (1994). Quantitative Ecology: Spatial and Temporal Scaling. San Diego: Academic Press.Google Scholar
Schnell, D. E. (1976). Carnivorous Plants of the United States and Canada. Winston-Salem: John F. Blair, Publisher.Google Scholar
Schnitzer, S. A., Dalling, J. W., & Carson, W. P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology, 88, 655–66.CrossRefGoogle Scholar
Schnitzer, S. A., Kuzee, M., & Bongers, F. (2005). Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology, 93, 1115–25.CrossRefGoogle Scholar
Schopmeyer, C. S., tech. coord. (1974). Seeds of Woody Plants in the United States. Agriculture Handbook No. 450. Washington: Forest Service, U.S. Department of Agriculture.Google Scholar
Schreeg, L. A., Kobe, R. K., & Walters, M. B. (2005). Tree seedling growth, survival and morphology in response to landscape-level variation in soil resource availability in northern Michigan. Canadian Journal of Forest Research, 35, 263–73.CrossRefGoogle Scholar
Schüßler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105, 1413–21.CrossRefGoogle Scholar
Schultze, M. & Kondorosi, A. (1998). Regulation of symbiotic root nodule development. Annual Review of Genetics, 32, 33–57.CrossRefGoogle ScholarPubMed
Schulze, E.-D., Lange, O. L., Ziegler, H., & Gebauer, G. (1991). Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib Desert confirm partial heterotrophy. Oecologia, 88, 457–62.CrossRefGoogle ScholarPubMed
Schulze, W., Schulze, E.-D., Pate, J. S., & Gillison, A. N. (1997). The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia, 112, 464–71.CrossRefGoogle ScholarPubMed
Schulze, W., Schulze, E.-D., Schulze, I., & Oren, R. (2001). Quantification of insect nitrogen utilization by the venus flytrap Dionaea muscipula catching prey with highly variable isotope signatures. Journal of Experimental Botany, 52, 1041–9.CrossRefGoogle Scholar
Schupp, E. W. (1988). Seed and early seedling predation in the forest understory and in treefall gaps. Oikos, 51, 71–8.CrossRefGoogle Scholar
Schupp, E. W. (1995). Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany, 82, 399–409.CrossRefGoogle Scholar
Sculthorpe, C. D. (1967). The Biology of Aquatic Vascular Plants. London: Edward Arnold, Ltd. Reprinted 1985, Königstein: Koeltz Scientific Books.Google Scholar
Schaal, B. A. (1980). Reproductive capacity and seed size in Lupinus texensis. American Journal of Botany, 67, 703–9.CrossRefGoogle Scholar
Schatz, G. E. (1996). Malagasy/Indo-australo-malesian phytogeographic connections. In Biogéographie de Madagascar, ed. Lourenço, W. R.. Paris: ORSTOM, pp. 73–84.Google Scholar
Scheublin, T. R., Ridgway, K. P., Young, J. P. W., & Heijden, M. G. A. (2004). Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 70, 6240–6.CrossRefGoogle ScholarPubMed
Scheublin, T. R. & Heijden, M. G. A. (2006). Arbuscular mycorrhizal fungi colonize root nodules of several legume species. New Phytologist, 172, 732–8.CrossRefGoogle ScholarPubMed
Scheublin, T. R., Logtestijn, R., & Heijden, M. G. A (2007). Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 95, 631–8.CrossRefGoogle Scholar
Schimper, A. F. W. (1898). Pflanzengeographie auf physiologischer Grundlage. Jena: Gustav Fischer.Google Scholar
Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17, 667–93.CrossRefGoogle Scholar
Schmitt, J., Stinchcombe, J. R., Heschel, M. S., & Huber, H. (2003). The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integrative and Comparative Biology, 43, 459–69.CrossRefGoogle ScholarPubMed
Schneider, E. L. (1978). Morphological studies of the Nymphaeaceae. IX. Seed of Barclaya longifolia Wall. Botanical Gazette, 139, 223–30.CrossRefGoogle Scholar
Schneider, E. L. & Ford, E. G. (1978). Morphological studies of the Nymphaeaceae. X. The seed of Ondinea purpurea Den Hartog. Bulletin of the Torrey Botanical Club, 105, 192–200.CrossRefGoogle Scholar
Schulze, D. M., Walker, J. L., & Spira, T. P. (2002). Germination and seed bank studies of Macbridea alba (Lamiaceae), a federally threatened plant. Castanea, 67, 280–9.Google Scholar
Seabloom, E. W., Harpole, W. S., Reichman, O. J., & Tilman, D. (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences (USA), 100, 13384–9.CrossRefGoogle ScholarPubMed
Sehgal, A., Ram, Mohan H. Y., & Bhatt, J. R. (1993). In vitro germination, growth, morphogenesis and flowering of an aquatic angiosperm, Polypleurum stylosum (Podostemaceae). Aquatic Botany, 45, 269–83.CrossRefGoogle Scholar
Selosse, M.-A., Richard, R., He, X., & Simard, S. W. (2006). Mycorrhizal networks: des liaisons dangereuses. Trends in Ecology & Evolution, 21, 621–8.CrossRefGoogle ScholarPubMed
Shachak, M. & Lovett, G. M. (1998). Atmospheric deposition to a desert ecosystem and its implications for management. Ecological Applications, 8, 455–63.CrossRefGoogle Scholar
Shachak, M., Brand, S., & Gutterman, Y. (1991). Porcupine disturbances and vegetation pattern along a resource gradient in a desert. Oecologia, 88, 141–7.CrossRefGoogle Scholar
Shachak, M., Sachs, M., & Moshe, I. (1998). Ecosystem management of desertified shrublands in Israel. Ecosystems, 1, 475–83.CrossRefGoogle Scholar
Shannon, E. L. (1953). The production of root hairs by aquatic plants. American Midland Naturalist, 50, 474–9.CrossRefGoogle Scholar
Sharifi, M. R. & Rundel, P. W. (1993). The effect of vapour pressure deficit on carbon isotope discrimination in the desert shrub Larrea tridentata (Creosote Bush). Journal of Experimental Botany, 44, 481–7.CrossRefGoogle Scholar
Shaw, J. & Renzaglia, K. (2004). Phylogeny and diversification of bryophytes. American Journal of Botany, 91, 1557–81.CrossRefGoogle ScholarPubMed
Shaw, J. D., Hovenden, M. J., & Bergstrom, D. M. (2005). The impact of introduced ship rats (Rattus rattus) on seedling recruitment and distribution of a subantarctic megaherb (Pleurophyllum hookeri). Austral Ecology, 30, 118–25.CrossRefGoogle Scholar
Shefferson, R. P., Kull, T., & Tali, K. (2005). Adult whole-plant dormancy induced by stress in long-lived orchids. Ecology, 86, 3099–104.CrossRefGoogle Scholar
Shefferson, R. P., Sandercock, B. K., Proper, J., & Beissinger, S. R. (2001). Estimating dormancy and survival of a rare herbaceous perennial using mark-recapture models. Ecology, 82, 145–56.Google Scholar
Shem-Tov, S., Zaady, E., Groffman, P. M., & Gutterman, Y. (1999). Soil carbon content along a rainfall gradient and inhibition of germination: a potential mechanism for regulating distribution of Plantago coronopus. Soil Biology and Biochemistry, 31, 1209–17.CrossRefGoogle Scholar
Shem-Tov, S., Zaady, E., & Gutterman, Y. (2002). Germination of Carrichtera annua (Brassicaceae) seeds on soil samples collected along a rainfall gradient in the Negev Desert of Israel. Israel Journal of Plant Sciences, 50, 113–18.CrossRefGoogle Scholar
Shen, Y.-Y., Wang, X.-F., Wu, F.-Q.et al. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443, 823–6.CrossRefGoogle ScholarPubMed
Sher, A. A. & Hyatt, L. A. (1999). The disturbed resource-flux invasion matrix: a new framework for patterns of plant invasion. Biological Invasions, 1, 107–14.CrossRefGoogle Scholar
Sher, A. A., Marshall, D. L., & Gilbert, S. A. (2000). Competition between native Populus deltoides and invasive Tamarix ramosissima and the implications of reestablishing flooding disturbance. Conservation Biology, 14, 1744–54.CrossRefGoogle Scholar
Sher, A. A., Marshall, D. L., & Taylor, J. (2002). Spatial partitioning within southwestern floodplains: patterns of establishment of native Populus and Salix in the presence of invasive, non-native Tamarix. Ecological Applications, 12, 760–72.CrossRefGoogle Scholar
Shimada, T., Genma, T., Furuya, S., & Kondo, Y. (1982). Frost heaving injury in alfalfa. Journal of the Japanese Society of Grassland Science, 28, 147–53.Google Scholar
Shipley, B. & Almeida-Cortez, J. (2003). Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. Ecoscience, 10, 74–9.CrossRefGoogle Scholar
Shipley, B. & Dion, J. (1992). The allometry of seed production in herbaceous angiosperms. American Naturalist, 139, 467–83.CrossRefGoogle Scholar
Shipley, B., Keddy, P. A., Moore, D. R. J., & Lemky, K. (1989). Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology, 77, 1093–110.CrossRefGoogle Scholar
Shipley, B. & Peters, R. H. (1990). The allometry of seed weight and seedling relative growth rate. Functional Ecology, 4, 523–9.CrossRefGoogle Scholar
Shirato, Y., Zhang, T. H., Ohkuro, T., Fujiwara, H., & Taniyama, I. (2005). Changes in topographical features and soil properties after exclosure combined with sand-fixing measures in Horqin Sandy Land, Northern China. Soil Science and Plant Nutrition, 51, 61–8.CrossRefGoogle Scholar
Shmida, A. & Ellner, S. (1984). Coexistence of plant species with similar niches. Plant Ecology, 58, 29–55.Google Scholar
Shreve, F. (1906). The development and anatomy of Sarracenia purpurea. Botanical Gazette, 42, 107–26.CrossRefGoogle Scholar
Shugart, H. H. & West, D. C. (1980). Forest succession models. BioScience, 30, 308–13.CrossRefGoogle Scholar
Sibly, R. & Calow, P. (1985). Classification of habitats by selection pressures: a synthesis of life-cycle and r-K theory. In Behavioural Ecology. Ecological Consequences of Adaptive Behaviour, ed. Sibly, M. R. & Smith, R. H.. Oxford: Blackwell Scientific Publications, pp. 75–90.Google Scholar
Sidhu, S. S. & Cavers, P. B. (1977). Maturity-dormancy relationships in attached and detached seeds of Medicago lupulina L. (Black medick). Botanical Gazette, 138, 174–82.CrossRefGoogle Scholar
Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. A. (2001). Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437–40.CrossRefGoogle ScholarPubMed
Siemann, E. & Rogers, W. E. (1993). Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. Journal of Ecology, 91, 923–31.CrossRefGoogle Scholar
Silvertown, J. (1989). The paradox of seed size and adaptation. Trends in Ecology and Evolution, 4, 24–6.CrossRefGoogle ScholarPubMed
Silvertown, J. & Bullock, J. M. (2003). Do seedlings in gaps interact? A field test of assumptions in ESS seed size models. Oikos, 101, 499–504.CrossRefGoogle Scholar
Silvertown, J. & Charlesworth, D. (2001). Introduction to Plant Population Biology, 4th edn. Oxford: Blackwell.Google Scholar
Silvertown, J., Franco, M., & Menges, E. (1996). Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conservation Biology, 10, 591–7.CrossRefGoogle Scholar
Silvertown, J., Franco, M., Pisanty, I., & Mendoza, A. (1993). Comparative plant demography – relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology, 81, 465–76.CrossRefGoogle Scholar
Silvertown, J. & Wilson, J. B. (1994). Community structure in a desert perennial community. Ecology, 75, 409–17.CrossRefGoogle Scholar
Silvertown, J. W. (1981). Seed size, lifespan and germination date as co-adapted features of plant life history. American Naturalist, 118, 860–4.CrossRefGoogle Scholar
Simard, S. W. & Durall, D. M. (2004). Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany, 82, 1140–65.CrossRefGoogle Scholar
Simard, S. W., Durall, D., & Jones, M. (2002). Carbon and nutrient fluxes within and between mycorrhizal plants. In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I. R.. Berlin: Springer-Verlag, pp. 33–74.Google Scholar
Simard, S. W., Perry, D. A., Jones, M. D., Myrold, D. D., Durall, D. M., & Molina, R. (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579–82.CrossRefGoogle Scholar
Simberloff, D., Relva, M. A., & Nuñez, M. (2002). Gringos en al bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biological Invasions, 4, 35–53.CrossRefGoogle Scholar
Simmers, S. (2006). Recovery of semi-arid grassland on recontoured and revegetated oil access roads. MS thesis, University of Minnesota-Twin Cities, USA.
