Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T14:10:19.022Z Has data issue: false hasContentIssue false

11 - Immunity to Salmonella in domestic (food animal) species

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
Paul Wigley
Affiliation:
Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
Paul Barrow
Affiliation:
Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
Bernardo Villarreal-Ramos
Affiliation:
Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

Salmonellosis in domestic animal species is important in terms of animal welfare and productivity. Infection may lead to decreased yields of milk, eggs or meat, and in certain cases loss of livestock. Salmonellosis in domestic species is also important for public health as the major reservoir and source of food-borne human infections.

A number of Salmonella enterica serovars can induce a systemic typhoid-like disease in healthy adults of a restricted range of host animal species. Other serovars colonize the intestine of the host and in some cases may induce severe enteritis. The severity of the disease will be dependent on the virulence and dose of the challenge and immune status of the host. Thus, some S. enterica strains that would normally induce enteritis in adult hosts are able to induce systemic disease in immuno-compromised hosts. Immunity to S. enterica is dependent on the nature of the disease that different serovars induce in different hosts. Thus, mucosal immunity is more likely to be important in protecting against serovars that induce enteritis, whereas systemic immunity would be more important in protecting against serovars that induce systemic disease.

Our understanding of the interaction of the host's immune system with different S. enterica serovars is still rudimentary. Effective control of salmonellosis affecting domestic host species requires a greater understanding of immunological mechanisms during such infections. This will provide the basis from which rational control measures, such as more effective vaccines, vaccination strategies, diagnostic tools or other non-immunological tools may be developed.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 299 - 322
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (2000). Salmonella in Livestock 1999. London: Veterinary Laboratory Agency / Ministry of Agriculture Fisheries and Food.
Babu, U., Scott, M., Myers, M. J.et al. (2003). Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet Immunol Immunopathol, 91, 39–44.CrossRefGoogle ScholarPubMed
Barrow, P. (1991). Serological analysis for antibodies to S. enteritidis. Vet Rec, 128, 43–4.CrossRefGoogle ScholarPubMed
Barrow, P. A., Berchieri, A. Jr. and al-Haddad, O. (1992). Serological response of chickens to infection with Salmonella gallinarum-S. pullorum detected by enzyme-linked immunosorbent assay. Avian Dis, 36, 227–36.CrossRefGoogle ScholarPubMed
Barrow, P. A., Bunstead, N., Marston, K., Lovell, M. A. and Wigley, P. (2004). Faecal shedding and intestinal colonization of Salmonella enterica in inbred chickens: the effect of host-genetic background. Epidemiol Infect, 132, 117–26.CrossRefGoogle Scholar
Barrow, P. A., Huggins, M. B. and Lovell, M. A. (1994). Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun, 62, 4602–10.Google ScholarPubMed
Barrow, P. A., Lovell, M. A. and Barber, L. Z. (1996). Growth suppression in early stationary phase nutrient broth cultures of Salmonella typhimurium and Escherichia coli is genus specific and not regulated by sigma S. J Bacteriol, 178, 3072–6.CrossRefGoogle Scholar
Barrow, P. A., Tucker, J. F. and Simpson, J. M. (1987). Inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium Gram-negative facultatively anaerobic bacteria. Epidemiol Infect, 98, 311–22.CrossRefGoogle ScholarPubMed
