Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-04T20:48:18.212Z Has data issue: false hasContentIssue false

7 - The major histocompatibility complex (MHC) in declining populations: an example of adaptive variation

Published online by Cambridge University Press:  21 January 2010

Philip Hedrick
Affiliation:
Department of Biology, Arizona State University, Tempe, AZ 85287, U.S.A.
William V. Holt
Affiliation:
Zoological Society of London
Amanda R. Pickard
Affiliation:
Zoological Society of London
John C. Rodger
Affiliation:
Marsupial CRC, New South Wales
David E. Wildt
Affiliation:
Smithsonian National Zoological Park, Washington DC
Get access

Summary

INTRODUCTION AND OBJECTIVES

Conservation biology has focused on the long-term survival of endangered species. To this end, the primary genetic goals in managed populations of endangered species have been the avoidance of lowered fitness from inbreeding and the maintenance of potentially adaptive genetic variation. Captive breeding programmes of endangered species have specifically been designed both to avoid inbreeding (inbreeding depression) and to retain a given amount of genetic variation for a given period of time, primarily by minimising mean kinship in the population (Ballou & Lacy, 1995). Generally these goals are mutually consistent and may also serve other purposes, such as avoiding adaptation to captive conditions, avoiding accumulation of detrimental variants and maintenance of adaptive variation.

