Skip to main content Accessibility help
×
  • Cited by 7
Publisher:
Cambridge University Press
Online publication date:
May 2015
Print publication year:
2015
Online ISBN:
9781139034241

Book description

Summarising recent research on the physics of complex liquids, this in-depth analysis examines the topic of complex liquids from a modern perspective, addressing experimental, computational and theoretical aspects of the field. Selecting only the most interesting contemporary developments in this rich field of research, the authors present multiple examples including aggregation, gel formation and glass transition, in systems undergoing percolation, at criticality, or in supercooled states. Connecting experiments and simulation with key theoretical principles, and covering numerous systems including micelles, micro-emulsions, biological systems, and cement pastes, this unique text is an invaluable resource for graduate students and researchers looking to explore and understand the expanding field of complex fluids.

Reviews

'This is an interesting book … [it] is rich in theory and experiments and can be used as a text for graduate students.'

Prabhat Kumar Mahanti Source: Zentralblatt MATH

'… an interesting and rich book that would be very useful to all those who intend to revise or deepen their knowledge about the validity of assumptions, approximations and deductions that constitute the background of scattering theories and their limits. It is richly illustrated by numerous figures …'

José Teixeira Source: Journal of Applied Crystallography

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adam, G., and Gibbs, J. H. 1965. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys., 43, 139.
Alatas, A., Leu, B.M., Zhao, J., Yavas, H., Toellner, T. S., and Alp, E. E. 2011. Improved focusing capacity for inelastic x-ray spectrometer at 3-ID of the APS: a combination of toroidal and Kirkpatrick–Baez (KB) mirror. Nucl. Instrum. Methods Phys. Res. A, 649, 166–168.
Alley, W.E., and Alder, B.J. 1983. Generalized transport coefficients for hard spheres. Phys.Rev. A, 27, 3158–3173.
Anderson, P. W. 1995. Through the glass lightly. Science, 267, 1615–1616.
Anderson, V.J., and Lekkerkerker, H. N. V. 2002. Insights into phase transition kinetics from colloid science. Nature, 416, 811–815.
Angell, C. A., and Kanno, H. 1976. Density maxima in high-pressure supercooled water and liquid silicon dioxide. Science, 193, 1121–1122.
Azuah, R.T., Kneller, L.R., Qiu, Y., Tregenna-Piggott, P.L.W, Brown, C.M., Copley, J. R. D., and Dimeo, R. M. 2009. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl. Inst. Stan. Technol., 114, 341.
Bafile, U., Verkerk, P., Barocchi, F., de Graaf, L. A., Suck, J.-B., and Mutka, H. 1990. Onset of depature from linearized hydrodynamic behavior in argon gas studied with neutron Brillouin scattering. Phys. Rev. Lett., 65, 2394–2397.
Ball, P. 2000. Life's Matrix: A Biography of Water. New York: Farrar, Straus and Giroux.
Ball, P. 2008. Water as an active constituent in cell biology. Chem. Rev., 108, 74–108.
Balucani, U., and Zoppi, M. 1994. Dynamics of the Liquid State. Oxford: Clarendon Press.
Bansil, R., Berger, T., Toukan, K., Ricci, M. A., and Chen, S.-H. 1986. A molecular dynamics study of the OH stretching vibrational spectrum of liquid water. Chem. Phys. Lett., 132, 165–172.
Bartsch, E., Eckert, T., Pies, C., and Sillescu, H. 2002. The effect of free polymer on the glass transition dynamics of microgel colloids. J. Non-Cryst. Solids, 307–310, 802–811.
Baxter, R. J. 1967. Method of solution of the Percus–Yevick, hypernetted-chain, or similar equations. Phys. Rev., 154, 170–174.
Baxter, R.J. 1968a. Ornstein–Zernike relation for a disordered fluid. Australian J. Phys., 21, 563–570.
Baxter, R. J. 1968b. Percus–Yevick equation for hard spheres with surface adhesion. J. Chem. Phys., 49, 2770.
Bee, M. 1988. Quasielastic Neutron Scattering. Philadelphia, PA: Adam Hilger.
Bellissent-Funel, M.-C., Longeville, S., Zanotti, J. M., and Chen, S.-H. 2000. Experimental observation of the alpha relaxation in supercooled water. Phys. Rev. Lett., 85, 3644–3647.
Bellissent-Funel, M. C., Chen, S.-H., and Zanotti, J. M. 1995. Single-particle dynamics of water molecules in confined space. Phys.Rev. E, 51, 4558–4569.
Belloni, L. 1986. Electrostatic interactions in colloidal solutions: comparison between primitive and one-component models. J. Chem. Phys., 85, 519.
Bengtzelius, U., Götze, W., and Sjölander, A. 1984. Dynamics of supercooled liquids and the glass transition. J. Phys. C, 17, 5915.
Berendsen, J. C., Grigera, J. R., and Straatsma, T. P. 1987. The missing term in effective pair potentials. J. Chem. Phys., 91, 6269–6271.
Beresford-Smith, B., and Chan, D. Y. C. 1982. Highly asymmetric electrolytes: A model for strongly interacting colloidal systems. Chem. Phys. Lett., 92, 474–478.
Bergenholtz, J., and Fuchs, M. 1999a. Gel transitions in colloidal suspensions. J. Phys. Condens. Matter, 11, 10171–10182.
Bergenholtz, J., and Fuchs, M. 1999b. Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys.Rev.E, 59, 5706–5715.
Berne, B.J., Pechukas, P., and Harp, G. D. 1968. Molecular reorientation in liquids and gases. J. Chem. Phys., 49, 3125.
Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., El Masri, D., L'Hote, D., Ladieu, F., and Pierno, M. 2005. Direct experimental evidence of a growing length scale accompanying the glass transition. Science, 310, 1797–1800.
Bertrand, C. E., and Anisimov, M. A. 2011. Peculiar thermodynamics of the second critical point in supercooled water. J. Phys. Chem., B115, 14099–14111.
Bertrand, C. E., Zhang, Y., and Chen, S.-H. 2013a. Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid–liquid critical point hypothesis. Phys. Chem. Chem. Phys., 15, 721–745.
Bertrand, C. E., Liu, K.-H., Mamontov, E., and Chen, S.-H. 2013b. Hydration-dependent dynamics of deeply cooled water under strong confinement. Phys. Rev., E87, 042312.
Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E., and Sciortino, F. 2006. Phase diagram of patchy colloids: towards empty liquids. Phys. Rev. Lett., 97, 168301.
Bianchi, E., Tartaglia, P., La Nave, E., and Sciortino, F. 2007. Fully solvable equilibrium self-assembly process: fine-tuning the clusters size and the connectivity in patchy particle systems. J. Phys. Chem. B, 111, 11765–11769.
Binder, K., and Kob, W. 2011. Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics. World Scientific.
Binder, K., Virnau, P., Wilms, D., and Winkler, A. 2011. Spurious character of singularities associated with phase transitions in cylindrical pores. Eur. Phys. J. Special Topics, 197, 227–241.
Blum, L. 1980. Primitive electrolytes in the mean spherical approximation. In: Theoretical Chemistry: Advances and Perspectives, Vol. 5. New York: Academic Press pp. 1–65.
Blum, L., and Høye, J. S. 1978. Solution of the Ornstein–Zernike equation with Yukawa closure for a mixture. J. Stat. Phys., 19, 319–324.
Boon, J. P., and Yip, S. 1980. Molecular Hydrodynamics. New York: McGraw-Hill.
Boonyaratanakornkit, B. B., Park, C. B., and Clark, D. S. 2002. Pressure effects on intraand intermolecular interactions within proteins. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1595, 235–249.
Born, B., Weingartner, H., Brandermann, E., and Havenith, M. 2009. Observation of the onset of collective network moions. J. Am. Chem. Soc., 131, 3752–3755.
Boue, L., Hentschel, H. G. E., Ilyin, V., and Procaccia, L. I. 2011. Statistical mechanics of glass formation in molecular liquids with OTP as an example. J. Phys. Chem. B, 115, 14301–14310.
Brambilla, G., El Masri, D., Pierno, M., Berthier, L., Cipelletti, L., Petekidi, G., and Schofield, A. B. 2009. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett., 102, 085703.
Brovchenko, I., and Oleinikova, A. 2008. Interfacial and Confined Water. New York: Elsevier.
Burkel, E. 1999. Inelastic Scattering of X-rays with Very High Energy Resolution. Berlin: Springer-Verlag.
Burkel, E. 2000. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys., 63, 171–232.
Cabane, B., and Duplessix, R. 1982. Organization of surfactant micelles adsorbed on a polymer molecule in water: a neutron scattering study. J. Phys., 43, 1529–1542.