Simmons, M. T. (2005). Bullying the bullies: the selective control of an exotic, invasive annual (Rapistrum rugosum) by oversowing with a competitive native species (Gaillardia pulchella). Restoration Ecology, 13, 609–15.CrossRefGoogle Scholar
Simon, L., Bousquet, J., Levesque, R. C., & LaLonde, M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363, 67–9.CrossRefGoogle Scholar
Simons, P. (1992). The Action Plant. Oxford: Blackwell.Google Scholar
Simpson, M. J. A. (1979). Lack of dormancy in seeds of New Zealand plants. Canterbury Botanical Society, 13, 36–7.Google Scholar
Simpson, R. L., Leck, M. A., & Parker, V. T. (1985). The comparative ecology of Impatiens capensis Meerb. (Balsaminaceae) in central New Jersey. Bulletin of the Torrey Botanical Club, 112, 295–311.CrossRefGoogle Scholar
Simpson, R. L., Leck, M. A., & Parker, V. T. (1989). Seed banks: central concepts and methodological issues. In Ecology of Soil Seed Banks, ed. Leck, M. A., Parker, V. T., & Simpson, R. L.. San Diego: Academic Press, pp. 3–8.Google Scholar
Singh, G., Bala, N., Rathod, T. R., & Chouhan, S. (2003). Effect of adult neighbours on regeneration and performance of surface vegetation for control of sand drift in Indian desert. Environmental Conservation, 30, 353–63.CrossRefGoogle Scholar
Singh, G. & Rathod, T. R. (2002). Plant growth, biomass production and soil water dynamics in a shifting dune of Indian desert. Forest Ecology and Management, 171, 309–20.CrossRefGoogle Scholar
Sizer, N. & Tanner, E. V. J. (1999). Responses of woody plant seedlings to edge formation in a lowland tropical rainforest, Amazonia. Biological Conservation, 91, 135–42.CrossRefGoogle Scholar
Skene, M. (1959). The Biology of Flowering Plants, 8th Impr. London: Sidgwick & Jackson, Ltd.Google Scholar
Skenel, K. R. (2001). Cluster roots: model experimental tools for key biological problems. Journal of Experimental Botany, 52, 479–85.CrossRefGoogle Scholar
Slik, J. W. F. & Eichhorn, K. A. O. (2003) Fire survival of lowland tropical rain forest trees in relation to stem diameter and topographic position. Oecologia, 137, 446–55.CrossRefGoogle ScholarPubMed
Slocum, M. G. (2000). Logs and fern patches as recruitment sites in a tropical pasture. Restoration Ecology, 8, 408–13.CrossRefGoogle Scholar
Slocum, M. G. (2001). How tree species differ as recruitment foci in a tropical pasture. Ecology, 82, 2547–59.CrossRefGoogle Scholar
Slocum, M. G., Aide, T. M., Zimmerman, J. K., & Navarro, L. (2006). A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restoration Ecology, 14, 526–36.CrossRefGoogle Scholar
Smit, C., Ouden, J., & Müller-Schärer, H. (2006). Unpalatable plants facilitate tree sapling survival in wooded pastures. Journal of Applied Ecology, 43, 305–12.CrossRefGoogle Scholar
Smith, C. C. & Fretwell, S. D. (1974). The optimal balance between size and number of offspring. American Naturalist, 108, 499–506.CrossRefGoogle Scholar
Smith, C. E., Dudley, M. W. D., & Lynn, G. (1990). Vegetative/parasitic transition: control and plasticity in Striga development. Plant Physiology, 93, 208–15.CrossRefGoogle ScholarPubMed
Smith, C. M. (1931). Development of Dionaea muscipula. II. Germination of seed and development of seedling to maturity. Botanical Gazette, 91, 377–94.CrossRefGoogle Scholar
Smith, G. F., Nicholas, N. S., & Zedaker, S. M. (1997). Succession dynamics in a maritime forest following hurricane Hugo and fuel reduction burns. Forest Ecology and Management, 95, 275–83.CrossRefGoogle Scholar
Smith, G. H. (1955). Cryptogamic Botany. Vol. II. Bryophytes and Pteridophytes. New York: McGraw-Hill.Google Scholar
Smith, J. E., Johnson, K. A., & Cázares, E. (1998). Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza, 7, 279–85.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis, 2nd edn. London: Academic Press.Google Scholar
Smith, S. E., Riley, E., Tiss, J. L., & Fendenheim, D. M. (2000). Geographical variation in predictive seedling emergence in a perennial desert grass. Journal of Ecology, 88, 139–49.CrossRefGoogle Scholar
Smith, S. M. & Snedaker, S. C. (1995). Salinity responses in two populations of viviparous Rhizophora mangle L. seedlings. Biotropica, 27, 435–40.CrossRefGoogle Scholar
Smits, A. J. M., Vanavesaath, P. H., & Vanderveld, E. G. (1990). Germination requirements and seed banks of some nymphaeid macrophytes – Nymphaea alba, Nuphar lutea, and Nymphoides peltata. Freshwater Biology, 24, 315–26.CrossRefGoogle Scholar
Smoot, E. L. & Taylor, T. N. (1986). Evidence of simple polyembryony in Permian seeds from Antarctica. American Journal of Botany, 73, 1079–81.CrossRefGoogle Scholar
Snyman, H. A. (1999). Quantification of the soil–water balance under different veld condition classes in a semi-arid climate. African Journal of Range and Forage Science, 16, 108–17.CrossRefGoogle Scholar
Sorenson, F. C. & Miles, R. S. (1978). Cone and seed weight relationships in Douglas-fir from Western and Central Oregon. Ecology, 59, 641–4.CrossRefGoogle Scholar
Soriano, A., Sala, O. E., & Perelman, S. B. (1994). Patch structure and dynamics in a Patagonian arid steppe. Plant Ecology, 111, 127–35.CrossRefGoogle Scholar
Souèges, R. (1919). Les premières divisions de l'oeuf et les différenciations du suspenseur chez le Capsella bursa-pastoralis Moench. Annales des Sciences Naturelles, 10th Série, Botanique, 1, 1–28.Google Scholar
Specht, A. & Harvey-Jones, J. (2000). Improving water delivery to the roots of recently transplanted seedling trees: the use of hydrogels to reduce leaf loss and hasten root establishment. Forest Research, 1, 117–23.Google Scholar
Spiering, M. J., Moon, C. D., Wilkinson, H. H., & Schardl, C. L. (2005). Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics, 169, 1403–14.CrossRefGoogle ScholarPubMed
Sporne, K. R. (1967). The Morphology of Gymnosperms. London: Hutchinson University Library.Google Scholar
Sprent, J. I. (2001). Nodulation in Legumes. Kew: Royal Botanical Gardens.Google Scholar
Sprent, J. I. & Parsons, R. (2000). Nitrogen fixation in legume and non-legume trees. Field Crops Research, 65, 183–96.CrossRefGoogle Scholar
Staff, I. A. & Waterhouse, J. T. (1981). The biology of arborescent monocotyledons, with special reference to Australian species. In The Biology of Australian Plants, ed. Pate, J. S. & McComb, A. J.. Nedlands: University of Western Australia Press, pp. 216–57.Google Scholar
Stamp, N. E. (1984). Self-burial behaviour of Erodium cicutarium seeds. The Journal of Ecology, 72, 611–20.CrossRefGoogle Scholar
Stanton, M. L. (1984). Seed variation in wild radish Raphanus raphanistrum: effect of seed size on components of seedling and adult fitness. Ecology, 65, 1105–12.CrossRefGoogle Scholar
Stanton, M. L. (1985). Seed size and emergence time within a stand of wild radish Raphanus raphanistrum: the establishment of a fitness hierarchy. Oecologia, 67, 524–31.CrossRefGoogle ScholarPubMed
Stebbins, G. L. (1965). The probable growth habit of the earliest flowering plants. Annals of the Missouri Botanical Garden, 52, 457–68.CrossRefGoogle Scholar
Stebbins, G. L. (1971). Adaptive radiation of reproductive characteristics in angiosperms. II. Seeds and seedlings. Annual Review of Ecology and Systematics, 2, 237–60.CrossRefGoogle Scholar
Stebbins, G. L. (1974). Flowering Plants: Evolution Above the Species Level. Cambridge: Harvard University Press.CrossRefGoogle Scholar
Steele, M. A. & Koprowski, J. L. (2001). North American Tree Squirrels. Washington: Smithsonian Institution Press.Google Scholar
Stein, W. E. (1993). Modeling the evolution of the stelar architecture in vascular plants. International Journal of Plant Sciences, 154, 229–63.CrossRefGoogle Scholar
Steinger, T., Korner, C., & Schmid, B. (1996). Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia, 105, 94–9.CrossRefGoogle Scholar
Stendell, E. R., Horton, T. R., & Bruns, T. D. (1999). Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research, 103, 1353–9.CrossRefGoogle Scholar
Stepanova, A. N. & Alonso, J. M. (2005). Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum, 123, 195–206.CrossRefGoogle Scholar
Stephens, E. L. (1912). The structure and development of the haustorium of Striga lutea. Annals of Botany, 50, 1–7.Google Scholar
Stephenson, M. & Mari, J. (2005). Laboratory germination testing of flower seed. In Flower Seeds Biology and Technology, ed. McDonald, M. B. & Kwong, F. Y.. Wallingford: CAB International, pp. 263–97.CrossRefGoogle Scholar
Stephenson, N. L. (1988). Climatic control of vegetation distribution: The role of the water-balance with examples from North America and Sequoia National Park, California. PhD dissertation, Cornell University, USA.Google Scholar
Stephenson, N. L. (1990). Climatic control of vegetation distribution: the role of the water balance. American Naturalist, 135, 649–70.CrossRefGoogle Scholar
Stephenson, N. L. (1998). Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855–70.CrossRefGoogle Scholar
Stephenson, N. L. & Mantgem, P. J. (2005). Forest turnover rates follow global and regional patterns of productivity. Ecology Letters, 8, 524–31.CrossRefGoogle ScholarPubMed