However, as more molecular genetic information accumulates, it is useful to consider whether these new data can be used to manage more effectively genetically captive populations. For example, by using a number of microsatellite loci (over 5000 highly variable genes have been described in humans; Dib et al., 1996), it may be possible to estimate the relationships among founders or other individuals of unknown ancestry. With this information, breeding plans may be modified to reflect previously unknown relationships as well as those known from captive breeding. Relevant to the discussion here, it may be possible to determine the value of maintaining particular genetic variants in a population because of their adaptive significance. Priority could be given to breeding individuals or groups of individuals that would maintain these adaptive variants.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, S. C. & Ober, C. (1993). Genetic variability in the major histocompatibility complex: a review of non-pathogen-mediated selective mechanisms. Yearbook of Physical Anthropology 36, 71–89CrossRefGoogle Scholar
Allendorf, F. W. (1986). Genetic drift and loss of alleles versus heterozygosity. Zoo Biology 5, 181–190CrossRefGoogle Scholar
Ballou, J. D. & Lacy, R. C. (1995). Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In Population Management for Survival and Recovery (Eds. J. D. Ballou, M. Gilpin & T. J. Foose), pp. 76–111. Columbia University Press, New York
Beck, S. & Trowsdale, J. (2000). The human Major Histocompatibility Complex: lessons from the DNA sequence. Annual Review of Genomics and Human Genetics 1, 117–137CrossRefGoogle ScholarPubMed
Black, F. J. (1992). Why did they die?Science 258, 1739–1740CrossRefGoogle ScholarPubMed
Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Uban, R. G., Strominger, J. L. & Wiley, D. C. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39CrossRefGoogle ScholarPubMed
Brown, J. L. & Eklund, A. (1994). Kin recognition and the major histocompatibility complex: an integrative review. American Naturalist 143, 435–461CrossRefGoogle Scholar
Carrington, M., Nelson, G. W., Martin, M. P., Kissner, T., Vlahov, D., Goedert, J. J., Kaslow, R., Buchbinder, S., Hoots, K. & O'Brien, S. J. (1999). HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 238, 1748–1752CrossRefGoogle Scholar
Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J. & Weissenbach, J. (1996). A comprehensive map of the human genome based on 5,264 microsatellites. Nature 380, 152–154CrossRefGoogle ScholarPubMed
Doherty, P. & Zingernagel, R. (1975). Enhanced immunologic surveillance in mice heterozygous at the H2 complex. Nature 245, 50–52CrossRefGoogle Scholar
Edwards, S. & Hedrick, P. W. (1998). Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology and Evolution 13, 305–311CrossRefGoogle ScholarPubMed
Edwards, S. V. & Potts, W. K. (1996). Polymorphism of genes in the major histocompatibility complex (MHC): implications for conservation genetics of vertebrates. In Molecular Genetic Approaches in Conservation (Eds. T. B. Smith & R. K. Wayne), pp. 214–237. Oxford University Press, New York
Fernandez, N., Cooper, J., Sprinks, M., AbdElrahman, M., Fiszer, D., Kurpisz, M. & Dealtry, G. (1999). A critical review of the role of the major histocompatibility complex in fertilization, preimplantation development and feto-maternal interactions. Human Reproduction Update 5, 234–248CrossRefGoogle ScholarPubMed
Flajnik, M. F., Ohta, Y., Namikawa-Yamada, C. & Nonaka, M. (1999). Insight into the primordial MHC from studies in ectothermic vertebrates. Immunological Reviews 167, 59–67CrossRefGoogle ScholarPubMed
Garcia-Moreno, J., Roy, M. S., Geffen, E. & Wayne, R. K. (1996). Relationships and genetic purity of the endangered Mexican wolf based on analysis of microsatellite loci. Conservation Biology 10, 396–405CrossRefGoogle Scholar
Genin, E., Ober, C., Weitkamp, L. & Thomson, G. (2000). A robust test for assortative mating. European Journal of Human Genetics 8, 119–124CrossRefGoogle ScholarPubMed
Gilpin, M. &, Wills, C. (1991). MHC and captive breeding: a rebuttal. Conservation Biology 5, 554–555CrossRefGoogle Scholar
Haig, S. M., Ballou, J. D. & Derrickson, S. R. (1990). Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Conservation Biology 4, 290–300CrossRefGoogle Scholar
Hedrick, P. W. (1992). Female choice and variation in the major histocompatibility complex. Genetics 132, 575–581Google ScholarPubMed
Hedrick, P. W. (1994). Evolutionary genetics of the major histocompatibility complex. American Naturalist 143, 945–964CrossRefGoogle Scholar
Hedrick, P. W. & Black, F. L. (1997). HLA and mate selection: no evidence in South Amerindians. American Journal of Human Genetics 61, 505–511CrossRefGoogle ScholarPubMed
Hedrick, P. W. & Kim, T. J. (2000). Genetics of complex polymorphisms: parasites and maintenance of the major histocompatibility complex variation. In Evolutionary Genetics: From Molecules to Morphology (Eds. R. S. Singh & C. B. Krimbas), pp. 204–234. Cambridge University Press, Cambridge
Hedrick, P. W. & Miller, P. S. (1994). Rare alleles, MHC and captive breeding. In Conservation Genetics (Eds. V. Loeschcke, J. Tomiuk & S. K Jain), pp. 187–204. Birkhauser, Basel, SwitzerlandCrossRef
Hedrick, P. W. & Thomson, G. (1988). Maternal–fetal interactions and the maintenance of HLA polymorphism. Genetics 119, 205–212Google ScholarPubMed
Hedrick, P. W., Brussard, P. R., Allendorf, F. W., Beardmore, J. A. & Orzack, S. (1986). Protein variation, fitness, and captive propagation. Zoo Biology 5, 91–100CrossRefGoogle Scholar
Hedrick, P. W., Lee, R. & Parker, K. M. (2000b). Major histocompatibility complex (MHC) variation in the endangered Mexican wolf and related canids. Heredity 85, 617–624CrossRefGoogle Scholar
Hedrick, P. W., Miller, P. S., Geffen, E. & Wayne, R. (1997). Genetic evaluation of the three captive Mexican wolf lineages. Zoo Biology 16, 47–693.0.CO;2-B>CrossRefGoogle Scholar