Caliskan, G., Kisliuk, A., and Sokolov, A. P. 2002. Dynamic transition in lysozyme: role of a solvent. Journal ofNon-Crystalline Solids, 307, 868–873.
Caliskan, G., Briber, R. M., Thirumalai, D., Garcia-Sakai, V., Woodson, S. A., and Sokolov, A. P. 2006. Dynamic transition in tRNA is solvent induced. J. Am. Chem. Soc., 128, 32–33.
Cametti, C., Codastefano, P., Tartaglia, P., Rouch, J., and Chen, S.-H. 1990. Theory and experiment of electrical conductivity and percolation locus in water-in-oil microemulsions. Phys. Rev. Lett., 64, 1461–1464.
Cardinaux, F., Gibaud, T., Stradner, A., and Schurtenberger, P. 2007. Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions. Phys. Rev. Lett., 99, 118301.
Careri, G., Gratton, E., Yang, P.-H., and Rupley, J. A. 1980. Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements in lysozyme power. Nature, 284, 572–573.
Carnahan, N. F., and Starling, K. E. 1969. Equation of state for nonattracting rigid spheres. J. Chem. Phys., 51, 635–636.
Carpineti, M., and Giglio, M. 1992. Spinodal-type dynamics in fractal aggregation of colloidal clusters. Phys. Rev. Lett., 68, 3327.
Cerveny, S., Colmenero, J., and Algerià, A. 2006. Comment on: ‘Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water’. Phys. Rev. Lett., 97, 189802.
Chalikian, T.V., Voelker, J., Anafi, D., and Breslauer, K.J. 1997. The native and the heat-induced denatured states of τ-chymotrypsinogen A: thermodynamic and spectroscopic studies. J. Mol. Biol., 274, 237–252.
Chandler, D. 1987. Introduction to Modern Statistical Mechanics. Oxford: Oxford University Press.
Chandler, D. 2005. Interfaces and the driving force of hydrophobic assembly. Nature, 437, 640–647.
Chandler, D., Weeks, J. D., and Andersen, H. C. 1983. Van der Waals picture of liquids, solids, and phase transformations. Science, 220, 787–794.
Chang, J., and Sillescu, H. 1997. Heterogeneity at the glass transition: translational and rotational self-diffusion. J. Phys. Chem. B, 101, 8794–8801.
Chen, S.-H. 1971. Physical Chemistry: An Advanced Treatise, Vol. 8a. New York: Academic Press.
Chen, S.-H. 1986. Small angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Ann. Rev. Phys. Chem., 37, 351–399.
Chen, S.-H. 1991. Quasi-elastic and inelastic neutron scattering and molecular dynamics of water at supercooled temperature. In Dore, J. C., and Teixeira, J. (eds), Hydrogen Bonded Liquids, vol. 329. NATO ASI Series pp. 289–332.
Chen, S.-H., and Lin, T.L. 1986. Thermal Neutron Scattering. New York: Academic Press.
Chen, S.-H., and Sheu, E. Y. 1990. Micellar Solution and Microemulsions. Berlin: Springer-Verlag.
Chen, S.-H., and Teixeira, J. 1986. Structure and fractal dimension of protein-detergent complexes. Phys. Rev. Lett., 57, 2583–2586.
Chen, S.-H., and Yip, S. 1976. Neutron molecular spectroscopy. Phys. Today, 29, 32.
Chen, S.-H., Lefevre, Y., and Yip, S. 1973. Kinetic theory of collision line narrowing in pressurized hydrogen gas. Phys. Rev. A, 8, 3163.
Chen, S.-H., Lai, C. C., Rouch, J., and Tartaglia, P. 1982. Critical phenomena in a binary mixture of n- hexane and nitrobenzene. Analysis of viscosity and light-scattering data. Phys.Rev.A, 27, 1086.
Chen, S.-H., Toukan, K., Loong, C.-K., Price, D. L., and Teixeira, J. 1984. Hydrogen-bond spectroscopy of water by neutron scattering. Phys. Rev. Lett., 53, 1360–1363.
Chen, S.-H., Rouch, J., Sciortino, F., and Tartaglia, P. 1994. Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points. J. Phys. Condens. Matter, 6, 10855–10883.
Chen, S.-H., Liao, C., Sciortino, F., Gallo, P., and Tartaglia, P. 1999. Models for single-particle dynamics in supercooled water. Phys.Rev.E, 59, 6708–6714.
Chen, S.-H., Liao, C.-Y., Huang, H.-W., Weiss, T.M., Bellisent-Funel, M. C., and Sette, F. 2001. collective dynamics in fully hydrated phospholipid bilayers studied by inelastic X-ray scattering. Phys. Rev. Lett., 86, 740–743.
Chen, S.-H., Chen, W. R., and Mallamace, F. 2003. The glass-to-glass transition and its end point in a copolymer micellar system. Science, 300, 619.
Chen, S.-H., Liu, L., Chu, X.-Q., Zhang, Y., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. 2006a. Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. J. Chem. Phys., 125, 171103.
Chen, S.-H., Liu, L., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. 2006b. Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc. Natl. Acad. Sci. USA, 103, 9012–9016.
Chen, S.-H., Liu, L., and Faraone, A. 2006c. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water [Reply to Comment]. Phys. Rev. Lett., 97, 189803.
Chen, S.-H., Mallamace, F., Mou, C.-Y., Broccio, M., Corsaro, C., Farone, A., and Liu, L. 2006d. The violation of Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. USA, 103, 12974–12978.
Chen, S.-H., Broccio, M., Liu, Y., Fratini, E., and Baglioni, P. 2007. The two-Yukawa model and its applications: the cases of charged proteins and copolymer micellar solutions. J. Appl. Cryst., 40, s321–s326.
Chen, S.-H., Mallamace, F., Liu, L., Liu, D., Chu, X.-Q., Zhang, Y., Kim, C., Faraone, A., Mou, C.-Y., Fratini, E., Baglioni, P., KolesnikovA, I. A, I., and Garcia-Sakai, V. 2008. Dynamic crossover phenomenon in confined supercooled water and its relation to the existence of a liquid-liquid critical point in water. AIP Conference Proceedings, 982, 39–52.
Chen, S.-H., Chu, X.-Q., Lagi, M., Liu, D., Chu, X.-C., Zhang, Y., Kim, C., Farone, A., Mou, C.-Y., Fratini, E., Baglioni, P., KolesnikovA, I. A, I., and Garcia-Sakai, V. 2009a. Dynamical coupling between a globular protein and its hydration water studied by neutron scattering and MD simulation. In: WPI-AIMR-2009 Proceedings.
Chen, S.-H., Zhang, Y., Lagi, M., S.-H., Chong, Baglioni, P., and Mallamace, F. 2009b. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory. J. Phys.: Condens. Matter, 21, 504102.
Chen, S.-H., Zhang, Y., Lagi, M., Chu, X.-Q., Liu, L., Faraone, A., Fratini, E., and Baglioni, P. 2010a. The dynamic response function T (Q, t) of confined supercooled water and its relation to the dynamic crossover phenomenon. Z. Phys. Chem., 224, 109–131.
Chen, S.-H., Lagi, M., Chu, X.-Q., Zhang, Y., Kim, C., Faraone, A., Fratini, E., and Baglioni, P. 2010b. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations. Spectroscopy: Biomedical Applications, 24, 1–24.
Chen, S.-H., Wang, Z., Kolesnikov, A.I., Zhang, Y., and Liu, K.H. 2013. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering. AIP Conference Proc., 1518, 77–85.
Chen, W.-R., Chen, S.-H., and Mallamace, F. 2002. Small-angle neutron scattering study of the temperature-dependent attractive interaction in dense L64 copolymer micellar solutions and its relation to kinetic glass transition. Phys. Rev. E, 66, 021403.
Chiang, W.-S., Fratini, E., Baglioni, P., Liu, D., and Chen, S.-H. 2012. Microstructure determination of calcium-silicate-hydrate globules by small-angle neutron scattering. J. Phys. Chem. C, 116, 5055–5061.
Chiew, Y. C., and Glandt, E. D. 1983. Percolation behaviour of permeable and of adhesive spheres. J. Phys. A: Math. Gen., 16, 2599.
Chong, S.-H. 2008. Connections of activated hopping processes with the breakdown of the Stokes–Einstein relation and with aspects of dynamical heterogeneities. Phys. Rev. E, 78, 041501.
Chong, S.-H., Chen, S.-H., and Mallamace, F. 2009. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. J. Phys. Condens. Matter, 21, 504101.
