Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T00:12:30.506Z Has data issue: false hasContentIssue false

7 - Kikuchi and resonance patterns

Published online by Cambridge University Press:  06 July 2010

Ayahiko Ichimiya
Affiliation:
Nagoya University, Japan
Philip I. Cohen
Affiliation:
University of Minnesota
Get access

Summary

Kikuchi lines

Inelastically scattered electrons play an important role in the formation of the RHEED pattern. The primary inelastic process is a scattering event involving phonons and plasmons (Horio, 1996; Müller and Henzler, 1997). The intensity of these Kikuchi patterns depends strongly on the surface morphology, since scattering from small terraces and steps broadens them. Sharp Kikuchi lines are obtained from crystals with perfect surfaces and perfect bulk lattices. They seem to be stronger for heavier materials; for example, Si and SiC show strong Kikuchi patterns but GaAs, GaN and PbS show weaker patterns.

As will be discussed in Chapter 16, the inelastic scattering is peaked in the forward direction in a diffuse cone of about 0.1° for single-plasmon scattering and of more than 10° when multiple thermal diffuse scattering is important (Ichimiya, 1972). The inelastically scattered electrons in this diffuse cone can subsequently be diffracted by the crystal lattice planes, depending on their angle. These two scattering processes combine to give rise to the appearance of Kikuchi lines at specific exit angles. Figure 7.1 shows the energy distribution of the electrons scattered into a Kikuchi line which crosses the specular beam from Si(111) (Nakahara et al., 2003). The main contributions in the spectrum are surface and bulk plasmons, because the energy-loss spectra from thermal diffuse scattering (or phonon scattering) are not resolved owing to poor resolution of the spectrometer for RHEED.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×