Sterck, F. J., Gelder, H. A., & Poorter, L. (2006). Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest. Journal of Ecology, 94, 1192–200.CrossRefGoogle Scholar
Stevens, G. C. (1987). Lianas as structural parasites, the Bursera simaruba example. Ecology, 68, 77–81.CrossRefGoogle Scholar
Stewart, R. B., Wheaton, E., & Spittlehouse, D. L. (1998). Climate change: implications for the Boreal forest. In Emerging Air Issues for the 21st Century: The Need for Multidisciplinary Management, Proceedings of a Specialty Conference, ed. Legge, A. H. & Jones, L. L.. Pittsburgh: Air and Waste Management Association, pp. 86–101.Google Scholar
Stewart, W. N. & Rothwell, G. W. (1993). Paleobotany and the Evolution of Plants. Cambridge: Cambridge University Press.Google Scholar
Stinchcombe, J. R., Weinig, C., Ungerer, M.et al. (2004). A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of the National Academy of Sciences (USA), 101, 4712–17.CrossRefGoogle ScholarPubMed
Stinson, K. A., Campbell, S. A., Powell, J. R.et al. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. Public Library of Science Biology, 4, 727–31.Google ScholarPubMed
St. John, T. V., Coleman, D. C., & Reid, C. P. P. (1983). Growth and spatial distribution of nutrient absorbing organs: selective placement of soil heterogeneity. Plant and Soil, 71, 487–93.CrossRefGoogle Scholar
Stock, W. D., Pate, J. S., & Delfs, J. (1990). Influence of seed size and quality on seedling development under low nutrient conditions in five Australian and South African members of the Proteaceae. Journal of Ecology, 78, 1005–20.CrossRefGoogle Scholar
Stockey, R. A. & Rothwell, G. W. (2003). Anatomically preserved Williamsonia (Williamsoniaceae): evidence for Bennettitalean reproduction in the Late Cretaceous of Western North America. International Journal of Plant Sciences, 164, 251–62.CrossRefGoogle Scholar
Stocklin, J. & Favre, P. (1994). Effects of plant size and morphological constraints on variation in reproductive components in two related species of Epilobium. Journal of Ecology, 82, 735–46.CrossRefGoogle Scholar
Stohlgren, T. J., Bachand, R. R., Onami, Y., & Binkley, D. (1998). Species–environment relationships and vegetation patterns: effects of spatial scale and tree life-stage. Plant Ecology, 135, 215–28.CrossRefGoogle Scholar
Stone, D. E. 1968. Cytological and morphological notes on the southeastern endemic Schisandra glabra (Schisandraceae). Journal of the Elisha Mitchell Scientific Society, 84, 351–6.Google Scholar
Stopf, O. (1904). On the fruit of Melocanna bambusoides. Transactions of the Linnean Society, 2nd Ser., 6, 401–25.Google Scholar
Stoutamire, W. P. (1974). Terrestrial orchid seedlings. In The Orchids. Scientific Studies, ed. Withner, C. L.. New York: Wiley, pp. 101–28.Google Scholar
Strauss-Debenedetti, S. & Bazzaz, F. A. (1991). Plasticity and acclimation to light in tropical Moraceae of different successional positions. Oecologia, 87, 377–87.CrossRefGoogle ScholarPubMed
Stromberg, J. C. & Patten, D. T. (1990). Seed production and seedling establishment of a southwest riparian tree Arizona Walnut Juglans major. Great Basin Naturalist, 50, 47–56.Google Scholar
Stubblefield, S. P. & Rothwell, G. W. (1981). Embryology and reproductive biology of Bothrodendrostrobus mundus (Lycopsida). American Journal of Botany, 68, 625–34.CrossRefGoogle Scholar
Stubblefield, S. P., Taylor, T. N., & Trappe, J. M. (1987). Fossil mycorrhizae: a case for symbiosis. Science, 59, 236–7.Google Scholar
Stuckenbrock, E. H. & Rosendahl, S. (2005). Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland. Mycorrhiza, 15, 497–503.CrossRefGoogle Scholar
Su, Y. Z., Zhang, T. H., Li, Y. L., & Wang, F. (2005). Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin sandy land, Northern China. Environmental Management, 36, 272–81.CrossRefGoogle ScholarPubMed
Su, Y. Z., Zhao, H., Zhang, T., & Li, Y. L. (2004). Characteristics of plant community and soil properties in the plantation chronosequence of Caragana microphylla in Horqin sandy land. Zhiwu Shengtai Xuebao, 28, 93–100.Google Scholar
Suding, K. N. & Goldberg, D. E. (1999). Variation in the effects of vegetation and litter on recruitment across productivity gradients. Journal of Ecology, 87, 436–49.CrossRefGoogle Scholar
Sun, G., Ji, Q., Dilcher, D. L.et al. (2002). Archaefructaceae, a new basal angiosperm family. Science, 296: 899–904.CrossRefGoogle ScholarPubMed
Sun, M., Wong, K. C., & Lee, J. S. Y. (1998). Reproductive biology and population genetic structure of Kandelia candel (Rhizophoraceae), a viviparous mangrove species. American Journal of Botany, 85, 1631–7.CrossRefGoogle Scholar
Sutherland, S. (2004). What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia, 141, 24–39.CrossRefGoogle Scholar
Svenning, J.-C. & Wright, S. J. (2005). Seed limitation in a Panamanian forest. Journal of Ecology, 93, 853–62.CrossRefGoogle Scholar
Swaine, M. D. & Hall, J. B. (1988). The mosaic theory of forest regeneration and the determination of forest composition in Ghana. Journal of Tropical Ecology, 4, 253–69.CrossRefGoogle Scholar
Swaine, M. D. & Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetatio, 75, 81–6.CrossRefGoogle Scholar
Swanborough, P. & Westoby, M. (1996). Seedling relative growth rate and its components in relation to seed size: phylogenetically independent contrasts. Functional Ecology, 10, 176–84.CrossRefGoogle Scholar
Sydes, C. & Grime, J. P. (1981). Effect of tree leaf litter on herbaceous vegetation in the deciduous woodlands. I. Field investigations. Journal of Ecology, 69, 237–48.CrossRefGoogle Scholar
Symonides, E. (1979). The structure and population dynamics of psammophytes on inland dunes. III. Populations of compact psammophyte communities. Ekologia Polska, 27, 235–57.Google Scholar
Symonides, E. (1988). Population dynamics of annual plants. In Plant Population Ecology, ed. Davy, A. J., Hutchings, M. J., & Watkinson, A. R.. Oxford: Blackwell, pp. 221–48.Google Scholar
Tali, K. (2002). Dynamics of Orchis ustulata populations in Estonia. In Trends and Fluctuations and Underlying Mechanisms in Terrestrial Orchid Populations, ed. Kindlmann, P., Willems, J. H., & Whigham, D. F.. Leiden: Backhuys Publishers, pp. 33–42.Google Scholar
Tanaka, A., Tapper, B. A., Popay, A., Parker, E. J., & Scott, B. (2005). A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Molecular Microbiology, 57, 1036–150.CrossRefGoogle ScholarPubMed
Taylor, C. M., Davis, H. G., Civille, J. C., Grevstad, F. S., & Hastings, A. (2004). Consequences of an allee effect in the invasion of a pacific estuary by Spartina alterniflora. Ecology, 85, 3254–66.CrossRefGoogle Scholar
Taylor, D. L. & Bruns, T. D. (1997). Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences (USA), 94, 4510–15.CrossRefGoogle ScholarPubMed
Taylor, D. L. & Bruns, T. D. (1999a). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Molecular Ecology, 8, 1837–50.CrossRefGoogle Scholar
Taylor, D. L. & Bruns, T. D. (1999b). Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology, 8, 1719–32.CrossRefGoogle Scholar
Taylor, D. L., Bruns, T. D., Leake, J. R., & Read, D. J. (2002). Mycorrhizal specificity and function in myco-heterotrophic plants, In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I.. Berlin: Springer, pp. 375–413.Google Scholar
Taylor, D. W. & Hickey, L. J. (1992). Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Systematics and Evolution, 180, 137–56.CrossRefGoogle Scholar
Taylor, D. W. & Hickey, L. J. (1996). Evidence for and implications of an herbaceous origin for angiosperms. In Flowering Plant Origin, Evolution, and Phylogeny, ed. Taylor, D. W. & Hickey, L. J.. New York: Chapman & Hall, pp. 232–66.CrossRefGoogle Scholar
Taylor, K. M. & Aarssen, L. W. (1989). Neighbor effects in mast year seedlings of Acer saccharum. American Journal of Botany, 76, 546–54.CrossRefGoogle Scholar
Taylor, T. N., Remy, W., Hass, H., & Kerp, H. (1995). Fossil arbuscular mycorrhizae from the early Devonian. Mycologia, 87, 560–73.CrossRefGoogle Scholar
Taylor, T. N. & Taylor, E. L. (1993). The Biology and Evolution of Fossil Plants. Englewood Cliffs: Prentice Hall.Google Scholar
Teale, W. D., Paponova, I. A., Ditengou, F., & Palme, K. (2005). Auxin and the developing root of Arabidopsis thaliana. Physiologia Plantarum, 123, 130–8.CrossRefGoogle Scholar
Tecco, P. A., Gurvich, D. E., Diaz, S., Perez-Harguindeguy, N. P., & Cabido, M. (2006). Positive interactions between invasive plants: the influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecology, 31, 293–300.CrossRefGoogle Scholar
Telewski, F. W. (2006). A unified hypothesis of mechanoperception in plants. American Journal of Botany, 93, 1466–76.CrossRefGoogle ScholarPubMed
Telewski, F. W. & Zeevart, J. A. D. (2002). The 120-year period for Dr. Beal's seed viability experiment. American Journal of Botany, 89, 1285–8.CrossRefGoogle Scholar
Terada, K., Sun, G., & Nishida, T. (2005). 3D Models of two species of Archaefructus, one of the earliest angiosperms, reconstructed taking account of their ecological strategies. Memoir of the Fukui Prefectural Dinosaur Museum, 4, 35–44.Google Scholar
Terborgh, J. (1988). The big things that run the world – a sequel to E. O. Wilson. Conservation Biology, 2, 402–3.CrossRefGoogle Scholar