Chu, X.-Q., Kolesnikov, A. I., Moravsky, A. P., Garcia-Sakai, V., and Chen, S.-H. 2007. Observation of a dynamic crossover in water confined in double-wall carbon nanotubes. Phys.Rev.E, 76, 021505.
Chu, X.-Q., Fratini, E., Baglioni, P., Faraone, A., and Chen, S.-H. 2008. Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Phys.Rev.E, 77, 011908.
Chu, X.-Q., Faraone, A., Kim, C., Fratini, E., Baglioni, P., Leao, J. B., and Chen, S.-H. 2009., Proteins remain soft at lower temperatures under pressure. J. Phys. Chem., B113, 5001.
Chu, X.-Q., Liu, K.-H., Tyagi, M.S., Mou, C.-Y., and Chen, S.-H. 2010. Low-temperature dynamics of water confined in a hydrophobic mesoporous material. Phys. Rev. E, 82, 020501.
Chu, X.-Q., Mamontov, E., O'Neill, H., and Zhang, Q. 2012. Apparent decoupling of the dynamics of a protein from the dynamics of its aqueous solvent. J. Phys. Chem. Lett., 3, 380–385.
Chumakov, A.I., Monaco, G., and Monaco, A. et al. 2011. Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett., 106, 225501.
Cohen, M.H., and Turnbull, D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys., 31, 1164.
Cohen, E. D. G., and de Schepper, I. M. 1990. Effective eigenmode description of dynamical processes in dense classical fluids and fluid mixtures. Nuovo Cimento, 12, 521.
Cohen, E.G.D., de Schepper, I.M., and Zuilhof, M.J. 1984. Kinetic theory of the eigenmodes of classical fluids and neutron scattering. Physica B, C127, 282–291.
Coniglio, A., and Klein, W. 1980. Clusters and Ising critical droplets: a renormalisation group approach. J. Phys. A: Math. Gen., 13, 2775.
Coniglio, A., De Angelis, U., and Forlani, A. 1977. Pair connectedness and cluster size. J. Phys. A: Mat, 10, 1123.
Copley, J. R. D., and Cook, J. C. 2003. The disk chopper spectrometer at NIST: a new instrument for quasielastic neutron scattering studies. Chem. Phys., 292, 477.
Corezzi, S., De Michele, C., Zaccarelli, E., Fioretto, D., and Sciortino, F. 2008. A molecular dynamics study of chemical gelation in a patchy particle model. Soft Matter, 4, 1173–1177.
Corezzi, S., De Michele, C., Zaccarelli, E., Tartaglia, P., and Sciortino, F. 2009. Connecting irreversible to reversible aggregation: time and temperature. J. Phys. Chem. B, 113, 1233–1236.
Daniel, I., Oger, P., and Winter, R. 2006. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev., 35, 858–875.
Dawson, K. A., Foffi, G., Fuchs, M. et al. 2000. Higher-order glass-transition singularities in colloidal systems with attractive interactions. Phys. Rev. E, 63, 011401–1–011401–17.
De Michele, C., Gabrielli, S., Tartaglia, P., and Sciortino, F. 2006a. Dynamics in the presence of attractive patchy interactions. J. Phys. Chem. B, 110, 8064–8079.
De Michele, C., Tartaglia, P., and Sciortino, F. 2006b. Slow dynamics in a primitive tetrahedral network model. J. Chem. Phys., 125, 204710–1–204710–8.
de Schepper, I. M., Cohen, E. G. D., Bruin, C., van Rijs, J. C., Montfrooij, W., and de Graaf, L. A. 1988. Hydrodynamic time correlation functions for a Lennard-Jones fluid. Phys.Rev. A, 38, 271–287.
Domb, C. 1996. The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena. London: Taylor and Francis.
Dore, J. C., and Teixeira, J. 1991. Hydrogen-bonded Liquids. Dordrecht: Kluwer Academic.
Doster, W., Cusack, S., and Petry, W. 1989. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337, 754–756.
Doster, W., Busch, S., Gaspar, A. M., Appavou, M.-S., Wuttke, J., and Scheer, H. 2010. Dynamical transition of protein-hydration water. Phys. Rev. Lett., 104, 098101.
Douglas, J. F., and Leporini, D. 1998. Obstruction model of the fractional Stokes–Einstein relation in glass-forming liquids. J. Non-Cryst. Solids, 235237, 137–141.
Eckmann, J. P., and Procaccia, I. 2008. Ergodicity and slowing down in glass-forming systems withsoft potentials: No finite-temperature singularities. Phys. Rev. E, 78, 011503.
Egelstaff, P. A. 1994. An Introduction to the Liquid State. Oxford: Clarendon Press.
Egelstaff, P. A. 1967. Thermal Neutron Scattering. New York: Academic Press.
Ehlers, G., Podlesnyak, A. A., Niedziela, J.L., Iverson, E.B., and Sokol, P.E. 2011. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. Rev. Sci. Instrum., 82, 85108.
Eisenberger, P., and Platzman, P. M. 1970. Compton scattering of X-rays from bound electrons. Phys. Rev. A, 2, 415.
Erko, M., Wallacher, D., Hoell, A., Hau, T., Zizak, I., and Paris, O. 2012. Density minimum of confined water at low temperatures: A combined study by small-angle scattering of X-rays and neutrons. Phys. Chem. Chem. Phys., 14, 3852–3858.
Evans, R. 1990. Fluids adsorbed in narrow pores – phase-equilibria and structure. J. Phys. Conden. Matt., 2, 8989–9007.
Fabbian, L., Gotze, W., Sciortino, F., Tartaglia, P., and Thiery, F. 1999. Ideal glass–glass transitions and logarithmic decay of correlations in a simple system. Phys.Rev.E, 59, R1347–R1350.
Fak, B., and Dorner, B. 1997. Damped harmonic oscillator fitting function, including Bose factor. Physica B, 234-236, 1107.
Faraone, A., Chen, S.-H., Fratini, E., Baglioni, P., Liu, L., and Brown, C. 2002. Rotational dynamics of hydration water in dicalcium silicate by quasi-elastic neutron scattering. Phys. Rev. E, 65, 040501.
Faraone, A., Liu, L., Mou, C.-Y., Shih, P. C., Brown, C., Copley, J. R. D., Dimeo, R. M., and Chen, S.-H. 2003a. Dynamics of supercooled water in mesoporous silica matrix MCM-48-S. Eur. Phys. J., E12, S59–S62.
Faraone, A., Liu, L., Mou, C. -Y., Shih, P.-C., Copley, J.R.D., and Chen, S.-H. 2003b. Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S. J. Chem. Phys., 119, 3963–3971.
Faraone, A., Liu, L., Mou, C.-Y., Yen, C.-W., and Chen, S.-H. 2004. Fragile-to-strong liquid transition in deeply supercooled confined water. J. Chem. Phys., 121, 10843–10846.
Faraone, A., Zhang, Y., Liu, K.-H., Mou, C.-Y., and Chen, S.-H. 2009. Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. J. Chem. Phys., 130, 134512.
Fayer, M. D., and Levinger, N. E. 2010. Analysis of water in confined geometries and at interfaces. Annual Review of Analytical Chemistry, 3, 89–107.
Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Parak, F. G. 2002. Slaving: solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA, 99, 16047.
Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Young, R. D. 2004. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA, 101, 14408.
Fenimore, P. W., Frauenfelder, H., Magazú, S. et al. 2013. Concepts and problems in protein dynamics. Chem. Phys., 424, 2.
Fernandez-Alonso, F., Bermejo, F. J., McLain, S. E. et al. 2007. Observation of fractional Stokes–Einstein behavior in the simplest hydrogen-bonded liquid. Phys. Rev. Lett., 98, 077801.
Fisher, M. E., and Barber, M. N. 1972. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett., 28, 1516.
Flory, P. J. 1953. Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press.
Foffi, G., Zaccarelli, E., Sciortino, F., Tartaglia, P., and Dawson, K. A. 2000. Kinetic arrest originating in competition between attractive interaction and packing force. J. Stat. Phys., 100, 363.
Ford, M. H., Auerbach, S. M., and Monson, P. A. 2004. On the mechanical properties and phase behavior of silica: a simple model based on low coordination and strong association. J. Chem. Phys., 121, 8415.
Franks, F. 2000. Water: A Matrix of Life, 2nd edn. Cambridge: Royal Society of Chemistry.
Fratini, E., Chen, S.-H., Baglioni, P., and Bellissent-Funel, M.-C. 2001. Age-dependent dynamics of water in hydrated cement paste. Phys. Rev. E, 64, 020201.