Beal, R. K., Powers, C., Wigley, P., Barrow, P. A. and Smith, A. L. (2004a). Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol, 33, 25–33.CrossRefGoogle Scholar
Beal, R. K., Wigley, P., Powers, C.et al. (2004b). Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet Immunol Immunopathol, 100, 151–64.CrossRefGoogle Scholar
Berchieri, A. Jr. and Barrow, P. A. (1990). Further studies on the inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an avirulent mutant. Epidemiol Infect, 104, 427–41.CrossRefGoogle ScholarPubMed
Berndt, A. and Methner, U. (2001). Gamma/delta T-cell response of chickens after oral administration of attenuated and non-attenuated Salmonella typhimurium strains. Vet Immunol Immunopathol, 78, 143–61.CrossRefGoogle ScholarPubMed
Boyd, Y., Goodchild, M., Morroll, S. and Bumstead, N. (2001). Mapping of the chicken and mouse genes for Toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics, 52, 294–8.CrossRefGoogle Scholar
Brennan, F. R., Oliver, J. J. and Baird, G. D. (1995). In vitro studies with lymphocytes from sheep orally inoculated with an aromatic-dependent mutant of Salmonella typhimurium. Res Vet Sci, 58, 152–7.CrossRefGoogle ScholarPubMed
Brito, J. R., Hinton, M., Stokes, C. R. and Pearson, G. R. (1993). The humoral and cell mediated immune response of young chicks to Salmonella typhimurium and S. Kedougou. Br Vet J, 149, 225–34.CrossRefGoogle ScholarPubMed
Chadfield, M. S., Brown, D. J., Aabo, S., Christensen, J. P. and Olsen, J. E. (2003). Comparison of intestinal invasion and macrophage response of Salmonella Gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol, 92, 49–64.CrossRefGoogle ScholarPubMed
Christensen, J., Baggesen, D. L., Soerensen, V. and Svensmark, B. (1999). Salmonella level of Danish swine herds based on serological examination of meat-juice samples and Salmonella occurrence measured by bacteriological follow-up. Prev Vet Med, 40, 277–92.CrossRefGoogle ScholarPubMed
Clifton-Hadley, F. A., Breslin, M., Venables, L. M.et al. (2002). A laboratory study of an inactivated bivalent iron restricted Salmonella enterica serovars Enteritidis and Typhimurium dual vaccine against Typhimurium challenge in chickens. Vet Microbiol, 89, 167–79.CrossRefGoogle ScholarPubMed
Cooper, G. L., Venables, L. M., Woodward, M. J. and Hormaeche, C. E. (1994a). Invasiveness and persistence of Salmonella enteritidis, Salmonella typhimurium, and a genetically defined S. enteritidis aroA strain in young chickens. Infect Immun, 62, 4739–46.Google Scholar
Cooper, G. L., Venables, L. M., Woodward, M. J. and Hormaeche, C. E. (1994b). Vaccination of chickens with strain CVL30, a genetically defined Salmonella enteritidis aroA live oral vaccine candidate. Infect Immun, 62, 4747–54.Google Scholar
Corrier, D. E., Elissalde, M. H., Ziprin, R. L. and DeLoach, J. R. (1991). Effect of immunosuppression with cyclophosphamide, cyclosporin, or dexamethasone on Salmonella colonization of broiler chicks. Avian Dis, 35, 40–5.CrossRefGoogle ScholarPubMed
Curtiss, R. III and Hassan, J. O. (1996). Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet Immunol Immunopathol, 54, 365–72.CrossRefGoogle ScholarPubMed
Da, Roden L., Smith, B. P., Spier, S. J. and Dilling, G. W. (1992). Effect of calf age and Salmonella bacterin type on ability to produce immunoglobulins directed against Salmonella whole cells or lipopolysaccharide. Am J Vet Res, 53, 1895–9.Google Scholar
Desmidt, M., Ducatelle, R. and Haesebrouck, F. (1997). Pathogenesis of Salmonella enteritidis phage type four after experimental infection of young chickens. Vet Microbiol, 56, 99–109.CrossRefGoogle ScholarPubMed
Desmidt, M., Ducatelle, R., Mast, J.et al. (1998). Role of the humoral immune system in Salmonella enteritidis phage type four infection in chickens. Vet Immunol Immunopathol, 63, 355–67.CrossRefGoogle ScholarPubMed