Terborgh, J., Feeley, K., Silman, M., Nuñez, P., & Balukjian, B. (2006). Vegetation dynamics of predator-free land-bridge islands. Journal of Ecology, 94, 253–63.CrossRefGoogle Scholar
Tewksbury, J. L. & Nabhan, G. P.. (2001). Seed dispersal: directed deterrence by capsaicin in chilies. Nature, 412, 403–4.CrossRefGoogle ScholarPubMed
Thoday, D. (1951). The haustorial system of Viscum album. Journal of Experimental Botany, 2, 1–19.CrossRefGoogle Scholar
Thomas, L. K. Jr. (1980). The Impact of Three Exotic Plant Species on a Potomac Island. National Park Service Scientific Monograph Series No. 13. Washington: U.S. Department of the Interior.Google Scholar
Thompson, J. N. (1994). The Coevolutionary Process. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Thompson, K. (1984). Why biennials are not as few as they ought to be. American Naturalist, 123, 854–61.CrossRefGoogle Scholar
Thompson, K., Bakker, J. P., Bekker, R. M., & Hodgson, J. G. (1998). Ecological correlates of seed persistence in soil in the north-west European flora. Journal of Ecology, 86, 163–9.CrossRefGoogle Scholar
Thompson, K., Band, S. R., & Hodgson, J. G. (1993). Seed size and shape predict persistence in the soil. Functional Ecology, 7, 236–41.CrossRefGoogle Scholar
Thompson, K., Ceriani, R. M., Bakker, J. P., & Bekker, R. M. (2003). Are seed dormancy and persistence in the soil related? Seed Science Research, 13, 97–100.CrossRefGoogle Scholar
Thompson, K. & Grime, J. P. (1979). Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology, 67, 893–921.CrossRefGoogle Scholar
Thompson, K., Grime, J. P., & Mason, G. (1977). Seed germination in response to diurnal fluctuations of temperature. Nature, 267, 147–9.CrossRefGoogle Scholar
Thompson, K., Hodgson, J. G., Grime, J. P., & Burke, M. J. W. (2001). Plant traits and temporal scale: evidence from a 5-year invasion experiment using native species. Journal of Ecology, 89, 1054–60.CrossRefGoogle Scholar
Thompson, K., Jalili, A., Hodgson, J. G.et al. (2001). Seed size, shape and persistence in the soil in an Iranian flora. Seed Science Research, 11, 345–55.Google Scholar
Thomsen, M. A., Antonio, D' C. M., Suttle, K., & Sousa, W. (2006). Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecology Letters, 9, 160–70.CrossRefGoogle Scholar
Thoreau, H. D. (1993). Faith in a Seed: the Dispersion of Seeds and Other Late Natural History Writings, ed. Dean, B. P.. Washington: Island Press.Google Scholar
Thorén, L. M. & Karlsson, P. S. (1998). Effects of supplementary feeding on growth and reproduction of three carnivorous plant species in a subarctic environment. Journal of Ecology, 86, 501–10.CrossRefGoogle Scholar
Tielbörger, K. & Kadmon, R. (2000). Indirect effects in a desert plant community: is competition among annuals more intense under shrub canopies? Plant Ecology, 150, 53–63.CrossRefGoogle Scholar
Tiffney, B. (1986). Evolution of seed dispersal syndromes according to the fossil record. In Seed Dispersal, ed. Murray, D. R.. Orlando: Academic Press, pp. 273–305.Google Scholar
Tiffney, B. H. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution, and Systematics, 35, 1–29.CrossRefGoogle Scholar
Tillich, H.-J. (1990). The seedlings of Nymphaeaceae – monocotylar or dicotylar? Flora, 184, 169–76.CrossRefGoogle Scholar
Tillich, H.-J. (1995). Seedlings and systematics in monocotyledons. In Monocotyledons: Systematics and Evolution, ed. Rudall, P. J., Cribb, P. J., Cuttler, D. F., & Humphries, C. J.. Kew: Royal Botanic Gardens, pp. 303–52.Google Scholar
Tillich, H.-J. (2000). Ancestral and derived character states in seedlings of monocotyledons. In Monocots: Systematics and Evolution, ed. Wilson, K. I. & Morrison, D. A.. Melbourne: CSIRO, pp. 212–29.Google Scholar
Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton: Princeton University Press.Google Scholar
Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2–16.CrossRefGoogle Scholar
Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78, 81–92.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B.et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–4.CrossRefGoogle ScholarPubMed
Titus, J. E. & Hoover, D. T. (1991). Toward predicting reproductive success in submersed freshwater angiosperms. Aquatic Botany, 41, 111–36.CrossRefGoogle Scholar
Titus, J. H. & Moral, Del R. (1998). The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens. American Journal of Botany, 85, 370–5.CrossRefGoogle ScholarPubMed
Tobe, K., Zhang, L., & Omasa, K. (2006). Seed germination and seedling emergence of three Artemisia species (Asteraceae) inhabiting desert sand dunes in China. Seed Science Research, 16, 61–9.CrossRefGoogle Scholar
Tobin, M. F., Lopez, O. R., & Kursar, T. A. (1999). Responses of tropical understory plants to a severe drought, tolerance and avoidance of water stress. Biotropica, 31, 570–8.CrossRefGoogle Scholar
Toh, I., Gillespie, M., & Lamb, D. (1999). The role of isolated trees in facilitating tree seedling recruitment at a degraded sub-tropical rainforest site. Restoration Ecology, 7, 288–97.CrossRefGoogle Scholar
Tomilov, A. A., Tomilova, N. B., Abdallah, I., & Yoder, J. I. (2005). Localized hormone fluxes and early haustorium development in the hemiparasitic plant Triphysaria versicolor. Plant Physiology, 138, 1469–80.CrossRefGoogle ScholarPubMed
Tomlinson, P. B. (1971). The shoot apex and its dichotomous branching in the Nypa palm. Annals of Botany, 35, 865–79.CrossRefGoogle Scholar
Tomlinson, P. B. (1986). The Botany of Mangroves. Cambridge: Cambridge University Press.Google Scholar
Tomlinson, P. B. (1990). The Structural Biology of Palms. Oxford: Clarendon PressOxford.Google Scholar
Tomlinson, P. B. & Esler, A. E. (1973). Establishment growth in woody monocotyledons native to New Zealand. New Zealand Journal of Botany, 11, 627–44.CrossRefGoogle Scholar
Tongway, D. J. & Ludwig, J. A. (1996). Rehabilitation of semiarid landscapes in Australia. I. Restoring productive soil patches. Restoration Ecology, 4, 388–97.CrossRefGoogle Scholar
Tooke, F., Ordidge, M., Chiurugwi, T., & Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. Journal of Experimental Botany, 56, 2587–99.CrossRefGoogle ScholarPubMed
Topa, M. A. & McLeod, K. W. (1986). Responses of Pinus clausa, Pinus serotina and Pinus taeda seedlings to anaerobic solution culture. I. Changes in growth and root morphology. Physiologia Plantarum, 68, 523–31.CrossRefGoogle Scholar
Toth, R. & Kuijt, J. (1977). Cytochemical localization of acid phosphatase in endophyte cells of the semiparasitic angiosperm Commandra umbellata. Canadian Journal of Botany, 55, 470–5.CrossRefGoogle Scholar
Todzia, C. A. (1988). Chloranthaceae. Hedyosmum. Flora Neotropica Monograph, 48, 1–139.Google Scholar
Trappe, J. M. (1977). Selection of fungi for ectomycorrhizal inoculation in nurseries. Annual Review of Phytopathology, 15, 203–22.CrossRefGoogle Scholar
Travis, S. E. & Hester, M. W. (2005). A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology, 93, 417–30.CrossRefGoogle Scholar
Trenberth, K. E. & Hoar, T. J. (1996). The 1990–1995 El Niño-southern oscillation event: longest on record. Geophysical Research Letters, 23, 57–60.CrossRefGoogle Scholar
Tripathi, R. S. & Khan, M. L. (1990). Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos, 57, 289–96.CrossRefGoogle Scholar
Trudell, S. A., Rygiewicz, P. T., & Edmonds, R. L. (2003). Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytologist, 160, 391–401.CrossRefGoogle Scholar
Tsoar, H. & Karnieli, A. (1996). What determines the spectral reflectance of the Negev-Sinai sand dunes. International Journal of Remote Sensing, 17, 513–25.CrossRefGoogle Scholar
Tucic, B., Pemac, D., & Ducic, J. (2005). Life history responses to irradiance at the early seedling stage of Picea omorika (Pancic) Purkynhe: adaptiveness and evolutionary limits. Acta Oecologica, 27, 185–95.CrossRefGoogle Scholar
Tungate, K. D., Burton, M. G., Susko, D. J., Sermons, S. M., & Rufty, T. W. (2006). Altered weed reproduction and maternal effects under low-nitrogen fertility. Weed Science, 54, 847–53.CrossRefGoogle Scholar
Tuomisto, H., Poulsen, A. D., Moran, R. C.et al. (2003). Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecological Applications, 13, 352–71.CrossRefGoogle Scholar
Turnbull, L. A., Coomes, D., Hector, A., & Rees, M. (2004). Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. Journal of Ecology, 92, 97–109.CrossRefGoogle Scholar
Turnbull, L. A., Crawley, M. J., & Rees, M. (2000). Are plant populations seed-limited? A review of seed sowing experiments. Oikos, 88, 225–38.CrossRefGoogle Scholar
Turnbull, L. A., Rees, M., & Crawley, M. (1999). Seed mass and the competition/colonization trade-off: a sowing experiment. Journal of Ecology, 87, 899–912.CrossRefGoogle Scholar
Turner, D. P. & Franz, E. H. (1985). Size class structure and tree dispersion patterns in old-growth cedar-hemlock forests of the northern Rocky Mountains (USA). Oecologia, 68, 52–6.CrossRefGoogle Scholar