Frauenfelder, H., Chen, G., Berendzen, J. et al. 2009. A unified model of protein dynamics. PNAS, 106, 5129.
Freidman, H. L. 1985. A Course in Statistical Mechanics. New York: Prentice-Hall.
Frick, B., and Richter, D. 1995. The microscopic basis of the glass transition in polymers from neutron scattering studies. Science, 267, 1939.
Fuentevilla, D. A., and Anisimov, M. A. 2006. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys. Rev. Lett., 97, 195702.
Gallo, P., Sciortino, F., Tartaglia, P., and Chen, S.-H. 1996. Slow dynamics of water molecules in supercooled states. Phys. Rev. Lett., 76, 2730–2733.
Gallo, P., Rovere, M., and Spohr, E. 2000. Glass transition and layering effects in confined water: a computer simulation study. J. Chem. Phys., 113, 11324–11335.
Gallo, P., Rovere, M., and Chen, S.-H. 2010a. Anomalous dynamics of water confined in MCM-41 at different hydrations. J. Phys.: Condens. Matter, 22, 284102.
Gallo, P., Rovere, M., and Chen, S.-H. 2010b. Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement. J. Phys. Chem. Lett., 1, 729–733.
Gallo, P., Rovere, M., and Chen, S.-H. 2012. Water confined in MCM-41: a mode coupling theory analysis. J. Phys.: Condens. Matter, 24, 064109.
Garrahan, J. P., and Chandler, D. 2003. Coarse-grained microscopic model of glass-formers. PNAS, 100, 9710–9714.
Gelb, L.D., Gubbins, K. E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M. 1999. Phase separation in confined systems. Rep. Prog. Phys., 62, 1573–1659.
Götze, W. 1991. Liquids, Freezing and the Glass Transition. Amsterdam: Elsevier.
Götze, W. 2009. Complex Dynamics of Glass-Forming Liquids. Oxford: Oxford University Press.
Götze, W., and Sjögren, L. 1987. The glass transition singularity. Z. Phys. B, 65, 415–427.
Götze, W., and Sjögren, L. 1992. Relaxation processes in supercooled liquids. Rep. Prog. Phys., 55, 241–376.
Götze, W., and Sperl, M. 2004. Critical decay at higher-order glass-transition singularities. J. Phys. Condens. Matt., 16, S4807.
Götze, W., and Voigtmann, Th. 2003. Effect of composition changes on the structural relaxation of a binary mixture. Phys.Rev.E, 67, 021502–1–021502–14.
Granroth, G. E., Kolesnikov, A. I., Sherline, T. E. et al. 2010. SEQUOIA: a newly operating chopper spectrometer at the SNS. AIP Conference Proceedings, 251, 012058.
Grimm, G., Stiller, H., Majkrzak, C. F., Rupprecht, A., and Dahlborg, U. 1987. Observation of acoustic umklapp-phonons in water-stabilized DNA by neutron scattering. Phys. Rev. Lett., 59, 1780–1783.
Guo, X. H., and Chen, S.-H. 1990. Reptation mechanism in protein-sodium-dodecylsulfate (SDS) polyacrylamide-gel electrophoresis. Phys. Rev. Lett., 64, 2579–2582.
Guo, X. H., Zhao, N. M., Chen, S. H., and Teixeira, J. 1990. Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers, 29, 335–346.
Hansen, J.-P., and McDonald, I. R. 2006. Theory ofSimple Liquids, 3rd edn. New York: Academic Press.
Hayter, J. B., and Penfold, J. 1981. An analytic structure factor for macroion solutions. Mol. Phys., 42, 109–118.
He, Y., Ku, P. I., Knab, J. R., Chen, J. Y., and Markelz, A. G. 2008. Protein dynamical transition does not require protein structure. Phys. Rev. Lett., 101, 178103.
He, Y., Chen, J.-Y., Knab, J.R., Zheng, W., and Markelz, A. G. 2011. Evidence of protein collective motions on the Picosecond timescale. Biophys. J., 100, 1058–1065.
Heremans, K., and Smeller, L. 1998. Protein structure and dynamics at high pressure. Biochimica Et Biophysica Acta–Protein Structure and Molecular Enzymology, 1386, 353–370.
Higgins, J. S., Nicholson, L. K.,and Hayter, J. B. 1981. Observation of single chain motion: a polymer melt. Polymer, 22, 163–167.
Hildebrandt, G. 1979. X-ray linear absorption coefficients for silicon and germanium in the energy range 5 to 50 keV. Acta. Cryst. A, 35, 696–697.
Hohenberg, P.C., and Halperin, B.I. 1977. Theory of dynamic critical phenomena. Rev. Mod Phys, 49, 435–479.
Holten, V., Bertrand, C. E., Anisimov, M. A., and Sengers, J. V. 2012. Thermodynamics of supercooled water. J. Chem. Phys., 136, 094507.
Holz, M., and Chen, S.-H. 1978. Quasi-elastic light scattering from migrating chemo static bands of E. Coli. Biophys. J., 23, 15.
Horn, H.W., Swope, W.C., Pitera, J. W. et al. 2004. Development of an improved foursite water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 120, 9665–9678.
Hrubý, J., Vinš, V., Mareš, R., Hykl, J., and Kalovà, J. 2014. Surface tension of supercooled water: no inflection point down to ≈ 25°C. J. Phys. Chem. Lett., 5, 425428.
Ito, K., Moynihan, C.T., and Angell, C. A. 1999. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature, 398, 492–495.
Jennings, H. M. 2000. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Res., 30, 101–116.
Jennings, H.M. 2008. Refinements to colloid model of C-S-H in cement: CM-II. Cement and Concrete Res., 38, 275–289.
Jorgensen, W.L., and Tiradorives, J. 1988. The Opls potential functions for proteins – energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc., 110, 1657–1666.
Jung, Y. J., Garrahan, J. P., and Chandler, D. 2004. Excitation lines and the breakdown of the Stokes-Einstein relation in supercooled liquids. Phys.Rev.E, 69, 061205.
Kamgar-Parsi, B., Cohen, E. G. D., and de Schepper, I. M. 1987. Dynamical processes in hard-sphere fluids. Phys. Rev. A, 35, 4781.
Kanno, H., Speedy, R. J., and Angell, C. A. 1975. Supercooling of water to – 92°C under pressure. Science, 189, 880–881.
Kautzmann, W. 1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 14, 1–63.
Kawasaki, K. 1986. Mode coupling and critical dynamics. In: Domb, C., and Green, M. S. (eds), Phase Transitions and Critical Phenomena, Vol. 5a. New York: Academic Press.
Kawasaki, K., and Lo, S. M. 1972. Nonlocal shear viscosity and order-parameter dynamics near the critical point of fluids. Phys. Rev. Lett., 29, 48.
Khodadadi, S., Pawlus, S., Roh, J. H., Sakai, V. G., and Mamontov, E. 2008. The origin of the dynamic transition in proteins. J. Chem. Phys., 128, 195101–195106.
Kim, C. 2008. Simulation Studies of Slow Dynamics of Hydration Water in Lysozyme: Hydration Level Dependence and Comparison with Experiment using New Time Domain Analysis. M.Phil. thesis, Department of Nuclear Science and Engineering, MIT.
Kittel, C. 1963. Quantum Theory of Solids. NewYork: JohnWiley.
Koester, L., Rauch, H., Herkens, M., and Schrder, K. 1981. Summary of Neutron Scattering Length. KFA-Report, Jl-1755.Jlich, GmBH: Kernforschungsanlage.
Kolafa, J., and Nezbeda, I. 1987. Monte Carlo simulations on primitive models of water and methanol. Mol. Phys., 61, 161175.
Kolesnikov, A. I., Sinitsyn, V. V., Ponyatovsky, E. G., Natkaniec, I., and Smirnov, L. S. 1994. Neutron scattering studies of the vibrational spectrum of high-density amorphous ice in comparison with ice Ih and VI. J. Phys.: Condens. Matter., 6, 375–382.
Kolesnikov, A. I., Li, J., Dong, S. et al. 1997. Neutron scattering studies of vapor deposited amorphous ice. Phys. Rev. Lett., 79, 1869–1872.
Kolesnikov, A. I., Li, J., Parker, S. F., Eccleston, R. S., and Loong, C.-K. 1999. Vibrational dynamics of amorphous ice. Phys. Rev., B, 59, 3569–3578.
Kotlarchyk, M., and Chen, S.-H. 1983. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem. Phys., 79, 2461.
Krishnamurthy, S., Bansil, R., and Wiafe-Akenten. 1983. Low frequency Raman spectrum of supercooled water. J. Chem. Phys., 79, 5863.