Dlabac, V., Trebichavsky, I., Rehakova, Z.et al. (1997). Pathogenicity and protective effect of rough mutants of Salmonella species in germ-free piglets. Infect Immun, 65, 5238–43.Google ScholarPubMed
Doucet, F. and Bernard, S. (1997). In vitro cellular responses from sheep draining lymph node cells after subcutaneous inoculation with Salmonella abortusovis. Vet Res, 28, 165–78.Google ScholarPubMed
Dueger, E. L., House, J. K., Heithoff, D. M. and Mahan, M. J. (2001). Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens. Infect Immun, 69, 7950–4.CrossRefGoogle ScholarPubMed
Dueger, E. L., House, J. K., Heithoff, D. M. and Mahan, M. J. (2003). Salmonella DNA adenine methylase mutants prevent colonization of newly hatched chickens by homologous and heterologous serovars. Int J Food Microbiol, 80, 153–9.CrossRefGoogle ScholarPubMed
Eckmann, L., Fierer, J. and Kagnoff, M. F. (1996). Genetically resistant (Ityr) and susceptible (Itys) congenic mouse strains show similar cytokine responses following infection with Salmonella dublin. J Immunol, 156, 2894–900.Google ScholarPubMed
Feberwee, A., Hartman, E. G., Wit, J. J. and Vries, T. S. (2001). The spread of Salmonella gallinarum 9R vaccine strain under field conditions. Avian Dis, 45, 1024–9.CrossRefGoogle ScholarPubMed
Fontaine, J. J., Pepin, M., Pardon, P., Marly, J. and Parodi, A. L. (1994). Comparative histopathology of draining lymph node after infection with virulent or attenuated strains of Salmonella abortusovis in lambs. Vet Microbiol, 39, 61–9.CrossRefGoogle ScholarPubMed
Foster, N., Lovell, M. A., Marston, K. L.et al. (2003). Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect Immun, 71, 2182–91.CrossRefGoogle ScholarPubMed
Fukui, A., Inoue, N., Matsumoto, M.et al. (2001). Molecular cloning and functional characterization of chicken Toll-like receptors. A single chicken Toll covers multiple molecular patterns. J Biol Chem, 276, 47143–9.CrossRefGoogle ScholarPubMed
Galland, J. C., House, J. K., Hyatt, D. R.et al. (2000). Prevalence of Salmonella in beef feeder steers as determined by bacterial culture and ELISA serology. Vet Microbiol, 76, 143–51.CrossRefGoogle ScholarPubMed
Gautier, A. V., Lantier, I. and Lantier, F. (1998). Mouse susceptibility to infection by the Salmonella abortusovis vaccine strain Rv6 is controlled by the Ity/Nramp 1 gene and influences the antibody but not the complement responses. Microb Pathog, 24, 47–55.CrossRefGoogle Scholar
Gentschev, I., Glaser, I., Goebel, W.et al. (1998). Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella dublin: secretion of the product enhances specific antibody responses in cattle. Infect Immun, 66, 2060–144.Google ScholarPubMed
Gohin, I., Olivier, M., Lantier, I., Pepin, M. and Lantier, F. (1997). Analysis of the immune response in sheep efferent lymph during Salmonella abortusovis infection. Vet Immunol Immunopathol, 60, 111–30.CrossRefGoogle ScholarPubMed
Gray, J. T., Stabel, T. J. and Fedorka-Cray, P. J. (1996). Effect of dose on the immune response and persistence of Salmonella choleraesuis infection in swine. Am J Vet Res, 57, 313–19.Google ScholarPubMed
Hassan, J. O. and Curtiss, R. III (1990). Control of colonization by virulent Salmonella typhimurium by oral immunization of chickens with avirulent Δcya Δcrp S. typhimurium. Res Microbiol, 141, 839–50.CrossRefGoogle Scholar
Hassan, J. O. and Curtiss, R. III (1994). Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect Immun, 62, 5519–27.Google ScholarPubMed
Heithoff, D. M., Enioutina, E. Y., Daynes, R. A., Sinsheimer, R. L., Low, D. A. and Mahan, M. J. (2001). Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun, 69, 6725–30.CrossRefGoogle ScholarPubMed
Henderson, S. C., Bounous, D. I. and Lee, M. D. (1999). Early events in the pathogenesis of avian salmonellosis. Infect Immun, 67, 3580–6.Google ScholarPubMed