Turner, I. M. (2001). The Ecology of Trees in the Tropical Rain Forest. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Turner, R. M., Alcorn, S. M., Olin, G., & Booth, J. A. (1966). The influence of shade, soil, and water on saguaro seedling establishment. Botanical Gazette, 127, 95–102.CrossRefGoogle Scholar
Turner, S. R., Pearce, B., Rokich, D. P.et al. (2006). Influence of polymer seed coatings, soil raking, and time of sowing seedling performance in post-mining restoration. Restoration Ecology, 14, 267–77.CrossRefGoogle Scholar
Tyler, G. & Strom, L. (1995). Differing organic-acid exudation pattern explains calcifuge and acidifuge behavior in plants. Annals of Botany, 75, 75–8.CrossRefGoogle Scholar
Uchiyama, Y. (1981). Studies on the germination of saltbushes. 1. The relationship between temperature and germination of Atriplex nummularia Lindl. Japanese Journal of Tropical Agriculture, 25, 62–7.Google Scholar
Uhl, C. & Kauffman, J. B. (1990). Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437–49.CrossRefGoogle Scholar
Ungar, I. A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany, 83, 604–7.CrossRefGoogle Scholar
Urbanska, K. M. (1997). Safe sites – interface of plant population ecology and restoration ecology. In Restoration Ecology and Sustainable Development, ed. Urbanska, K. M., Webb, N., & Edwards, P.. Cambridge: Cambridge University Press, pp. 81–110.Google Scholar
Urbanska, K. M. & Chambers, J. C. (2002). High elevation ecosystems. In Handbook of Ecological Restoration, vol. 2., ed. Perrow, M. & Davy, A.. Cambridge University Press, pp. 376–400.CrossRefGoogle Scholar
Uva, R. H., Neal, J. C., & DiTomaso, J. M. (1997). Weeds of the Northeast. Ithaca: Cornell University Press.Google Scholar
Vacher, C., Weis, A. E., Hermann, D.et al. (2004). Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical & Applied Genetics, 109, 806–14.CrossRefGoogle Scholar
Valiente-Banuet, A. & Ezcurra, E. (1991). Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacan Valley, Mexico. Journal of Ecology, 79, 961–71.CrossRefGoogle Scholar
Valiente-Banuet, A., Bolongaro-Crevenna, A., Briones, O.et al. (1991a). Spatial relationships between cacti and nurse shrubs in a semi-arid environment in central Mexico. Journal of Vegetation Science, 2, 15–20.CrossRefGoogle Scholar
Valiente-Banuet, A., Vite, F., & Zavala-Hurtado, J. A. (1991b). Interaction between the cactus Neobuxbaumia tetetzo and the nurse shrub Mimosa luisana. Journal of Vegetation Science, 2, 11–14.CrossRefGoogle Scholar
Valladares, F., Balaguer, L., Martinez-Ferri, E., Perez-Corona, E., & Manrique, E. (2002). Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist, 156, 457–67.CrossRefGoogle Scholar
Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103–16.CrossRefGoogle Scholar
Valladares, F., Villar-Salvador, P., Domínguez, S.et al. (2002). Enhancing the early performance of the leguminous shrub Retama sphaerocarpa (L.) Boiss.: fertilisation versus Rhizobium inoculation. Plant and Soil, 240, 253–62.CrossRefGoogle Scholar
Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925–36.CrossRefGoogle Scholar
Auken, O. W. & Bush, J. K. (1990). Influence of light levels soil nutrients and competition on seedling growth of Baccharis neglecta Asteraceae. Bulletin of the Torrey Botanical Club, 117, 438–44.CrossRefGoogle Scholar
Vandenbussche, F. & Straeten, D. (2004). Shaping the shoot: a circuitry that integrates multiple signals. Trends in Plant Science, 9, 499–506.CrossRefGoogle ScholarPubMed
Vandenbussche, F., Verbelen, J.-P., & Straeten, D. (2005). Of light and length: regulation of hyopocotyl growth in Arabidopsis. BioEssays, 27, 275–84.CrossRefGoogle ScholarPubMed
Vandenkoornhuyse, P., Husband, R., Daniell, T. J.et al. (2002). Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 11, 1555–64.CrossRefGoogle Scholar
van der Heijden, M. G. A. (2002). Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In Mycorrhizal Ecology, ed. Heijden, M. G. A. & Sanders, I.. Berlin: Springer, pp. 243–65.Google Scholar
Heijden, M. G. A. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 7, 293–303.CrossRefGoogle Scholar
Heijden, M. G. A., Bakker, R., Verwaal, J.et al. (2006a). Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiology Ecology, 56, 178–87.CrossRefGoogle Scholar
Heijden, M. G. A., Klironomos, J. N., Ursic, M.et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.CrossRefGoogle Scholar
Heijden, M. G. A. & Scheublin, T. R. (2007). Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytologist, 174, 244–50.Google ScholarPubMed
Heijden, M. G. A., Streitwolf-Engel, R., Riedl, R.et al. (2006b). The mycorrhizal contribution to plant productivity, plant diversity, plant nutrition and soil structure in experimental grassland. New Phytologist, 172, 739–52.CrossRefGoogle Scholar
Pijl, L. (1982). Principles of Dispersal in Higher Plants. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Plank, J. E. (1978). Genetic and Molecular Basis of Plant Pathogenesis. New York: Springer-Verlag.Google Scholar
Valk, A. G. (1978). The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology, 59, 322–35.CrossRefGoogle Scholar
Valk, A. G. (1981). Succession in wetlands: a Gleasonian approach. Ecology, 62, 688–96.CrossRefGoogle Scholar
Valk, A. G., Bremholm, T. L., & Gordon, E. (1999). The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands, 19, 756–64.CrossRefGoogle Scholar
Wall, Vander S. B. (1994). Seed fate pathways of antelope bitterbrush: dispersal by seed-caching yellow pine chipmunks. Ecology, 75, 1911–26.CrossRefGoogle Scholar
Gelder, H. A., Poorter, L., & Sterck, F. J. (2006). Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytologist, 171, 367–78.CrossRefGoogle Scholar
Mantgem, P. J., Stephenson, N. L., & Keeley, J. E. (2006). Forest reproduction along a climatic gradient in the Sierra Nevada, California. Forest Ecology and Management, 225, 391–9.CrossRefGoogle Scholar
Mantgem, P. J., Stephenson, N. L., Keifer, M. B., & Keeley, J. E. (2004). Effects of an introduced pathogen and fire exclusion on the demography of sugar pine. Ecological Applications, 14, 1590–602.CrossRefGoogle Scholar
Rheenen, H. M. P. J. B., Boot, R. G. A., Werger, M. J. A., & Ulloa, Ulloa M. (2004). Regeneration of timber trees in a logged tropical forest in North Bolivia. Forest Ecology and Management, 200, 39–48.CrossRefGoogle Scholar
Splunder, I., Coops, H., Voesenek, L. A. C. J., & Blom, C. W. P. M. (1995). Establishment of alluvial forest species in floodplains: The role of dispersal timing, germination characteristics and water level fluctuations. Acta Botanica Neerlandica, 44, 269–78.CrossRefGoogle Scholar
Staden, J., Brown, N., Pager, A., & Johnson, T. (2000). Smoke as a germination cue. Plant Species Biology, 15, 167–78.CrossRefGoogle Scholar
Vaughton, G. & Ramsey, M. (1997). Seed mass variation in the shrub Banksia spinulosa (Proteaceae) – resource constraints and pollen source effects. International Journal of Plant Sciences, 158, 424–31.CrossRefGoogle Scholar
Vaughton, G. & Ramsey, M. (2001). Relationships between seed mass, seed nutrients, and seedling growth in Banksia cunninghamii (Proteaceae). International Journal of Plant Sciences, 162, 599–606.CrossRefGoogle Scholar
Vazquez-Yanes, C., Orozco-Segovia, A., Rincon, E.et al. 1990. Light beneath the litter in a tropical forest: effect on seed germination. Ecology, 71, 1952–8.CrossRefGoogle Scholar
Veblen, T. T. (1986). Regeneration dynamics. In Plant Succession. Theory and Prediction, ed. Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T.. New York: Chapman & Hall, pp. 152–87.Google Scholar
Veenendaal, E. M., Swaine, M. D., Agyeman, V. K.et al. (1995). Differences in plant and soil water relations in and around a forest gap in West Africa during the dry season may influence seedling establishment and survival. Journal of Ecology, 83, 83–90.Google Scholar
Veenendaal, E. M., Swaine, M. D., Lecha, R. T.et al. (1996). Responses of West African forest tree seedlings to irradiance and soil fertility. Functional Ecology, 10, 501–11.CrossRefGoogle Scholar
Veevers-Carter, W. (1991). Riches of the Rain Forest: An Introduction to the Trees and Fruits of the Indonesian and Malaysian Rain Forests. Oxford: Oxford University Press.Google Scholar
Venable, D. L. (1992). Size-number trade-offs and the variation of seed size with plant resource status. American Naturalist, 140, 287–304.CrossRefGoogle Scholar
Venable, D. L. & Brown, J. S. (1988). The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risks in variable environments. American Naturalist, 131, 360–84.CrossRefGoogle Scholar
Venable, D. L., Dyreson, E., & Morales, E. (1995). Population dynamic consequences and evolution of seed traits of Heterosperma pinnatum (Asteraceae). American Journal of Botany, 82, 410–20.CrossRefGoogle Scholar
Venable, D. L., Pake, C. E., & Caprio, A. C. (1993). Diversity and coexistence of Sonoran desert winter annuals. Plant Species Biology, 8, 207–16.CrossRefGoogle Scholar
Veneklaas, E. J. & Ouden, F. (2005). Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade. Environmental and Experimental Botany, 54, 148–54.CrossRefGoogle Scholar
Venning, J. (1988). Growing Trees for Farms, Parks and Roadsides. A Revegetation Manual. Melbourne: Lothian.Google Scholar