Kumar, P. 2006. Breakdown of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. USA, 103, 12955–12956.
Kumar, P., Yan, Z., Xu, L., Mazza, M. G., Buldyrev, S. V., Chen, S.-H., Sastry, S., and Stanley, H. E. 2006. Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett., 97, 177802–177806.
Kumar, P., Wikfeldt, K. T., Schlesinger, D., Pettersson, L. G. M., and Stanley, H. E. 2013. The Boson peak in supercooled water. Scientific Reports, 3, 1980.
Lagi, M., Chu, X.-Q., Kim, C., Mallamace, F., Baglioni, P., and Chen, S.-H. 2008. The low temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments. J. Phys. Chem. B, 112, 1571–1575.
Lai, C. C. 1972. Light Intensity Correlation Spectroscopy and its Application to Study of Critical Phenomena and Biological Problems. Ph.D. thesis, MIT, Cambridge|MA.
Landau, L. D., and Lifshitz, E. M. 1960. Electrodynamics of Continuous Media.Reading, MA: Addison-Wesley.
Largo, J., Starr, F. W., and Sciortino, F. 2007. Self-assembling DNA dendrimers: a numerical study. Langmuir, 23, 5896–5905.
Laughlin, W. T., and Uhlmann, D. R. 1972. Viscous flow in simple organic liquids. J. Phys. Chem., 76, 2317–2325.
Leone, N., Villari, V., and Micali, N. 2012. Modulated heterodyne light scattering set-up for measuring long relaxation time at small and wide angle. Rev. Sci. Instrum., 83, 083102.
Leu, B., Alatas, A., Sinn, H. et al. 2010. Protein elasticity probed with two synchrotron based techniques. J. Chem. Phys., 132, 085103.
Li, J. 1996. Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys., 105, 6733–6755.
Li, J., and Kolesnikov, A. I. 2002. Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq., 100, 1–39.
Li, M., Chu, X.-Q., Fratini, E., Baglioni, P., Alatas, A., Alp, E. and Chen, S.-H. 2011. Phonon-like excitation in secondary and tertiary structure of hydrated protein powders. Soft Matter, 7, 9848.
Liao, C.-Y., and Chen, S.-H. 2001. Theory of the generalized dynamic structure factor of polyatomic molecular fluids measured by inelastic X-ray scattering. Phys. Rev. E, 64, 021205.
Liao, C., Choi, S.M., Mallamace, F., and Chen, S.-H. 2000a. SANS study of the structure and interaction of L64 triblock copolymer micellar solution in the critical region. J. Appl. Crystallogr., 33, 677.
Liao, C.-Y., Chen, S.-H., and Sette, F. 2000b. Analysis of inelastic x-ray scattering spectra of low-temperature water. Phys. Rev. E, 61, 1518–1526.
Lichtenegger, H., Doster, W., Kleinert, T., Birk, A., Sepiol, B., and Vogl, G. 1999. Heme-solvent coupling: A Mssbauer study of myoglobin in sucrose. Biophys. J., 76, 414–422.
Lide, D. R. 2007. CRC Handbook of Chemistry and Physics. Boca Raton, FL: Taylor and Francis.
Limmer, D. T., and Chandler, D. 2011. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J. Chem. Phys., 135, 134503.
Limmer, D. T., and Chandler, D. 2012. Phase diagram of supercooled water confined to hydrophilic nanopores. J. Chem. Phys., 137, 044509.
Lindahl, E., Hess, B., and van der Spoel, D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model., 7, 306–317.
Liu, D., Zhang, Y., Chen, C.-C., Mou, C.-Y., Poole, P. H., and Chen, S.-H. 2007. Observation of the density minimum in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA, 104, 9570–9574.
Liu, D., Zhang, Y., Liu, Y., Wu, J. L., Chen, C. C., Mou, C. Y., and Chen, S.-H. 2008a. Density measurement of 1-d confined water by small angle neutron scattering method: pore size and hydration level dependences. J. Phys. Chem. B, 112, 4309–4312.
Liu, D., Chu, X.-Q., Lagi, M., Zhang, Y., Fratini, E., Baglioni, P., Alatas, A., Said, A., Alp, E., and Chen, S.-H. 2008b. Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering. Phys. Rev. Lett., 101, 135501.
Liu, K.-H., Zhang, Y., Lee, J.-J., Chen, C.-C., Yen, Y.-Q., Chen, S.-H., and Mou, C.-Y. 2013. Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction. J. Chem. Phys., 139, 064503.
Liu, L., Faraone, A., and Chen, S.-H. 2002. A model for the rotational contribution to quasi-elastic neutron scattering spectra from supercooled water. Phys. Rev. E, 65, 041506.
Liu, L., Faraone, A., Mou, C.-Y., Shih, P. C., and Chen, S.-H. 2004a. Slow dynamics of supercooled water. J. Phys.: Condens. Matter, 16, S5403–S5436.
Liu, L., Chen, S.-H., Faraone, A., Yen, C.-W., and Mou, C.-Y. 2005b. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett., 95, 117802.
Liu, L., Chen, S.-H., Faraone, A., Yen, C. W., Mou, C.-Y., Kolesnikov, A., Mamontov, E., and Leao, J. 2006. Quasielastic and inelastic neutron scattering investigation of fragile-to-strong transition in deeply supercooled water confined in nanoporous silica matrices. J. Phys.: Condens. Matter, 18, S2261–S2284.
Liu, Y., Berti, D., Faraone, A., Chen, W.-R., Alatas, A., Sinn, H., Alp, E., Baglioni, P., and Chen, S.-H. 2004. Inelastic x-ray scattering studies of phonons in liquid crystalline DNA. Phys. Chem. Chem. Phys., 6, 1499.
Liu, Y., Chen, W.-R., and Chen, S.-H. 2005a. Cluster formation in two Yukawa fluids. J. Chem. Phys., 122, 044507.
Liu, Y., Chen, S.-H., Berti, D., Baglioni, P., Alatas, A.Sinn, H., Alp, E., and Said, A. 2005c. Effects of counterion valency on the damping of phonons propagating along the axial direction of liquid-crystalline DNA. J. Chem. Phys., 123, 214909.
Liu, Y., Palmer, J. C., Panagiotopoulos, A. Z., and Debenddetti, P. G. 2012. Liquid-liquid transition in ST2 water. J. Chem. Phys., 137, 214505.
Liu, Y.-C., Chen, S.-H., and Huang, J.-S. 1996. Relationship between the microstructure and rheology of micellar solutions formed by a triblock copolymer surfactant. Phys. Rev. E, 54, 1698.
Lo, S. M., and Kawasaki, K. 1973. Frequency-dependence correction to the order-parameter decay rates near the critical point of fluids. Phys. Rev. A, 8, 2176.
Lundahl, P. et al. 1986. A model for ionic and hydrophobic interactions and hydrogen-bonding in sodium dodecyl sulfate-protein complexes. Biochem. Biophys. Acta, 873, 20–26.
Magazù, S., Migliardo, F., and Benedetto, A. 2011. Puzzle of protein dynamical transition. J. Phys. Chem., B115, 7736–7743.
Makino, S. 1979. Interaction of proteins with amphiphilic substances. Adv. Biophys, 12, 131–184.
Mallamace, F., Gambadauro, P., Micali, N., Tartaglia, P., Liao, C., and Chen, S.-H. 2000. Kinetic glass transition in a micellar system with short-range attractive interaction. Phys. Rev. Lett., 84, 5431–5434.
Mallamace, F., Broccio, M., Corsaro, C. et al. 2006. The fragile-to-strong dynamic crossover transition in confined water: NMR results. J. Chem Phys., 124, 161102.
Mallamace, F., Branca, C., Broccio, M., Corsaro, C., Mou, C.-Y., and Chen, S.-H. 2007a. The anomalous behaviour of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci., 104, 18387.
Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Majolino, D., Venuti, V., Liu, L., Mou, C.-Y., and Chen, S.-H. 2007b. Evidence of the existence of the low-density liquid phase in supercooled confined water. Proc. Natl. Acad. Sci. USA, 104, 424–428.
Mallamace, F., Chen, S.-H., Broccio, M., Corsaro, C., Crupi, V., Majolino, D., Venuti, V., Baglioni, P., Fratini, E., Vannucci, C., and Stanley, H. E. 2007c. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system. J. Chem Phys., 127, 045104.
Mallamace, F., Branca, C., Corsaro, C., Leone, N., Spooren, J., Chen, S.-H., and Stanley, H. E. 2010. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA, 107, 22457–22462.
Mallamace, F., Corsaro, C., Leone, N., Villari, V., Micali, N., and Chen, S.-H. 2014. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case. Nature: Sci. Reports, 4, 3747.
