Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: November 2019

23 - Visible to Short-Wave Infrared Spectral Analyses of Mars from Orbit Using CRISM and OMEGA

from Part IV - Applications to Planetary Surfaces


Visible to short-wave infrared (VSWIR, 0.4–5.0 µm) reflectance spectroscopy is a powerful tool to identify and map mineral groups on the martian surface. The Mars Express/OMEGA and Mars Reconnaissance Orbiter/CRISM instruments have characterized more than 30 mineral groups, revolutionizing previous understanding of martian crustal composition and the role of water in altering it. Analyses of these spectral images revealed the primary structure of the crust to be dominated by basalt, over a deep layer of segregated pyroxene- and olivine-rich plutons, with sparse feldspar-rich, differentiated intrusions. Martian volatile-bearing environments have evolved through four phases: the pre-Noachian to early Noachian period when alteration by liquid water occurred near the surface and deep in the subsurface, in chemically neutral to alkaline environments that formed hydrous silicates and carbonates; the middle to late Noachian period when liquid water was widely present at the surface forming valley networks, lacustrine deposits, and clay-rich pedogenic horizons; the early Hesperian to early Amazonian period during which water became increasingly acidic and saline, forming deposits rich in sulfate salts, chlorides, and hydrated silica; and the Amazonian period when surface water has existed predominantly as ice, with only localized reaction with regolith and briny flow on the surface.

Related content

Powered by UNSILO