Verburg, R., Maas, J., & During, H. J. (2000). Clonal diversity in differently-aged populations of the pseudo-annual clonal plant Circaea lutetiana L. Plant Biology, 2, 646–52.CrossRefGoogle Scholar
Verdcourt, B. (1986). Chloranthaceae. Flora Malesiana, 10, 123–44.Google Scholar
Verhoeven, K. J. F., Biere, A., Nevo, E., & Damme, J. M. M. (2004). Can a genetic correlation with seed mass constrain adaptive evolution of seedling desiccation tolerance in wild barley? International Journal of Plant Sciences, 165, 281–8.CrossRefGoogle Scholar
Verrecchia, E., Yair, A., Kidron, G. J., & Verrecchia, K. (1995). Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. Journal of Arid Environments, 29, 427–37.CrossRefGoogle Scholar
Vert, G., Nemhauser, J. L., Geldner, N., Hong, F., & Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annual Review of Cell and Developmental Biology, 21, 177–201.CrossRefGoogle ScholarPubMed
Viana, V. M., Tabanez, A. A., & Batista, J. (1997). Dynamics and restoration of forest fragments in the Brazilian Atlantic moist forest. In Tropical Forest Remnants, Ecology, Management, and Conservation of Fragmented Communities, ed. Laurance, W. F. & Bierregaard, R. O.. Chicago: The University of Chicago Press, pp. 351–65.Google Scholar
Villagra, P. E. & Cavagnaro, J. B. (2005). Effects of salinity on the establishment and early growth of Prosopis argentina and Prosopis alpataco seedlings in two contrasting soils: implications for their ecological success. Austral Ecology, 30, 325–35.CrossRefGoogle Scholar
Vitousek, P. M. & Walker, L. R. (1989). Biological invasions by Myrica-faya in Hawaii: plant demography, nitrogen fixation, and ecosystem effects. Ecological Monographs, 59, 247–65.CrossRefGoogle Scholar
Vladesco, M. A. (1935). Rescherches morphologiques et expérimentales sur l'embryogénie et l'organogénie des fougères leptosporangiées. Revue Générale du Botanique, 47, 513–28; 564–88.Google Scholar
Voesenek, L. A. C. J. & Blom, C. W. P. M. (1996). Plants and hormones: an ecophysiological view on timing and plasticity. Journal of Ecology, 84, 111–19.CrossRefGoogle Scholar
Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, F. F., & Peeters, A. J. M. (2006). How plants cope with complete submergence. New Phytologist, 170, 213–26.CrossRefGoogle ScholarPubMed
Voesenek, L. A. C. J., Rijnders, J. H. G. M., Peeters, A. J. M., Steeg, H. M., & Kroon, H. (2004). Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology, 85, 16–27.CrossRefGoogle Scholar
Voets, L., Providencia, I. E., & Declerck, S. (2006). Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytologist, 172, 185–8.CrossRefGoogle ScholarPubMed
Void, K. M. (1962). Vivipary in bamboo, Melocanna bambosoides Trin. Journal Bombay Natural History Society, 59, 696–7.Google Scholar
Volaire, F. & Norton, M. (2006). Summer dormancy in perennial temperate grasses. Annals of Botany, 98, 927–33.CrossRefGoogle ScholarPubMed
Teichman, I. & Wyk, A. E. (1991). Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Science Research, 4, 225–39.Google Scholar
Wettberg, E. J. & Schmitt, J. (2005). Physiological mechanism of population differentiation in shade-avoidance responses between woodland and clearing genotypes of Impatiens capensis. American Journal of Botany, 92, 868–74.CrossRefGoogle Scholar
Vourc'h, G., Vila, B., Gillon, D., Escarré, J., & Guibal, F. (2002). Disentangling the causes of damage variation by deer browsing on young Thuja plicata. Oikos, 98, 271–83.CrossRefGoogle Scholar
Wagner, W. H. Jr. (1952). The fern genus Diellia. University of California Publications in Botany, 26, 1–212.Google Scholar
Waisel, Y. (1972). Biology of Halophytes. New York: Academic Press.Google Scholar
Walbot, V. (1978). Control mechanisms for plant embryogeny. In Dormancy and Developmental Arrest, ed. Cutter, M. E.. New York: Academic Press, pp. 113–66.Google Scholar
Walker, L. R. & Moral, Del R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Walker, L. R., Thompson, D. B., & Landau, F. H. (2001). Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA. Western North American Naturalist, 61, 25–35.Google Scholar
Waller, D. M. (1984). Differences in fitness between seedlings derived from cleistogamous and chasmogamous flowers in Impatiens capensis. Evolution, 38, 427–40.CrossRefGoogle ScholarPubMed
Walters, J. R., Bell, T. L., & Read, S. (2005). Intra-specific variation in carbohydrate reserves and sprouting ability in Eucalyptus seedlings. Australian Journal of Botany, 53, 195–203.CrossRefGoogle Scholar
Walters, M. B., Kruger, E. L., & Reich, P. B. (1993a). Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia, 96, 7–16.CrossRefGoogle Scholar
Walters, M. B., Kruger, E. L., & Reich, P. B. (1993b). Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings – species, light environment and ontogenetic considerations. Oecologia, 96, 219–31.CrossRefGoogle Scholar
Walters, M. B. & Reich, P. B. (1996). Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology, 77, 841–53.CrossRefGoogle Scholar
Walters, M. B. & Reich, P. B. (2000). Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology, 81, 1887–901.CrossRefGoogle Scholar
Wang, B. & Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.CrossRefGoogle ScholarPubMed
Wang, J. H., Machado, C., Panaccione, D. G., Tsai, H. F., & Schardl, C. L. (2004). The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genetics and Biology, 41, 189–98.CrossRefGoogle ScholarPubMed
Wang, X. (2004). Lipid signaling. Current Opinion in Plant Biology, 7, 329–36.CrossRefGoogle ScholarPubMed
Wang, Y.-H. & Augspurger, C. (2006). Comparison of seedling recruitment under arborescent palms in two Neotropical forests. Oecologia, 147, 533–45.CrossRefGoogle ScholarPubMed
Wang, Z. M. & Lechowitz, M. J. (1998). Effect of sowing date on the germination and establishment of black spruce and jack pine under simulated field conditions. Ecoscience, 5, 95–9.CrossRefGoogle Scholar
Ward, D. (2005). Do we understand the causes of bush encroachment in African savannas? African Journal of Range and Forage Science, 22, 101–5.CrossRefGoogle Scholar
Wardle, J. A. (1984). The New Zealand Beeches: Ecology, Utilisation and Management. Christchurch: NZ Forest Service, The Caxton Press.Google Scholar
Webb, C. O., Gilbert, G. S., & Donoghue, M. J. (2006). Phylodiversity-dependent seedling mortality, size structure, and disease in a bornean rain forest. Ecology, 87, S123–31.CrossRefGoogle Scholar
Webb, C. O. & Peart, D. R. (1999). Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology, 80, 2006–17.CrossRefGoogle Scholar
Webb, L. J. (1958). Cyclones as an ecological factor in tropical lowland rain forest in Northern Queensland. Australian Journal of Botany, 6, 220–8.CrossRefGoogle Scholar
Weber, A., Karst, J., Gilbert, B., & Kimmins, J. P. (2005). Thuja plicata exclusion in ectomycorrhiza-dominated forests: testing the role of inoculum potential of arbuscular mycorrhizal fungi. Oecologia, 143, 148–56.CrossRefGoogle ScholarPubMed
Weiher, E. & Keddy, P. A. (1995). The assembly of experimental wetland plant communities. Oikos, 73, 323–35.CrossRefGoogle Scholar
Weiher, E. & Keddy, P., ed. (1999). Ecological Assembly Rules. Perspectives, Advances, Retreats. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Weinbaum, B. S., Allen, M. F., & Allen, E. B. (1996). Survival of arbuscular mycorrhizal fungi following reciprocal transplanting across the Great Basin, USA. Ecological Applications, 6, 1365–72.CrossRefGoogle Scholar
Weinig, C. (2000). Differing selection in alternative competitive environments: shade-avoidance responses and germination timing. Evolution, 54, 124–36.CrossRefGoogle ScholarPubMed
Welch, B. L. (1997). Seeded versus containerized big sagebrush plants for seed-increase gardens. Journal of Range Management, 50, 611–14.CrossRefGoogle Scholar
Weller, S. G. (1985). Establishment of Lithospermum caroliniense on sand dunes – the role of nutlet mass. Ecology, 66, 1893–901.CrossRefGoogle Scholar
Wells, A. G. (1982). Mangrove vegetation of northern Australia. In Mangrove Ecosystems in Australia: Structure, Function and Management, ed. Clough, B. F.. Canberra: Australian National University Press, pp. 57–78.Google Scholar
Weltzin, J. F. & McPherson, G. R. (1999). Facilitation of conspecific seedling recruitment and shifts in temperate savanna ecotones. Ecological Monographs, 69, 513–34.CrossRefGoogle Scholar
Wenny, D. G. (2001). Advantages of seed dispersal: a reevaluation of directed dispersal. Evolutionary Ecology Research, 3, 51–74.Google Scholar
Went, F. W. (1942). The dependence of certain annual plants on shrubs in a Southern California desert. Bulletin of the Torrey Botanical Club, 69, 100–14.CrossRefGoogle Scholar
Went, F. W. (1948). Ecology of desert plants. I. Observations on germination in the Joshua Tree National Monument, California. Ecology, 29, 242–53.CrossRefGoogle Scholar
Went, F. W. (1949). Ecology of desert plants. II. The effect of rain and temperature on germination and growth. Ecology, 30, 1–13.CrossRefGoogle Scholar
Werner, C., Correia, O., & Beyschlag, W. (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica-International Journal of Ecology, 20, 15–23.CrossRefGoogle Scholar