Mamontov, E., and Chu, X.-Q. 2012. Water-protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Phys. Chem. Chem. Phys., 14, 11573.
Mamontov, E., and Herwig, K. W. 2011. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum., 82, 85109.
Mamontov, E., Burnham, C. J., Chen, S.-H., Moravsky, A. P., Loong, C. K., de Souza, N. R., and Kolesnikov, A.I. 2006. Dynamics of water confined in single- and double-wall carbon nanotubes. J. Chem. Phys., 124, 194703.
Mamontov, E., O'Neill, H., and Zhang, Q. 2010. Mean-squared atomic displacements in hydrated lysozyme, native and denatured. J. Biol. Phys., 36, 291–297.
Mancinelli, R., Bruni, F., and Ricci, M. A. 2010. Controversial evidence on the point of minimum density in deeply supercooled confined water. J. Phys. Chem. Lett., 1, 1277–1282.
Manoharan, V. N., Elsesser, M. T., and Pine, D. J. 2003. Dense packing and symmetry in small clusters of microspheres. Science, 301, 483–487.
Mapes, M. K., Swallen, S. F., and Ediger, M. D. 2006. Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J. Phys. Chem. B, 110, 507–511.
Masciovecchio, C., Bergmann, U., Krisch, M. H., Ruocco, G., Sette, F., and Verbeni, R. 1996a. A perfect crystal X-ray analyser with 1.5 meV energy resolution. Nucl. Instrum. Methods, B117, 339–340.
Masciovecchio, C., Bergmann, U., Krisch, M. H., Ruocco, G., Sette, F., and Verbeni, R. 1996b. A perfect crystal X-ray analyser with meV energy resolution. Nucl. Instrum. Methods, B111, 181–186.
Mezard, M., and Parisi, G. 1998. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett., 82, 747–750.
Mishima, O. 1994. Reversible first-order transition between two water amorphs at 0.2 GPa and 135 K. J. Chem. Phys., 100, 5910–5912.
Mishima, O. 2000. Liquid-liquid critical point in heavy water. Phys. Rev. Lett., 85, 334.
Mishima, O. 2005. Application of polyamorphism in water to spontaneous crystallization of emulsified LiClH2O solution. J. Chem. Phys., 123, 154506.
Mishima, O. 2007. Explanation of ‘the mysteries of water’ by a liquid-liquid critical point. Rev. High Pressure Sci. Tech., 17, 352–356.
Mishima, O., and Stanley, H. E. 1998a. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature, 392, 164–168.
Mishima, O., and Stanley, H. E. 1998b. The relationship between liquid, supercooled and glassy water. Nature, 396, 329–335.
Monaco, G., Cunsolo, A., Ruocco, G., and Sette, F. 1999. Viscoelastic behavior of water in the terahertz-frequency range: an inelastic x-ray scattering study. Phys. Rev. E, 60, 5505–5521.
Montfrooij, W., Svensson, E. C., de Schepper, I. M., and Cohen, E. G. D. 1996. Dynamics in He at 4 and 8K from inelastic neutron scattering. J. Low Temp. Phys., 105, 149–183.
Mori, H. 1965. Transport, collective motion, and Brownian motion. Prog. Theor. Phys., 33, 423–455.
Morineau, D., Xia, Y., and Alba-Simionesco, C. 2002. Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores. J. Chem. Phys., 117, 8966.
Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., and Balny, C. 1996. High pressure effects on protein structure and function. Proteins–Structure Function and Genetics, 24, 81–91.
Nelson, C. A. 1971. The binding of detergents to proteins I. The maximum amount of dodecyl sulfate bound to proteins and the resistance to binding of several proteins. J. Biol. Chem., 246, 3895–3901.
Novikov, V. N., and Sokolov, A. P. 2003. Universality of the dynamic crossover in glassforming liquids: a magic relaxation time?Phys. Rev. E, 67, 031507.
Nozieres, P. 1964. Theory of Interacting Fermi Systems. New York: W. A. Benjamin.
Orecchini, A., Paciaorni, A., Bizzarri, A. R., and Cannistraro, S. 2001. Low-frequency vibrational anomalies in -lactoglobulin: contribution of different hydrogen classes revealed by inelastic neutron scattering. J. Phys. Chem. B, 105, 12150.
Orecchini, A., Paciaroni, A., De Francesco, A., Petrillo, C., and Sacchetti, F. 2009. Collective dynamics of protein hydration water by Brillouin neutron spectroscopy. J. Am. Chem. Soc., 131, 4664–4669.
Ornstein, L. S., and Zernike, F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. Akad. Sci. (Amsterdam), 17, 793.
Oxtoby, D. W., and Gelbart, W. M. 1974. Shear viscosity and order parameter dynamics of fluids near the critical point. J. Chem. Phys., 61, 2957.
Paciaroni, A., Cinelli, S., and Onori, G. 2002. Effect of the environment on the protein dynamical transitions: a neutron scattering study. Biophys. J., 83, 1157.
Paciaroni, A., Orecchini, A, Haertlein, M. et al. 2012. Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B, 116, 3861–3865.
Parisi, G. 1980. A sequence of approximated solutions to the S-K model for spin glasse. J. Phys. A: Math. Gen., 13, L115–121.
Paschek, D. 2005. How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phy. Rev. Lett., 94, 217802.
Pawlus, S., Khodadadi, S., and Sokolov, A. P. 2008. Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover. Phys. Rev. Lett., 100, 108103.
Perl, R., and Ferrel, R. A. 1972. Critical viscosity and diffusion in the binary-liquid phase transition. Phys. Rev. Lett., 29, 51.
Pham, K. N. et al. 2002. Multiple glassy states in a simple model system. Science, 296, 104–106.
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. 1992. Phase-Behavior of Metastable Water. Nature, 360, 324–328.
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. 1993. Spinodal of liquid water. Phys. Rev. E, 48, 3799–3817.
Poole, P. H., Saika-Voivod, I., and Sciortino, F. 2005. Density minimum and liquid-liquid phase transition. J. Phys.: Condens. Matt., 17, L431–L437.
Power, E. A., and Thirunamachandran, T. 1978. On the nature of the Hamiltonian for the interaction of radiation with atoms and molecules. Am. J. Phys., 46, 370.
Pusey, P. N., and van Megen, W. 1986. Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature, 320, 340–342.
Pusey, P. N., and van Megen, W. 1989. Dynamic light scattering by non-ergodic media. Physica (Amsterdam), 157A, 705–741.
Rasmussen, B. F., Stock, A. M., Ringe, D., and Petsko, G. A. 1992. Crystalline ribonuclease-a loses function below the dynamic transition at 220-K. Nature, 357, 423–424.
Rauch, H., and Petrascheck, D. 1978. Neutron Diffraction. Berlin: Springer-Verlag.
Reynolds, J. A., and Tanford, C. 1970. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc. Natl. Acad. Sci. USA, 66, 1002–1007.
Ricci, M. A., and Chen, S.-H. 1986. Chemical-bond spectroscopy with neutrons. Phys. Rev. A, 34, 1714–1719.
Ricci, M. A., Chen, S.-H., Price, D. L., Loong, C.-K., Toukan, K., and Teixeira, J. 1986. Observations and interpretation of H-bond breaking by neutron scattering. Physica B & C, 136, 190.
Ridi, F., Fratini, E., and Baglioni, P. 2011. Cement: a two thousand year old nano-colloid. J. Colloid Interface Sci., 357, 255–264.
Roh, J. H., Curtis, J. E., Azzam, S. et al. 2006. Influence of hydration on the dynamics of lysozyme. Biophys. J., 91, 2573.
Romano, F., Tartaglia, P., and Sciortino, F. 2007. Gas-liquid phase coexistence in a tetrahedral patchy particle model. J. Phys.: Condens. Matter, 19, 322101/1–322101/11.
Rontgen, W. C. 1892. Über die Constitution des Flussig–Wassers. Ann. Phys. (Leipzig), 281, 91–97.
Rossky, P. J., and Dale, W. D. T. 1980. Generalized recursive solutions to Ornstein Zernike integral equations. J. Chem. Phys., 73, 2457.
Rouch, J., Tartaglia, P., and Chen, S.-H. 1993. Experimental evidence of nonexponential relaxation near the critical point of a supramolecular liquid mixture. Phys. Rev. Lett., 71, 1947–1950.
Rovere, M., Ricci, M. A., Vellati, D., and Bruni, F. 1998. A molecular dynamics simulation of water confined in a cylindrical SiO2 pore. J. Chem. Phys., 108, 9859–9867.