Hoiseth, S. K. and Stocker, B. A. (1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature, 291, 238–9.CrossRefGoogle ScholarPubMed
Hu, J., Bumstead, N., Barrow, P.et al. (1997). Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res, 7, 693–704.CrossRefGoogle ScholarPubMed
Jones, M. A., Wigley, P., Page, K. L., Hulme, S. D. and Barrow, P. A. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun, 69, 5471–6.CrossRefGoogle Scholar
Jones, P. W., Dougan, G., Hayward, C.et al. (1991). Oral vaccination of calves against experimental salmonellosis using a double aro mutant of Salmonella typhimurium. Vaccine, 9, 29–34.CrossRefGoogle ScholarPubMed
Kaiser, P., Rothwell, L., Galyov, E. E.et al. (2000). Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology, 146 (Pt 12), 3217–26.CrossRefGoogle ScholarPubMed
Kennedy, M. J., Yancey, R. J. Jr., Sanchez, M. S.et al. (1999). Attenuation and immunogenicity of Δcya Δcrp derivatives of Salmonella choleraesuis in pigs. Infect Immun, 67, 4628–36.Google ScholarPubMed
Kogut, M. H., Rothwell, L. and Kaiser, P. (2003a). Differential regulation of cytokine gene expression by avian heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteritidis. J Interferon Cytokine Res, 23, 319–27.CrossRefGoogle Scholar
Kogut, M. H., Rothwell, L. and Kaiser, P. (2003b). Priming by recombinant chicken interleukin-2 induces selective expression of IL8 and IL18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteritidis. Mol Immunol, 40, 603–10.CrossRefGoogle Scholar
Kogut, M. H., Tellez, G. I., McGruder, E. D.et al. (1994). Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microb Pathog, 16, 141–51.CrossRefGoogle ScholarPubMed
Kramer, T. T., Roof, M. B. and Matheson, R. R. (1992). Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. Am J Vet Res, 53, 444–8.Google ScholarPubMed
Lee, G. M., Jackson, G. D. and Cooper, G. N. (1983). Infection and immune responses in chickens exposed to Salmonella typhimurium. Avian Dis, 27, 577–83.CrossRefGoogle ScholarPubMed
Leveque, G., Forgetta, V., Morroll, S.et al. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun, 71, 1116–24.CrossRefGoogle ScholarPubMed
Lindberg, A. A. and Andersson, J. A. (1983). Salmonella typhimurium infection in calves: cell-mediated and humoral immune reactions before and after challenge with live virulent bacteria in calves given live or inactivated vaccines. Infection and Immunity, 41, 751–7.Google ScholarPubMed
Lumsden, J. S. and Wilkie, B. N. (1992). Immune response of pigs to parenteral vaccination with an aromatic-dependent mutant of Salmonella typhimurium. Can J Vet Res, 56, 296–302.Google ScholarPubMed
Mariani, P., Barrow, P. A., Cheng, H. H.et al. (2001). Localization to chicken chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics, 53, 786–91.CrossRefGoogle ScholarPubMed
Martin, G., Methner, U., Rychlik, I. and Barrow, P. A. (2002). [Specificity of inhibition between Salmonella strains.]Dtsch Tierarztl Wochenschr, 109, 154–7.Google Scholar
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1992). Role of T-cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro Salmonella vaccines. Microbial Pathogenesis, 13, 477–91.CrossRefGoogle Scholar
Maxwell, M. H. and Robertson, G. (1998). The avian heterophil leucocyte: a review. World's Poultry Science Journal, 54, 155–78.CrossRefGoogle Scholar
Mukkur, T. K. and Walker, K. H. (1992). Development and duration of protection against salmonellosis in mice and sheep immunised with live aromatic-dependent Salmonella typhimurium. Res Vet Sci, 52, 147–53.CrossRefGoogle ScholarPubMed
Mukkur, T. K., Walker, K. H., Baker, P. and Jones, D. (1995). Systemic and mucosal intestinal antibody response of sheep immunized with aromatic-dependent live or killed Salmonella typhimurium. Comp Immunol Microbiol Infect Dis, 18, 27–39.CrossRefGoogle ScholarPubMed
