Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T01:22:26.258Z Has data issue: false hasContentIssue false

3 - Satellite Remote Sensing for the Conservation of East Asia’s Coastal Wetlands

Published online by Cambridge University Press:  23 July 2018

Allison K. Leidner
Affiliation:
National Aeronautics and Space Administration, Washington DC
Graeme M. Buchanan
Affiliation:
Royal Society for the Protection of Birds (RSPB), Edinburgh
Get access

Summary

The use of remote sensing for assessing long-term changes of wetlands has provided essential information on the distribution and status of wetlands around the world. High resolution global maps of wetland extent now include water cover, water bodies, mangroves and many other wetland types. Yet our knowledge of the distribution and extent of tidal flats, a fringing ecosystem that occurs between land and sea, remains surprisingly poor. The process of regular tidal inundation renders tidal flats fully exposed only at low tide and completely unobservable at high tide, which has severely limited our ability to observe tidal flats with satellites. Therefore, fundamental information such as the global distribution of tidal flats and how they have changed over time remains largely unknown at anything other than local scales. This chapter introduces a satellite remote sensing project that overcame this limitation to develop high resolution maps of the intertidal zone using the full Landsat Archive images. The project was initiated to contribute to solving a fundamental conservation problem: identifying the cause of the ongoing collapse of migratory shorebird populations in the East Asian-Australasian Flyway. This migration is one of the world’s largest bird movements, involving millions of individuals. By developing a time series of tidal flat extent in the Yellow Sea region of East Asia, a critical staging site for millions of migratory shorebirds, we discovered that more than two-thirds of tidal flats had disappeared over a 50 year period. The high-resolution maps and the detection of alarmingly high rates of habitat loss have catalysed a range of conservation actions since 2012, demonstrating that data gathered with satellite remote sensing can have significant and lasting influence on conservation actions.
Type
Chapter
Information
Satellite Remote Sensing for Conservation Action
Case Studies from Aquatic and Terrestrial Ecosystems
, pp. 54 - 81
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, F., Eva, H. D., Stibig, H-J., et al. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 9991002.CrossRefGoogle ScholarPubMed
Airoldi, L. and Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. In Gibson, R. N., Atkinson, R. J. A., and Gordon, J. D. M., eds., Oceanography and Marine Biology, Volume 45. Boca Raton, FL: Taylor & Francis, ch. 7.Google Scholar
Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331349.CrossRefGoogle Scholar
An, S. Q., Li, H. B., Guan, B. H., et al. (2007). China’s natural wetlands: past problems, current status, and future challenges. Ambio, 36, 335342.CrossRefGoogle ScholarPubMed
Arkema, K. K., Guannel, G., Verutes, G., et al. (2013). Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change, 3, 913918.CrossRefGoogle Scholar
Bamford, M., Watkins, D., Bancroft, W., Tischler, G., and Wahl, J. (2008). Migratory shorebirds of the East Asian–Australasian flyway: population estimates and internationally important sites. Canberra: Wetlands International – Oceania.Google Scholar
Barter, M. (2003). The Yellow Sea: a race against time. Wader Study Group Bulletin, 100.Google Scholar
Barter, M. A. (2002). Shorebirds of the Yellow Sea: importance, threats and conservation status. Wetlands International Global Series 9, International Wader Studies 12. Canberra: Wetlands International – Oceania.Google Scholar
Beazley, A. (1900). The reclamation of land from tidal waters. Nature, 1603, 266267.Google Scholar
Bi, X., Wang, B., and Lu, Q. (2011) Fragmentation effects of oil wells and roads on the Yellow River Delta, North China. Ocean & Coastal Management, 54, 256264.CrossRefGoogle Scholar
Bird, E. (2010). Encyclopedia of the World’s Coastal Landforms. Berlin: Springer.CrossRefGoogle Scholar
Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J., and Rodríguez, J. P. (2016). Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland: International Union for the Conservation of Nature.CrossRefGoogle Scholar
Blum, M. D. and Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2, 488491.CrossRefGoogle Scholar