Rubinstein, M., and Colby, R. H. 2003. Polymer Physics. New York: Oxford University Press.
Ruocco, G., and Sette, F. 1999. The high-frequency dynamics of liquid water. J. Phys.: Condens. Matter, 11, R259.
Rupley, J. A., and Careri, G. 1991. Protein hydration and function. Adv. Protein Chem., 41, 37.
Rupley, J. A., Yang, P. H., and Tollin, G. 1980. Thermodynamic and related studies of water interacting with proteins. In Water in Polymers. ACS Symp. Series, 127, 111–132.
Russel, W. B. 1996. Colloidal Dispersions. London: Cambridge University Press.
Sachs, R. G. 1953. Neutron Diffraction. Reading, MA: Addison-Wesley.
Sastry, S., Debenedetti, P. G., Sciortino, F., and Stanley, H. E. 1996. Singularity-free interpretation of the thermodynamics of supercooled water. Phys.Rev.E, 53, 6144–6154.
Schiró, G., Caronna, C., Natali, F., Koza, M. M., and Cupane, A. 2011. The protein dynamical transition does not require the protein polypeptide chain. J. Phys. Chem. Lett., 2, 2275–2279.
Schiró, G., Natali, F., and Cupane, A. 2012. Physical origin of anharmonic dynamics in proteins: new insights from resolutiondependent neutron scattering on homomeric polypeptides. Phys Rev. Lett., 109, 128102.
Sciortino, F. 2002. One liquid, two glasses. Nature Mat., 1, 145–146.
Sciortino, F. 2008. Gel forming patchy colloids and network glass formers: thermodynamic and dynamic analogies. Eur. Phys. J., B64, 505–509.
Sciortino, F., and Tartaglia, P. 1995. Structure factor scaling during irreversible cluster-cluster aggregation. Phys. Rev. Lett., 74, 282–285.
Sciortino, F., and Tartaglia, P. 2005. Glassy colloidal systems. Adv. Phys., 54, 471–524.
Sciortino, F., Belloni, A., and Tartaglia, P. 1995. Irreversible diffusion-limited cluster aggregation: the behavior of the scattered intensity. Phys.Rev.E, 52, 4068–4079.
Sciortino, F., Gallo, P., Tartaglia, P., and Chen, S.-H. 1996. Supercooled water and the kinetic glass transition. Phys. Rev. E, 54, 6331–6343.
Sciortino, F., Fabbian, L., Chen, S.-H., and Tartaglia, P. 1997. Supercooled water and the kinetic glass transition II: collective dynamics. Phys.Rev.E, 56, 5397–5404.
Sciortino, F., Tartaglia, P., and Zaccarelli, E. 2003. Evidence of a higher-order singularity in dense short-ranged attractive colloids. Phy. Rev. Lett., 91, 268301.
Sciortino, F., Mossa, S., Zaccarelli, E., and Tartaglia, P. 2004. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett., 93, 055701–1–055701–4.
Sciortino, F., Bianchi, E., Douglas, J. F., and Tartaglia, P. 2007. Self-assembly of patchy particles into polymer chains: a parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys., 126, 194903.
Sciortino, F., Saika-Voivod, I., and Poole, P. H. 2011. Study of the ST2 model of water close to the liquid-liquid critical point. Phys. Chem. Chem. Phys., 13, 19759–19764.
Sears, V. F. 1967. Cold neutron scattering by molecular liquids: III. Methane. Can. J. Phys., 45, 237–254.
Sears, V. F. 1978. Dynamic theory of neutron diffraction. Can. J. Phys., 56, 1262.
Sears, V. F. 1989. Neutron Optics. Oxford: Oxford University Press.
Segré, P. N., Prasad, V., Schofield, A. B., and Weitz, D. A. 2001. Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett., 86, 6042–6045.
Sette, F., Ruocco, G., Krisch, M. et al. 1995. Collective dynamics in water by high energy resolution inelastic X-ray scattering. Phys. Rev. Lett., 75, 850–853.
Sette, F., Krisch, M. H., Masciovecchio, C., Ruocco, G., and Monaco, G. 1998. Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science, 280, 1550.
Sheu, E. Y. 1987. Theoretical Development and Experimental Verification of a Primitive Model for the Inter-Micellar Interactions. Ph.D. thesis, MIT, Cambridge, MA.
Shintani, H., and Tanaka, H. 2008. Universal link between the boson peak and transverse phonons in glass. Nature Materials, 7, 870.
Shirahama, K. et al. 1974. Free-boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide complexes with special reference to SDS-polyacrylamide gel electrophoresis. J. Biochem. (Tokyo), 75, 309–319.
Shvyd'ko, Y., Stoupin, S., Shu, D., and Khachatryan, R. 2011. Using angular dispersion and anomalous transmission to shape ultra-monochromatic x-rays. Phys. Rev. A, 84, 053823.
Shvyd'ko, Y. et al. 2013. High contrast inelastic x-ray scattering with sub-meV resolution for nano- and mesoscale science. Preprint.
Silvestre-Albero, A., Jardim, E. O., Bruijn, E., Meynen, V., and Cool, P. 2008. Is there any microporosity in ordered mesoporous silicas?Langmuir: ACS j. surf. colloids, 25, 939–943.
Sinha, S. K., Freltoft, T., and Kjems, J. 1984. Kinetics of Aggregation and Gelation. Amsterdam: Elsevier Press.
Sinn, H. 2001. Spectroscopy with meV energy resolution. J. Phys.: Condens. Matter, 13, 7525.
Sjöström, J., Swenson, J., Bergman, R., and Shigeharu, K. 2008. Investigating hydration dependence of dynamics of confined water: Monolayer, hydration water and Maxwell–Wagner processes. J. Chem. Phys., 128, 154503.
Sokolov, A. P., Roh, J. H., Mamontov, E., and Sakai, V. G. 2008. Role of hydration water in dynamics of biological macromolecules. Chem. Phys., 345, 212–218.
Soper, A. K., and Ricci, M. A. 2000. Structures of high-density and low-density water. Phys. Rev. Lett., 84, 2881–2884.
Speedy, R. J. 1982. Stability-limit conjecture: an interpretation of the properties of water. J. Phys. Chem., 86, 982–991.
Speedy, R. J., and Angell, C. A. 1976. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45°C. J. Chem. Phys., 65, 851–858.
Squires, G. L. 1978. Introduction to the Theory of Thermal Neutron Scattering. New York: Dover.
Stauffer, D., and Aharony, A. 1992. Introduction to Percolation Theory. London: Taylor and Francis.
Stillinger, F. H., and Rahman, A. 1974. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 60, 1545.
Stillinger, F. H., and Weber, T. A. 1984. Packing structures and transitions in liquids and solids. Science, 225, 983–989.
Stockmayer, W. H. 1943. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys., 11, 45–55.
Swallen, S. F., Bonvallet, P. A., McMahon, R. J., and Ediger, M. D. 2003. Self-diffusion of trisnaphthylbenzene near the glass transition temperature. Phys. Rev. Lett., 90, 015901.
Swenson, J. 2006. Comment on ‘Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water’. Phys. Rev. Lett., 97, 189801.
Swenson, J., Jansson, H., and Bergman, R. 2006. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett., 96, 247802.
Takahara, S., Nakano, M., Kittaka, S. et al. 1999. Neutron scattering study on dynamics of water molecules in MCM-41. J. Phys. Chem. B, 103, 5814–5819.
Tanaka, H. 1998. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett., 80, 5750–5753.
Tanford, C. 1968. Protein denaturation. Adv. Protein Chem., 23, 121–282.
Tarek, M., and Tobias, D. J. 2000. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys. J., 79, 3244–3257.
Tarek, M., and Tobias, D. J. 2002. Single-particle and collective dynamics of protein hydration water: A molecular dynamic study. Phys. Rev. Lett., 89, 275501.
Tarek, M., Tobias, D. J., Chen, S.-H., and Klein, M. L. 2001. Shortwavelength collective dynamics in phospholipid bilayers: a molecular dynamics study. Phys. Rev. Lett., 87, 238101–1.
Tartaglia, P. 2007. Models of gel-forming colloids. AIP Conf. Proc., 982, 295–303.
ten Wolde, P. R., and Frenkel, D. 1997. Enhancement of protein crystal nucleation by critical density fluctuations. Science, 277, 1975–1977.
Thiele, E. 1963. Equation of state for hard spheres. J. Chem. Phys., 39, 474.
Toellner, T. S., Alatas, A., and Said, A. H. 2011. Six-reflection meV-monochromator for synchrotron radiation. J. Synchrotron Radiat., 18, 605–611.