Wernert, S. J., ed. (1982). North American Wildlife. Pleasantville: Reader's Digest Association, Inc.Google Scholar
Wesche, K., Ronnenberg, K., & Hensen, I. (2005). Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. Journal of Arid Environments, 63, 390–405.CrossRefGoogle Scholar
West, N. E. (1986). Desert ecosystems: desertification or xerification? Nature, 321, 562–3.CrossRefGoogle Scholar
Westbrook, T. (1999). Episodic events in the regeneration of Myoporum platicarpum spp. platicarpum in south east Australia. In Proceedings of the VI International Rangelands Congress, ed. Eldridge, D. & Freudenberger, D.. Townsville: II International Rangeland Conference, Inc., pp. 212–14.Google Scholar
Westbury, D. B. (2004). Biological flora of the British Isles: Rhinanthus minor L. Journal of Ecology, 93, 906–27.CrossRefGoogle Scholar
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213–27.CrossRefGoogle Scholar
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125–59.CrossRefGoogle Scholar
Westoby, M., Jurado, E., & Leishman, M. (1992). Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368–72.CrossRefGoogle ScholarPubMed
Westoby, M. & Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261–8.CrossRefGoogle ScholarPubMed
Wheelwright, N. T. (2004). Fruit size in a tropical tree species: variation, preference by birds and heritability. Plant Ecology, 107–8, 163–74.Google Scholar
Wheland, R. J. (1995). The Ecology of Fire. Cambridge: Cambridge University Press.Google Scholar
Wherry, E. T. (1948). Wild Flower Guide, Northeastern and Midland United States. New York: Doubleday & Company, Inc.Google Scholar
Whigham, D. (1984). The influence of vines on the growth of Liquidambar styraciflua L. (sweetgum). Canadian Journal of Forest Research, 14, 37–9.CrossRefGoogle Scholar
Whigham, D. F., Dickinson, M. B., & Brokow, N. V. L. (1999). Background canopy gap and catastrophic wind disturbances in tropical forests. In Ecosystems of Disturbed Ground, Ecosystems of the World 16, ed. Walker, L. R.. Amsterdam: Elsevier, pp. 223–52.Google Scholar
Whigham, D. F., O'Neill, J. P., Rasmussen, H. N., Caldwell, B. A., & McCormick, M. K. (2006). Seed longevity in terrestrial orchids – potential for persistent in situ seed banks. Biological Conservation, 129, 24–30.CrossRefGoogle Scholar
Whitehead, M. R. & Brown, C. A. (1940). The seeds of the spider lily, Hymenocallis occidentalis. American Journal of Botany, 27, 199–303.CrossRefGoogle Scholar
Whitehouse, M. E. A., Shochat, E., Shachak, M., & Lubin, Y. (2002). The influence of scale and patchiness on spider diversity in a semi-arid environment. Ecography, 25, 395–404.CrossRefGoogle Scholar
Whitford, W. G. & Kay, F. R. (1999). Bio perturbation by mammals in deserts: a review. Journal of Arid Environments, 41, 203–30.CrossRefGoogle Scholar
Whitman, A. A., Brokaw, N. V. L., & Hagan, J. M. (1997). Forest damage caused by selection logging of mahogany (Swietenia macrophylla) in northern Belize. Forest Ecology and Management, 92, 87–96.CrossRefGoogle Scholar
Whitmore, M. D. & Swaine, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetatio, 75, 81–6.Google Scholar
Whitmore, W. C. (1996). A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. In The Ecology of Tropical Forest Tree Seedlings, ed. Swaine, M. D.. Paris: UNESCO & The Parthenon Publishing Group, pp. 3–39.Google Scholar
Whittaker, R. H. (1970). Communities and Ecosystems. London: Collier-Macmillan.Google Scholar
Wiens, J. A., Addicott, J. F., Case, T. J., & Diamond, J. (1986). Overview: the importance of spatial and temporal scale in ecological investigations. In Community Ecology, ed. Diamond, J. & Case, T. J.. New York: Harper & Row, pp. 145–53.Google Scholar
Wiersema, J. H. (1987). A monograph of Nymphaea subgenus Hydrocallis (Nymphaeaceae). Systematic Botany Monographs, 16, 1–112.CrossRefGoogle Scholar
Wilby, A. & Shachak, M. (2004). Shrubs, granivores and annual plant community stability in an arid ecosystem. Oikos, 106, 209–16.CrossRefGoogle Scholar
Willems, J. H. (1982). Establishment and development of a population of Orchis simia Lamk. in The Netherlands, 1972 to 1981. New Phytologist, 91, 757–65.CrossRefGoogle Scholar
Willems, J. H. (2002). A founder population of Orchis simia in The Netherlands: a 30-year struggle for survival. In Trends and Fluctuations and Underlying Mechanisms in Terrestrial Orchid Populations, ed. Kindlmann, P., Willems, J. H. & Whigham, D. F.. Leiden: Backhuys Publishers, pp. 23–32.Google Scholar
Williams, C. E., Lipscomb, M. V., Johnson, W. C., & Nilsen, E. T. (1990). Influence of leaf litter and soil moisture regime on early establishment of Pinus pungens. American Midland Naturalist, 124, 142–52.CrossRefGoogle Scholar
Williams, J. H., & Friedman, W. E. (2002). Identification of diploid endosperm in an early angiosperm lineage. Nature, 415, 522–6.CrossRefGoogle Scholar
Williams-Linera, G. (1990). Origin and early development of forest edge vegetation in Panama. Biotropica, 22, 235–41.CrossRefGoogle Scholar
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annual Review of Ecology and Systematics, 34, 273–309.CrossRefGoogle Scholar
Willis, A. J., Memmott, J., & Forrester, R. I. (2000). Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecology Letters, 3, 275–83.CrossRefGoogle Scholar
Willis, S. G. & Hulme, P. E. (2004). Environmental severity and variation in the reproductive traits of Impatiens glandulifera. Functional Ecology, 18, 887–98.CrossRefGoogle Scholar
Wilson, J. B. (1999). Assembly rules in plant communities. In Ecological Assembly Rules. Perspectives, Advances, Retreats, ed. Weiher, E. & Keddy, P.. Cambridge: Cambridge University Press, pp. 130–64.CrossRefGoogle Scholar
Willson, M. F., Irvine, A. K., & Walsh, N. G. (1989). Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21, 133–47.CrossRefGoogle Scholar
Wing, S. L. & Boucher, L. D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences, 26, 379–421.CrossRefGoogle Scholar
Winn, A. A. (1988). Ecological and evolutionary consequences of seed size in Prunella vulgaris. Ecology, 69, 1537–44.CrossRefGoogle Scholar
Winn, A. A. (1991). Proximate and ultimate sources of within-individual variation in seed mass in Prunella vulgaris Lamiaceae. American Journal of Botany, 78, 838–44.CrossRefGoogle Scholar
Winn, A. A. & Werner, P. A. (1987). Regulation of seed yield within and among populations of Prunella vulgaris. Ecology, 68, 1224–33.CrossRefGoogle Scholar
Wirtz, K. W. (2003). Adaptive significance of C partitioning and regulation of specific leaf area in Betula pendula. Tree Physiology, 23, 181–90.CrossRefGoogle ScholarPubMed
Wolf, L. L., Hainsworth, F. R., & Mercier, T. B. R. (1986). Seed size variation and pollinator uncertainty in Ipomopsis aggregata Polemoniaceae. Journal of Ecology, 74, 361–72.CrossRefGoogle Scholar
Wolfe, L. N. (1995). The genetics and ecology of seed size variation in a biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). Oecologia, 101, 343–52.CrossRefGoogle Scholar
Wood, D. M. & Morris, W. F. (1990). Ecological constraints to seedling establishment on the Pumice Plains, Mount St. Helens, Washington. American Journal of Botany, 77, 1411–18.CrossRefGoogle Scholar
Woodhouse, J. M. & Johnson, M. S. (1991). The effect of gel-forming polymers on seed germination and establishment. Journal of Arid Environments, 20, 375–80.Google Scholar
Wright, H. A. & Bailey, A. W. (1982). Fire Ecology. United States and Canada. New York: John Wiley & Sons.Google Scholar
Wright, I. J., Ackerly, D. D., Bongers, F.et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003–15.CrossRefGoogle ScholarPubMed
Wright, I. J. & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 15, 351–9.CrossRefGoogle Scholar
Wright, I. J., Clifford, H. T., Kidson, R.et al. (2000). A survey of seed and seedling characters in 1744 Australian dicotyledon species: cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biological Journal of the Linnean Society, 69, 521–47.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., & Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Functional Ecology, 15, 423–34.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M.et al. (2004). The world-wide leaf economics spectrum. Nature, 428, 821–7.CrossRefGoogle Scholar
Wright, I. J. & Westoby, M. (1999). Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 87, 85–97.CrossRefGoogle Scholar
Wright, I. J. & Westoby, M. (2001). Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia, 127, 21–9.CrossRefGoogle ScholarPubMed
Wright, I. J., Westoby, M., & Reich, P. B. (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534–43.CrossRefGoogle Scholar
Wright, S. J. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1–14.CrossRefGoogle ScholarPubMed
Wright, S. J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics, 6, 73–86.CrossRefGoogle Scholar
Wright, S. J. & Calderón, O. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecology Letters, 9, 35–44.Google Scholar
Wright, S. J.Calderón, O., Hernandéz, A., & Paton, S. (2004). Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology, 85, 484–9.CrossRefGoogle Scholar
Wright, S. J. & Duber, H. C. (2001). Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica, 33, 583–95.CrossRefGoogle Scholar