Nielsen, B., Baggesen, D., Bager, F., Haugegaard, J. and Lind, P. (1995). The serological response to Salmonella serovars Typhimurium and Infantis in experimentally infected pigs. The time course followed with an indirect anti-LPS ELISA and bacteriological examinations. Vet Microbiol, 47, 205–18.CrossRefGoogle ScholarPubMed
Norimatsu, M., Chance, V., Dougan, G., Howard, C. J. and Villarreal-Ramos, B. (2004). Live Salmonella enterica serovar Typhimurium (S. Typhimurium) elicit dendritic cell responses that differ from those induced by killed S. typhimurium. Vet Immunol Immunopathol, 98, 193–201.CrossRefGoogle ScholarPubMed
Norimatsu, M., Harris, J., Chance, V.et al. (2003). Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology, 108, 55–61.CrossRefGoogle Scholar
Pardon, P., Marly, J., Lantier, F. and Sanchis, R. (1990). Vaccinal properties of Salmonella abortusovis mutants for streptomycin: screening with an ovine model. Ann Rech Vet, 21, 57–67.Google ScholarPubMed
Paulin, S. M., Watson, P. R., Benmore, A. R.et al. (2002). Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun, 70, 6788–97.CrossRefGoogle ScholarPubMed
Plant, J. and Glynn, A. A. (1974). Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature, 248, 345–7.CrossRefGoogle Scholar
Pogonka, T., Klotz, C., Kovacs, F. and Lucius, R. (2003). A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens in chicken. Int J Parasitol, 33, 81–8.CrossRefGoogle ScholarPubMed
Qureshi, M. A. (2003). Avian macrophage and immune response: an overview. Poult Sci, 82, 691–8.CrossRefGoogle ScholarPubMed
Roof, M. B. and Doitchinoff, D. D. (1995). Safety, efficacy, and duration of immunity induced in swine by use of an avirulent live Salmonella choleraesuis-containing vaccine. Am J Vet Res, 56, 39–44.Google ScholarPubMed
Segall, T. and Lindberg, A. A. (1993). Oral vaccination of calves with an aromatic-dependent Salmonella dublin (O9,12) hybrid expressing O4,12 protects against S. dublin (O9,12) but not against Salmonella typhimurium (O4, 5,12). Infect Immun, 61, 1222–31.Google Scholar
Smith, B. P., Reina-Guerra, M., Stocker, B. A., Hoiseth, S. K. and Johnson, E. (1984). Aromatic-dependent Salmonella dublin as a parenteral modified live vaccine for calves. Am J Vet Res, 45, 2231–5.Google ScholarPubMed
Smith, H. W. (1956). The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. J Hyg (Lond), 54, 419–32.CrossRefGoogle ScholarPubMed
Smith, H. W. (1965). The immunization of mice, calves and pigs against Salmonella dublin and Salmonella choleraesuis infections. J Hyg (Lond), 63, 117–35.CrossRefGoogle Scholar
Splichal, I., Trebichavsky, I., Muneta, Y. and Mori, Y. (2002). Early cytokine response of gnotobiotic piglets to Salmonella enterica serotype Typhimurium. Vet Res, 33, 291–7.CrossRefGoogle ScholarPubMed
Springer, S., Lindner, T., Steinbach, G. and Selbitz, H. J. (2001). Investigation of the efficacy of a genetically-stabile live Salmonella typhimurium vaccine for use in swine. Berl Munch Tierarztl Wochenschr, 114, 342–5.Google ScholarPubMed
Srinand, S., Robinson, R. A., Collins, J. E. and Nagaraja, K. V. (1995). Serologic studies of experimentally induced Salmonella choleraesuis var kunzendorf infection in pigs. Am J Vet Res, 56, 1163–8.Google ScholarPubMed
Stabel, T. J., Fedorka-Cray, P. J. and Gray, J. T. (2002). Neutrophil phagocytosis following inoculation of Salmonella choleraesuis into swine. Vet Res Commun, 26, 103–9.CrossRefGoogle ScholarPubMed
Trebichavsky, I., Splichal, I., Splichalova, A., Muneta, Y. and Mori, Y. (2003). Systemic and local cytokine response of young piglets to oral infection with Salmonella enterica serotype Typhimurium. Folia Microbiol (Praha), 48, 403–7.CrossRefGoogle ScholarPubMed