Chen, W. W. and Chang, H. K. (2009). Estimation of shoreline position and change from satellite images considering tidal variation. Estuarine Coastal and Shelf Science, 84, 5460.CrossRefGoogle Scholar
Chen, Y., Dong, J., Xiao, X., et al. (2016). Land claim and loss of tidal flats in the Yangtze Estuary. Scientific Reports, 6, 24018.CrossRefGoogle ScholarPubMed
Cho, D. O. and Olsen, S. B. (2003). The status and prospects for coastal management in Korea. Coastal Management, 31, 99119.CrossRefGoogle Scholar
Choi, J. K., Ryu, J. H., Lee, Y. K., et al. (2010) Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS. Estuarine Coastal and Shelf Science, 88, 125134.CrossRefGoogle Scholar
Choi, J. K., Oh, H. J., Koo, B. J., Ryu, J. H., and Lee, S. (2011). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecological Modelling, 222, 15221533.CrossRefGoogle Scholar
Choi, Y. R. (2014). Modernization, development and underdevelopment: reclamation of Korean tidal flats, 1950s–2000s. Ocean & Coastal Management, 102, 426436.CrossRefGoogle Scholar
Clemens, R. S., Rogers, D. I., Hansen, B. D., et al. (2016). Continental-scale decreases in shorebird populations in Australia. Emu, 116, 119135.CrossRefGoogle Scholar
Close, D. and Newman, O. (1984). The decline of the eastern curlew in south-eastern Australia. Emu, 84, 3840.CrossRefGoogle Scholar
Cook, C. N., Mascia, M. B., Schwartz, M. W., Possingham, H. P., and Fuller, R. A. (2013). Achieving conservation science that bridges the knowledge–action boundary. Conservation Biology, 27, 669678.CrossRefGoogle ScholarPubMed
Department of Environment (2014a). Consultation document on listing eligibility and conservation actions: Calidris ferruginea (curlew sandpiper). Canberra: Department of Environment.Google Scholar
Department of Environment (2014b). Consultation document on listing eligibility and conservation actions: Numenius madagascariensis (eastern curlew). Canberra: Department of Environment.Google Scholar
Dhanjal-Adams, K., Hanson, J., Murray, N., et al. (2015). Distribution and protection of intertidal habitats in Australia. Emu, 116, 208214.CrossRefGoogle Scholar
Dhanjal-Adams, K. L., Mustin, K., Possingham, H. P., and Fuller, R. A. (2016). Optimizing disturbance management for wildlife protection: the enforcement allocation problem. Journal of Applied Ecology, 53, 12151224.CrossRefGoogle Scholar
Diaz, R. J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926929.CrossRefGoogle ScholarPubMed
Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation, 29, 192206.CrossRefGoogle Scholar
Fagherazzi, S., Carniello, L., D’alpaos, L., and Defina, A. (2006). Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences, 103, 83378341.CrossRefGoogle ScholarPubMed
Foody, G. M., Muslim, A. M., and Atkinson, P. M. (2005). Super‐resolution mapping of the waterline from remotely sensed data. International Journal of Remote Sensing, 26, 53815392.CrossRefGoogle Scholar
Gedan, K., Kirwan, M., Wolanski, E., Barbier, E., and Silliman, B. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 106, 729.CrossRefGoogle Scholar
Gilman, E. L., Ellison, J., Duke, N. C., and Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89, 237250.CrossRefGoogle Scholar
Hansen, M. C., Potapov, P. V., Moore, R. et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850853.CrossRefGoogle ScholarPubMed
Hansen, M. C., Alexander, K., Alexandra, T. et al. (2016). Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11, 034008.CrossRefGoogle Scholar
He, C., Liu, Z., Tian, J., and Ma, Q. (2014a). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Global Change Biology, 20, 28862902.CrossRefGoogle Scholar
He, Q., Bertness, M. D., Bruno, J. F., et al. (2014b). Economic development and coastal ecosystem change in China. Scientific Reports, 4, 5995.CrossRefGoogle ScholarPubMed
Healy, T., Wang, Y., and Healy, J., eds. (2002). Muddy Coasts of the World: Processes, Deposits, and Function, Amsterdam: Elsevier Science.Google Scholar
Higgins, S., Overeem, I., Tanaka, A., and Syvitski, J. P. M. (2013). Land subsidence at aquaculture facilities in the Yellow River Delta, China. Geophysical Research Letters, 40, 38983902.CrossRefGoogle Scholar
Hilton, M. J. and Manning, S. S. (1995). Conversion of coastal habitats in Singapore: indications of unsustainable development. Environmental Conservation, 22, 307322.CrossRefGoogle Scholar
Keddy, P. A., Fraser, L. H., Solomeshch, A. I., et al. (2009). Wet and wonderful: the world’s largest wetlands are conservation priorities. BioScience, 59, 3951.CrossRefGoogle Scholar