Wright, S. J., Zeballos, H., Dominguez, I.et al. (2000). Poachers alter mammal abundance, seed dispersal, and seed predation in a neotropical forest. Conservation Biology, 14, 227–39.CrossRefGoogle Scholar
Wu, B., Nara, K., & Hogetsu, T. (2001). Can 14C-labelled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytologist, 149, 137–46.CrossRefGoogle Scholar
Wu, G. & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133, 3539–47.CrossRefGoogle ScholarPubMed
Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2000). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Australian Journal of Agricultural Research, 51, 937–44.CrossRefGoogle Scholar
Wulff, R. D. (1986a). Seed size variation in Desmodium paniculatum. I. Factors affecting seed size. Journal of Ecology, 74, 87–98.CrossRefGoogle Scholar
Wulff, R. D. (1986b). Seed size variation in Desmodium paniculatum. II. Effects on seedling growth and physiological performance. Journal of Ecology, 74, 99–114.CrossRefGoogle Scholar
Xiong, L, Schumaker, K. S., & Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell, 14, S165–83.CrossRefGoogle ScholarPubMed
Xiong, S. & Nilsson, C. (1999). The effects of plant litter on vegetation: a meta-analysis. Journal of Ecology, 87, 984–94.CrossRefGoogle Scholar
Xiong, S. J., Johansson, M. E., Hughes, F. M. R.et al. (2003). Interactive effects of soil moisture, vegetation canopy, plant litter and seed addition on plant diversity in a wetland community. Journal of Ecology, 91, 976–86.CrossRefGoogle Scholar
Yair, A. & Danin, A. (1980). Spatial variations in vegetation as related to the soil moisture regime over an arid limestone hillside, Northern Negev, Israel. Oecologia, 47, 83–8.CrossRefGoogle ScholarPubMed
Yair, A. & Shachak, M. (1982). A case study of energy, water and soil flow chains in an arid ecosystem. Oecologia, 54, 389–97.CrossRefGoogle Scholar
Yair, A., Sharon, D., & Lavee, H. (1980). Trends in runoff and erosion processes over an arid limestone hillside, northern Negev, Israel. Hydrological Sciences Bulletin, 25, 243–55.CrossRefGoogle Scholar
Yakovlev, M. S. & Yoffe, M. D. (1957). On the peculiar features in the embryogeny of Paeonia. Phytomorphology, 7, 74–82.Google Scholar
Yan, Z. (1993). Resistance to haustorial development of two mistletoes, Amyema preissii (Miq.) Tieghem and Lysiana exocarpi (Behr.) Tieghem ssp. exocarpi (Loranthaceae), on host and non-host species. International Journal of Plant Science, 154, 386–94.CrossRefGoogle Scholar
Yeaton, R. I. & Esler, K. J. (1990). The dynamics of a succulent Karoo vegetation. Vegetatio, 88, 103–13.CrossRefGoogle Scholar
Yetka, L. A. & Galatowitsch, S. M. (1998). Factors affecting revegetation of Carex lacustris Willd. and Carex stricta Lam. from rhizomes. Restoration Ecology, 7, 86–97.Google Scholar
Yoder, C. K. & Nowak, R. S. (1999). Hydraulic lift among native plant species in the Mojave Desert. Plant and Soil, 215, 93–102.CrossRefGoogle Scholar
Yoder, J. A., Zettler, L. W., & Stewart, S. L. (2000). Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Science, 156, 145–50.CrossRefGoogle ScholarPubMed
Yoder, J. I. (2001). Host-plant recognition by parasitic Scrophulariaceae. Current Opinion in Plant Biology, 4, 359–65.CrossRefGoogle ScholarPubMed
Young, C. A., Bryant, M. K., Christensen, M. J.et al. (2005). Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Molecular Genetics and Genomics, 274, 13–29.CrossRefGoogle ScholarPubMed
Young, J. A. & Young, C. G. (1992). Seeds of Woody Plants in North America. Portland: Dioscorides Press.Google Scholar
Young, J. P., Dickinson, T. A., & Dengler, N. G. (1995). A morphometric analysis of heterophyllous leaf development in Ranunculus flabellaris. International Journal of Plant Sciences, 156, 5–11.CrossRefGoogle Scholar
Young, T. P. & Evans, R. Y. (2000). Container stock versus direct seeding for woody species in restoration sites. Proceedings International Plant Propagators' Society, 50, 577–82.Google Scholar
Young, T. P., Petersen, D. A., & Clary, J. J. (2005). The ecology of restoration: historical links, emerging issues and unexplored realms. Ecology Letters, 8, 662–73.CrossRefGoogle Scholar
Yuan, K. & Wysock-Diller, J. (2006). Phytohormone signalling pathways interact with sugars during seed germination and seedling development. Journal of Experimental Botany, 57, 3359–67.CrossRefGoogle ScholarPubMed
Yurkonis, K. A., Meiners, S. J., & Wachholder, B. E. (2005). Invasion impacts diversity through altered community dynamics. Journal of Ecology, 93, 1053–61.CrossRefGoogle Scholar
Zaady, E., Groffman, P. M., & Shachak, M. (1996a). Release and consumption of nitrogen by snail feces in Negev Desert soils. Biology and Fertility of Soils, 23, 399–404.CrossRefGoogle Scholar
Zaady, E., Groffman, P. M., & Shachak, M. (1996b). Litter as a regulator of N and C dynamics in macrophytic patches in Negev desert soils. Soil Biology and Biochemistry, 28, 39–46.CrossRefGoogle Scholar
Zaady, E., Groffman, P. M., & Shachak, M. (1998). Nitrogen fixation in macro- and microphytic patches in the Negev desert. Soil Biology and Biochemistry, 30, 449–54.CrossRefGoogle Scholar
Zaady, E., Gutterman, Y., & Boeken, B. (1997). The germination of mucilaginous seeds of Plantago coronopus, Reboudia pinnata and Carrichtera annua on cyanobacterial soil crust from the Negev Desert. Plant and Soil, 190, 247–52.CrossRefGoogle Scholar
Zaady, E., Levacov, R., & Shachak, M. (2004). Application of the herbicide, simazine, and its effect on soil surface parameters and vegetation in a patchy desert landscape. Arid Land Research and Management, 18, 397–410.CrossRefGoogle Scholar
Zaady, E. & Shachak, M. (1994). Microphytic soil crust and ecosystem leakage in the Negev desert. American Journal of Botany, 81, 109.Google Scholar
Zaady, E., Yonatan, R., Shachak, M., & Perevolotsky, A. (2001). The effects of grazing on abiotic and biotic parameters in a semiarid ecosystem: a case study from the Northern Negev Desert, Israel. Arid Land Research and Management, 15, 245–61.CrossRefGoogle Scholar
Zahawi, R. A. (2005). Establishment and growth of living fence species: an overlooked tool for the restoration of degraded areas in the tropics. Restoration Ecology, 13, 92–102.CrossRefGoogle Scholar
Zahawi, R. A. & Augspurger, C. K. (2006). Tropical forest restoration: tree islands as recruitment foci in degraded lands in Honduras. Ecological Applications, 16, 464–78.CrossRefGoogle ScholarPubMed
Zanis, M. J., Soltis, D. E., Soltis, P. S., Mathews, S., & Donoghue, M. J. (2002). The root of the angiosperms revisited. Proceedings of the National Academy of Sciences (USA), 99, 6848–53.CrossRefGoogle ScholarPubMed
Zanne, A. E., Chapman, C. A., & Kitajima, K. (2005). Evolutionary and ecological correlates of early seedling morphology in East African trees and shrubs. American Journal of Botany, 92, 972–8.CrossRefGoogle ScholarPubMed
Zas, R., Sampedro, L., Prada, E., & Fernandez-Lopez, J. (2005). Genetic variation of Pinus pinaster Ait. seedlings in susceptibility to the pine weevil Hylobius abietis L. Annals of Forest Science, 62, 681–8.CrossRefGoogle Scholar
Zhang, F., Chen, G., Huang, Q.et al. (2005a). Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theoretical and Applied Genetics, 110, 445–53.CrossRefGoogle Scholar
Zhang, J. & Maun, M. A. (1991). Establishment and growth of Panicum virgatum L. seedlings on a Lake Erie sand dune. Bulletin of the Torrey Botanical Club, 118, 141–53.CrossRefGoogle Scholar
Zhang, J. H. & Maun, M. A. (1990). Seed size variation and its effects on seedling growth in Agropyron psammophilum. Botanical Gazette, 151, 106–13.CrossRefGoogle Scholar
Zhang, J. H. & Maun, M. A. (1993). Components of seed mass and their relationships to seedling size in Calamovilfa longifolia. Canadian Journal of Botany, 71, 551–7.CrossRefGoogle Scholar
Zhang, J. H. & Maun, M. A. (1994). Potential for seed bank formation in 7 Great Lakes sand dune species. American Journal of Botany, 81, 387–94.CrossRefGoogle Scholar
Zhang, Z. H., Su, L., Li, W., Chen, W., & Zhu, Y. G. (2005b). A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Science, 168, 527–34.CrossRefGoogle Scholar
Zhou, S., Wang, Y., & Qian, J. (1997). Aerial Seeding on the Moving Dunes of the Maowusu Desert for Vegetation Growing. Ottawa: International Development Research Centre.Google Scholar
Zhou, Z., Miwa, M., & Hogetsu, T. (1999). Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytologist, 144, 55–63.CrossRefGoogle Scholar
Zimmerman, J. K. & Olmsted, I. C. (1992). Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica, 24, 402–7.CrossRefGoogle Scholar
Zohary, M. (1937). Die verbreitungsökologischen Verhältnisse der Pflanzen Palästinas. I. Die antitelechorischen Erscheinungen. Beihheft zum Botanischen Zentralblatt A, 56, 1–55.Google Scholar
Zotz, G. (1998). Demography of the epiphytic orchid, Dimerandra emarginata. Journal of Tropical Ecology, 14, 725–41.CrossRefGoogle Scholar
Zotz, G., Cueni, N., & Körner, C. (2006). In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Functional Ecology, 20, 763–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×