Hedrick, P. W., Parker, K. M., Gutierrez-Espeleta, G. A., Rattink, A. & Lievers, K. (2000a). Major histocompatibility complex (MHC) variation in the Arabian oryx. Evolution 54, 2145–2151CrossRefGoogle Scholar
Hedrick, P. W., Parker, K. M., Miller, E. L. & Miller, P. S. (1999). Major histocompatibility complex variation in the endangered Przewalski's horse. Genetics 152, 1701–1710Google ScholarPubMed
Henderson, D. S. (1974). Were they the last Arabian oryx?Oryx 12, 347–350CrossRefGoogle Scholar
Hill, A. V. S., Allsop, C. E. M., Kwiatdowski, D., Antsey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J. & Greenwood, B. M. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600CrossRefGoogle ScholarPubMed
Hughes, A. L. (1991). MHC polymorphism and the design of captive breeding programs. Conservation Biology 5, 249–251CrossRefGoogle Scholar
Hughes, A. L. & Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170CrossRefGoogle Scholar
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
Klein, J. (1987). Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Human Immunology 19, 155–162CrossRefGoogle ScholarPubMed
Kreitman, M. (2000). Methods to detect selection in populations with applications to the human. Annual Review of Genomics and Human Genetics 1, 539–559CrossRefGoogle ScholarPubMed
Lacy, R. C. (2000). Should we select genetic alleles in our conservation breeding programs?Zoo Biology 19, 279–2823.0.CO;2-V>CrossRefGoogle Scholar
Laikre, L. (1999). Hereditary defects and conservation genetic management of captive populations. Zoo Biology 18, 81–993.0.CO;2-2>CrossRefGoogle Scholar
Laurenson, K., Sillero-Zubiri, C., Thompson, H., Shiferaw, F., Thirgood, S. & Malcom, J. (1998). Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Animal Conservation 1, 273–280CrossRefGoogle Scholar
Li, W.-H. (1997). Molecular Evolution. Sinauer Associates, Sunderland, MA
Lyles, A. M. & Dobson, A. P. (1993). Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. Journal of Zoo and Wildlife Medicine 24, 315–326Google Scholar
Marsh, S. G. E., Parham, P. & Barber, L. D. (2000). The HLA Facts Book. Academic Press, London
Marshall, T. C. (1998). Inbreeding and fitness in wild ungulates. Ph. D. thesis, University of Edinburgh
Marshall, T. C., Sunnucks, P., Spalton, J. A., Greth, A. & Pemberton, J. M. (1999). Use of genetic data for conservation management: the case of the Arabian oryx. Animal Conservation 2, 269–278CrossRefGoogle Scholar
Meyer, D. & Thomson, G. (2001). How selection shapes variation of the human major histocompatibility complex: a review. Annals of Human Genetics 65, 1–26CrossRefGoogle ScholarPubMed
MHC Sequencing Consortium (1999). Complete sequence and gene map of a human major histocompatibility complex (MHC). Nature 401, 921–923CrossRef
Mikko, S. & Andersson, L. (1995). Extensive MHC class II DRB3 diversity in African and European cattle. Immunogenetics 42, 408–413CrossRefGoogle ScholarPubMed
Mikko, S., Roed, K., Schmutz, S. & Andersson, L. (1999). Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants. Immunological Reviews 167, 169–178CrossRefGoogle ScholarPubMed
Mikko, S., Spencer, M., Morris, B., Stabile, S., Basu, T., Stormont, C. & Andersson, L. (1997). A comparative analysis of the Mhc DRB3 polymorphism in the American Bison (Bison bison). Journal of Heredity 8, 499–503CrossRefGoogle Scholar
Miller, P. S. (1995). Selective breeding programs for rare alleles: examples from the Przewalski's horse and California condor pedigrees. Conservation Biology 9, 1262–1273CrossRefGoogle Scholar
Miller, P. S. & Hedrick, P. W. (1991). MHC polymorphism and the design of captive breeding programs: simple solutions are not the answer. Conservation Biology 5, 556–558CrossRefGoogle Scholar
Murray, D. L., Kapke, C. A., Evermann, J. F. & Fuller, T. K. (1999). Infectious disease and the conservation of free-ranging large carnivores. Animal Conservation 2, 241–254CrossRefGoogle Scholar
Nei, M. & Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York
Ober, C., Hyslop, T., Elias, S., Weitkamp, L. R. & Hauck, W. W. (1998). Human leukocyte antigen matching and fetal loss: results of a 10-year prospective study. Human Reproduction 13, 33–38CrossRefGoogle ScholarPubMed
O'Brien, S. J. & Evermann, J. F. (1988). Interactive influence of infectious disease and genetic diversity in natural populations. Trends in Ecology and Evolution 3, 254–259CrossRefGoogle ScholarPubMed
Ohta, T. (1991). Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proceedings of the National Academy of Sciences USA 88, 6716–6720CrossRefGoogle ScholarPubMed
Ostrowski, S., Bedin, E., Lenain, D. M. & Abuzinada, A. H. (1998). Ten years of Arabian oryx conservation breeding in Saudi Arabia – achievements and regional perspectives. Oryx 32, 209–222CrossRefGoogle Scholar
Parham, P. & Ohta, T. (1996). Population biology of antigen presentation by MHC class I molecules. Science 272, 67–74CrossRefGoogle ScholarPubMed
Paterson, S. & Pemberton, J. M. (1997). No evidence for major histocompatibility complex-dependent mating patterns in a free-living ruminant population. Proceedings of the Royal Society of London B 264, 1813–1819CrossRefGoogle Scholar
Penn, D. J. & Potts, W. K. (1999). The evolution of mating preferences and major histocompatibility complex genes. American Naturalist 153, 145–164CrossRefGoogle ScholarPubMed
Satta, Y., O'Huigin, C., Takahata, N. & Klein, J. (1994). Intensity of natural selection at the major histocompatibility complex loci. Proceedings of the National Academy of Sciences USA 91, 7184–7188CrossRefGoogle ScholarPubMed
Thurz, M. R., Thomas, H. C., Greenwood, B. M. & Hill, A. V. S. (1997). Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nature Genetics 17, 11–12CrossRefGoogle Scholar
Vrijenhoek, R. C. & Leberg, P. L. (1991). Let's not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Conservation Biology 5, 252–254CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×