Toukan, K., and Rahman, A. 1985. Molecular-dynamics study of atomic motions in water. Phy. Rev. B, 31, 2643.
Toukan, K., Ricci, M. A., Chen, S.-H., Loong, C.-K., Price, D. L., and Teixeira, J. 1988. Neutron-scattering measurements of wave-vector-dependent hydrogen density of states in liquid water. Phys. Rev. A, 37, 2580–2589.
Tsujii, K., and Takagi, T. 1975. Proton magnetic resonance studies of the binding of an anionic surfactant with a benzene ring to a protein polypeptide with special reference to SDS-polyacrylamide gel electrophoresis. J. Biochem. (Tokyo), 77, 511–519.
Turnbull, D., and Cohen, M. H. 1961. Free-volume model of the amorphous phase: glass transition. J. Chem. Phys., 34, 120.
Turnbull, D., and Cohen, M. H. 1970. On the free-volume model of the liquid-glass transition. J. Chem. Phys., 52, 3038.
Uhlenbech, G. A., and Ornstein, L. S. 1930. On the theory of Brownian motion. Phys. Rev., 36, 823.
van Beest, B. W. H., Kramer, G. J, and van Santen, R. A. 1990. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett., 64, 1955–1958.
van Dongen, P., and Ernst, M. 1984. Kinetics of reversible polymerization. J. Stat. Phys, 37, 301–324.
Verwey, E. J., and Overbeek, J. Th. G. 1948. Theory of the Stability of Lyophobic Colloids. New York: Elsevier.
Vogel, M. 2008. Origins of apparent fragile-to-strong transitions of protein hydration waters. Phys. Rev. Lett., 101, 225701.
Vural, D., and Glyde, H. R. 2012. Intrinsic mean-square displacements in proteins. Phys. Rev. E, 88, 011926.
Waisman, E. 1973. The radial distribution function for a fluid of hard spheres at high densities: Mean spherical integral equation approach. Mol. Phys., 25, 45–48.
Walrafen, G. E. 1964. Raman spectral studies of water structure. J. Chem. Phys., 40, 3249.
Walrafen, G. E. 1972. In Franks, F. (ed.), Water: A Comprehensive Treatise, vol.1. New York: Plenum Press, p. 151.
Wang, J. S. 1989. Clusters in the three-dimensional Ising model with a magnetic field. Physica A, 161, 249.
Wang, Z., Bertrand, C. E., Chiang, W.-S., Fratini, E., Baglioni, P., Alatas, A., Alp, E. E., and Chen, S.-H. 2013. Inelastic X-ray scattering studies of the short-time collective vibrational motions in hydrated lysozyme powders and their possible relation to enzymatic function. J. Phys. Chem. B, 117, 1186–1195.
Wang, Z., Liu, K.-H., Harriger, L., Leao, J. B., and Chen, S.-H. 2014a. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures. J. Chem. Phys., 141, 014501.
Wang, Z., Fratini, E., Li, M., Le, P., Mamontov, E., Baglioni, P., and Chen, S.-H. 2014b. Hydration-dependent dynamic crossover phenomenon in protein hydration water. Phys. Rev. E, 90, 042705.
Wang, Z., Chiang, W.-S., Le, P., Fratini, E., Li, M., Alatas, A., Baglioni, P., and Chen, S.-H. 2014c. One role of hydration water in protein: key to the softening of short time intraprotein collective vibrations of specific length scale. Soft Matter, 10, 4298–4303.
Wang, Z., Liu, K.-H., Le, P., Li, M., Chiang, W.-S., Leao, J., Tyagi, M., Copley, J.R.D., Podlsnyak, A., Kolesnikov, A. I., Mou, C.-Y., and Chen, S.-H. 2014d. Boson peak in deeply cooled confined water: a possible way to explore the existence of the liquid-to-liquid transition in water. Phys. Rev. Lett., 112, 237802.
Wang, Z., Chen, S.-H. et al. 2014e. Unpublished.
Wang, Z., Ito, K., Chen, S.-H. et al. 2015. To be published.
Warren, B. E. 1969. X-ray Diffraction. New York: Addison-Wesley.
Weber, K., and Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem., 241, 4406–4412.
Wertheim, M. 1984. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J.Stat.Phys., 35, 19–34.
Wertheim, M. S. 1963. Exact solution of the Percus–Yevick integral equation for hard spheres. Phys. Rev. Lett., 10, 321.
Wertheim, M. S. 1964. Analytic solution of the Percus–Yevick equation. J. Math. Phys., 5, 643.
Williams, S. R., and Evans, D. J. 2007. Statistical mechanics of time independent nondissipative nonequilibrium states. J. Chem. Phys., 127, 184101.
Williams, S. R., and van Megen, W. 2001. Motions in binary mixtures of hard colloidal spheres: melting of the glass. Phys. Rev. E, 64, 041502–1–041502–9.
Wu, C. F., and Chen, S.-H. 1987. SANS studies of concentrated protein solutions: Determination of the charge, hydration, and H/D exchange in cytochrome. J. Chem. Phys., 87, 6199–6200.
Xia, Y., Dosseh, G., Morineau, D., and?Alba-Simionesco, C. 2006. Phase diagram and glass transition of confined benzene. J. Phys. Chem. B, 110, 19735–19744.
Xu, L., Mallamace, F. Z., Yan., Starr, F. W., Buldyrev, S. V., and Stanley, H. E. 2009. Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset. Nature Phys., 5, 565569.
Xu, L.-M., Kumar, P., Buldyrev, S. V., Chen, S.-H., Poole, P. H., Sciortino, F., and Stanley, H. E. 2005. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl. Acad. Sci. USA, 102, 16558–16562.
Yoshida, K., Yamaguchi, T., Kittaka, S., Bellissent-Funel, M.-C., and Fouquet, P. 2008. Thermodynamic, structural, and dynamic properties of supercooled water confined in mesoporous MCM-41 studied with calorimetric, neutron diffraction, and neutron spin echo measurements. J. Chem. Phys., 129, 054102.
Yoshida, K., Hosokawa, S., Baron, A., and Yamaguchi, T. 2010. Collective dynamics of hydrated lactogloblin by inelastic x-ray scattering. J. Chem. Phys., 133, 134501.
Yoshida, K., Yamaguchi, T., Kittaka, S., Bellissent-Funel, M.-C., and Fouquet, P. 2012. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures. J. Phys.: Condens. Matter, 24, 064101.
Zaccarelli, E. 2001. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys.: Condens. Matter, 19, 323101.
Zaccarelli, E., Foffi, G., Dawson, K. A., Sciortino, F., and Tartaglia, P. 2001. Mechanical properties of a model of attractive colloidal solutions. Phys. Rev. E., 63, 031501–1–031501–11.
Zaccarelli, E., Foffi, G., Sciortino, F., and Tartaglia, P. 2003. Activated bond-breaking processes preempt the observation of a sharp glass–glass transition in dense short-ranged attractive colloids. Phys. Rev. Lett., 91, 108301.
Zaccarelli, E., Buldyrev, S., La Nave, E. et al. 2005. Model for reversible colloidal gelation. Phys. Rev. Lett., 94, 218301.
Zaccarelli, E., Sciortino, F., and Tartaglia, P. 200l. A spherical model with directional interactions. I. Static properties. J. Chem. Phys., 127, 114501–1–114501–10.
Zanotti, J.-M., Bellissent-Funel, M.-C., and Chen, S.-H. 1999. Relaxational dynamics of supercooled water in porous glass. Phys. Rev. E, 59, 3084–3093.
Zhang, Y., Lagi, M., Ridi, F., Fratini, E., Baglioni, P., Mamontov, E., and Chen, S.-H. 2008. Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste. J. Phys.: Condens. Matter, 20, 502101.
Zhang, Y., Liu, K.-H., Lagi, M., Liu, D., Littrell, K., Mou, C.-Y., and Chen, S.-H. 2009a. Absence of the density minimum of supercooled water in hydrophobic confinement. J. Phys. Chem. B, 113, 5001–5010.
Zhang, Y., Lagi, M., Fratini, E., Baglioni, P., Mamontov, E., and Chen, S.-H. 2009b. Dynamic susceptibility of supercooled water and its relation to the dynamic crossover phenomenon. Phys. Rev. E, 79, 040201 (R).
Zhang, Y., Faraone, A., Kamitakahara, W. A., Liu, K.-H., Mou, C.-Y., Leao, J. B., Chang, S., and Chen, S.-H. 2011. Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc. Natl. Acad. Sci. USA, 108, 12206–12211.
Zwanzig, R. 1961. Lectures in Theoretical Physics, Vol. 3. New York: Wiley-Interscience.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.