Keith, D. A., Rodríguez, J. P., Brooks, T. M., et al. (2015). The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conservation Letters, 8, 214226.CrossRefGoogle Scholar
Kirby, J. S., Stattersfield, A. J., Butchart, S. H. M., et al. (2008). Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conservation International, 18, S49S73.CrossRefGoogle Scholar
Kirwan, M. L. and Murray, A. B. (2007). A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences of the United States of America, 104, 61186122.CrossRefGoogle ScholarPubMed
Kirwan, M. L. and Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 5360.CrossRefGoogle ScholarPubMed
Kirwan, M. L, Murray, A. B., and Boyd, W. S. (2008). Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophysical Research Letters, 35, L05403.CrossRefGoogle Scholar
Kirwan, M. L., Guntenspergen, G. R., D’alpaos, A., et al. (2010). Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37, L23401.CrossRefGoogle Scholar
Koh, L. P., Miettinen, J., Liew, S. C., and Ghazoul, J. (2011). Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences, 108, 51275132.CrossRefGoogle ScholarPubMed
Levin, L. A., Boesch, D. F., Covich, A., et al. (2001). The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems, 4, 430451.CrossRefGoogle Scholar
Leyrer, J., Van Nieuwenhove, N., Crockford, N., and Delany, S. (2014). Proposal for adding four subspecies of bar-tailed godwit to the CMS Cooperative Action List during the 2014–2017 triennium. Convention on Migratory Species, Quito, Ecuador, 4–9 November.Google Scholar
Li, W. and Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196209.CrossRefGoogle Scholar
Ling, F., Xiao, F., Du, Y., Xue, H. P., and Ren, X. Y. (2008). Waterline mapping at the subpixel scale from remote sensing imagery with high‐resolution digital elevation models. International Journal of Remote Sensing, 29, 18091815.CrossRefGoogle Scholar
Liu, Y., Li, M., Cheng, L., Li, F., and Chen, K. (2012). Topographic mapping of offshore sandbank tidal flats using the waterline detection method: a case study on the Dongsha Sandbank of Jiangsu Radial Tidal Sand Ridges, China. Marine Geodesy, 35, 362378.CrossRefGoogle Scholar
Liu, Y., Li, M., Zhou, M., Yang, K., and Mao, L. (2013). Quantitative analysis of the waterline method for topographical mapping of tidal flats: a case study in the Dongsha Sandbank, China. Remote Sensing, 5, 61386158.CrossRefGoogle Scholar
Mackinnon, J., Verkuil, Y. I., and Murray, N. J. (2012). IUCN situation analysis on East and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occasional Paper of the IUCN Species Survival Commission, No. 47.Google Scholar
Mariott, G. and Fagherazzi, S. (2013). Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences, 110, 53535356.CrossRefGoogle Scholar
Martin, T. G., Nally, S., Burbidge, A. A., et al. (2012). Acting fast helps avoid extinction. Conservation Letters, 5, 274280.CrossRefGoogle Scholar
Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M., and Gardner, L. R. (1997). Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications, 7, 770801.CrossRefGoogle Scholar
Miettinen, J., Shi, C., and Liew, S. C. (2012). Two decades of destruction in Southeast Asia’s peat swamp forests. Frontiers in Ecology and the Environment, 10, 124128.CrossRefGoogle Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Current State and Trends. Washington, DC: Island Press.Google Scholar
Murray, N. J. and Fuller, R. A. (2012). Coordinated effort to maintain East Asian–Australasian flyway. Oryx, 46, 479480.CrossRefGoogle Scholar
Murray, N. J. and Fuller, R. A. (2015). Protecting stopover habitat for migratory shorebirds in East Asia. Journal of Ornithology, 156, 217225.CrossRefGoogle Scholar
Murray, N. J, Phinn, S. R., Clemens, R. S., Roelfsema, C. M., and Fuller, R. A. (2012). Continental scale mapping of tidal flats across East Asia using the Landsat Archive. Remote Sensing, 4, 34173426.CrossRefGoogle Scholar
Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P., and Fuller, R. A. (2014a). Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and the Environment, 12, 267272.CrossRefGoogle Scholar
Murray, N. J., Wingate, V. R., and Fuller, R. A. (2014b). Mapped distribution of tidal flats across China, Manchuria and Korea (1952–1964). Pangaea, https://doi.org/10.1594/PANGAEA.837090.CrossRefGoogle Scholar
Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P., and Fuller, R. A. (2015a). Threats to the Yellow Sea’s tidal wetlands. Bulletin of the Ecological Society of America, 96, 346348.CrossRefGoogle Scholar
Murray, N. J., Ma, Z., and Fuller, R. A. (2015b). Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats. Austral Ecology, 40, 472481.CrossRefGoogle Scholar
Murray, N. J., Marra, P. P., Fuller, R. A., et al. (2017). The large-scale drivers of population declines in a long-distance migratory shorebird. Ecography, doi: 10.1111/ecog.02957.CrossRefGoogle Scholar
Nicholls, R. J. and Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 15171520.CrossRefGoogle ScholarPubMed
Nicholls, R. J., Wong, P. P., Burkett, V. R., et al. (2007). Coastal systems and low-lying areas. In Parry, M. L., Canziani, O. F., Palutikof, J. P., Linden, P. J. V. D., and Hanson, C. E., eds., Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 315356.Google Scholar
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422.CrossRefGoogle ScholarPubMed
Pendleton, L., Donato, D. C., Murray, B. C., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE, 7, e43542.CrossRefGoogle ScholarPubMed
Rodríguez, J. P., Keith, D. A., Rodríguez-Clark, K. M., et al. (2015). A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philosophical Transactions of the Royal Society B, 370, 20140003.CrossRefGoogle Scholar
Ryu, J. H., Won, J. S., and Min, K. D. (2002). Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea. Remote Sensing of Environment, 83, 442456.CrossRefGoogle Scholar
Ryu, J. H., Na, Y. H., Won, J. S., and Doerffer, R. (2004). A critical grain size for Landsat ETM+ investigations into intertidal sediments: a case study of the Gomso tidal flats, Korea. Estuarine Coastal and Shelf Science, 60, 491502.CrossRefGoogle Scholar
Ryu, J. H., Kim, C. H., Lee, Y. K., et al. (2008). Detecting the intertidal morphologic change using satellite data. Estuarine Coastal and Shelf Science, 78, 623632.CrossRefGoogle Scholar
Ryu, J., Nam, J., Park, J., et al. (2014). The Saemangeum tidal flat: long-term environmental and ecological changes in marine benthic flora and fauna in relation to the embankment. Ocean & Coastal Management, 102, 559571.CrossRefGoogle Scholar
Seto, K. C., Güneralp, B., and Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109, 1608316088.CrossRefGoogle ScholarPubMed
Studds, C. E., Kendall, B. E., Murray, N. J., et al. (2017). Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Communications, 8, 14895.CrossRefGoogle ScholarPubMed
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376380.CrossRefGoogle Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681686.CrossRefGoogle Scholar
Tornqvist, T. E. and Meffert, D. J. (2008). Sustaining coastal urban ecosystems. Nature Geoscience, 1, 805807.CrossRefGoogle Scholar
Valiela, I., Bowen, J. L., and York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. BioScience, 51, 807815.CrossRefGoogle Scholar
Vorosmarty, C. J., Mcintyre, P. B., Gessner, M. O., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555561.CrossRefGoogle ScholarPubMed
Wang, X. A., Chen, W. Q., Zhang, L. P., Jin, D., and Lu, C. Y. (2010). Estimating the ecosystem service losses from proposed land reclamation projects: a case study in Xiamen. Ecological Economics, 69, 25492556.CrossRefGoogle Scholar
Wang, Y. (1998). Sea-level changes, human impacts and coastal responses in China. Journal of Coastal Research, 14, 3136.Google Scholar
Wang, Y. P., Gao, S., Jia, J., et al. (2012) Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291 –294, 147161.CrossRefGoogle Scholar
Warnock, N. (2010). Stopping vs. staging: the difference between a hop and a jump. Journal of Avian Biology, 41, 621626.CrossRefGoogle Scholar
Waycott, M., Duarte, C. M., Carruthers, T. J. B. et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106, 1237712381.CrossRefGoogle ScholarPubMed
Yang, H-Y., Chen, B., Barter, M., et al. (2011). Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conservation International, 21, 241259.CrossRefGoogle Scholar
Yang, S-L., Ding, P-X., and Chen, S-L. (2001). Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology, 38, 167180.CrossRefGoogle Scholar
Yang, S-L., Belkin, I. M., Belkina, A. I., et al. (2003) Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 57, 689699.CrossRefGoogle Scholar
Zedler, J. B. and Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 3974.CrossRefGoogle Scholar
Zhao, B., Kreuter, U., Li, B., et al. (2004). An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21, 139148.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×