Diemen, P. M., Kreukniet, M. B., Galina, L., Bumstead, N. and Wallis, T. S. (2002). Characterisation of a resource population of pigs screened for resistance to salmonellosis. Vet Immunol Immunopathol, 88, 183–96.CrossRefGoogle ScholarPubMed
Immerseel, F., Buck, J., De, Smet I., Mast, J., Haesebrouck, F. and Ducatelle, R. (2002a). Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella enteritidis strain. Dev Comp Immunol, 26, 355–64.CrossRefGoogle Scholar
Immerseel, F., Buck, J., Smet, I., Mast, J., Haesebrouck, F. and Ducatelle, R. (2002b). The effect of vaccination with a Salmonella enteritidis aroA mutant on early cellular responses in caecal lamina propria of newly-hatched chickens. Vaccine, 20, 3034–41.CrossRefGoogle Scholar
Vermeulen, A. N. (1998). Progress in recombinant vaccine development against coccidiosis. A review and prospects into the next millennium. Int J Parasitol, 28, 1121–30.CrossRefGoogle ScholarPubMed
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469–85.CrossRefGoogle ScholarPubMed
Villarreal-Ramos, B., Manser, J., Collins, R. A.et al. (1998). Immune responses in calves immunised orally or subcutaneously with a live Salmonella typhimurium aro vaccine. Vaccine, 16, 45–54.CrossRefGoogle ScholarPubMed
Villarreal-Ramos, B., Manser, J., Collins, R. A. (2000). Susceptibility of calves to challenge with Salmonella typhimurium 4/74 and derivatives harbouring mutations in htrA or purE. Microbiology, 146, 2775–83.CrossRefGoogle ScholarPubMed
Watson, P. R., Paulin, S. M., Bland, A. P., Jones, P. W. and Wallis, T. S. (1995). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect Immun, 63, 2743–54.Google ScholarPubMed
Wells, L. L., Lowry, V. K., DeLoach, J. R. and Kogut, M. H. (1998). Age-dependent phagocytosis and bactericidal activities of the chicken heterophil. Dev Comp Immunol, 22, 103–9.CrossRefGoogle ScholarPubMed
Wigley, P., Berchieri, A., Page, K. L.Jr., Smith, A. L. and Barrow, P. A. (2001). Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect Immun, 69, 7873–9.CrossRefGoogle ScholarPubMed
Wigley, P., Hulme, S. D., Bumstead, N. and Barrow, P. A. (2002a). In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes Infect, 4, 1111–20.CrossRefGoogle Scholar
Wigley, P., Jones, M. A. and Barrow, P. A. (2002b). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol, 31, 501–6.CrossRefGoogle Scholar
Withanage, G. S., Sasai, K., Fukata, T.et al. (1998). T-lymphocytes, B-lymphocytes, and macrophages in the ovaries and oviducts of laying hens experimentally infected with Salmonella enteritidis. Vet Immunol Immunopathol, 66, 173–84.CrossRefGoogle ScholarPubMed
Withanage, G. S., Sasai, K., Fukata, T., Miyamoto, T. and Baba, E. (1999). Secretion of Salmonella-specific antibodies in the oviducts of hens experimentally infected with Salmonella enteritidis. Vet Immunol Immunopathol, 67, 185–93.CrossRefGoogle ScholarPubMed
Withanage, G. S. K., Kaiser, P., Wigley, P., Powers, C., Mastroeni, P., Brooks, H., Barrow, P., Smith, A., Maskell, D., and McConnell, I. (2004). Rapid expression of chemokines and pro-inflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect Immun, 72, 2152–9.CrossRefGoogle Scholar
Woodward, M. J., Gettinby, G., Breslin, M. F., Corkish, J. D. and Houghton, S. (2002). The efficacy of Salenvac, a Salmonella enterica subsp. Enterica serotype Enteritidis iron-restricted bacterin vaccine, in laying chickens. Avian Pathol, 31, 383–92.CrossRefGoogle ScholarPubMed
Zhang-Barber, L., Turner, A. K. and Barrow, P. A. (1999). Vaccination for control of Salmonella in poultry. Vaccine, 17, 2538–45.CrossRefGoogle ScholarPubMed
Zhang-Barber, L., Turner, A. K., Martin, G.et al. (1997). Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization. J Bacteriol, 179, 7186–90.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×