Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-30T19:45:50.240Z Has data issue: false hasContentIssue false

12 - Dynamics and optical control of an individual Mn spin in a quantum dot

from Part IV - Quantum dot nano-laboratory: magnetic ions and nuclear spins in a dot

Published online by Cambridge University Press:  05 August 2012

L. Besombes
Affiliation:
CNRS & Université Joseph Fourier, France
C. Le Gall
Affiliation:
CNRS & Université Joseph Fourier, France
H. Boukari
Affiliation:
CNRS & Université Joseph Fourier, France
H. Mariette
Affiliation:
CNRS & Université Joseph Fourier, France
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

We show in this review that the spin state of a single magnetic atom embedded in an individual semiconductor quantum dot can be optically probed. A high degree of spin polarization can be achieved for an individual Mn atom using quasi-resonant or fully resonant optical excitation of the quantum dot at zero magnetic field. Under quasi-resonant excitation, optically created spin-polarized carriers generate an energy splitting of the Mn spin and enable magnetic moment orientation controlled by the photon helicity and energy. Monitoring the time dependence of the intensity of the fluorescence during a resonant optical pumping process allows us to directly probe the dynamics of the initialization of the Mn spin. The dynamics and the magnetic field dependence of the optical-pumping mechanism shows that the spin lifetime of an isolated Mn atom at zero magnetic field is controlled by a magnetic anisotropy induced by the built-in strain in the quantum dots. The Mn spin state prepared by optical pumping is fully conserved for a few microseconds. These experiments open the way to full optical control of the spin state of an individual magnetic atom in a solid state environment.

Introduction

The ability to control spins in semiconductor nanostructures is an important issue for spintronics and quantum information processing. Single-spin detection and control is a key but very challenging step for any spin-based solid-state quantum computing device. In the past few years, efficient optical techniques have been developed to control the spin of individual carriers [34] or ensemble of nuclei [22] in semiconductor quantum dots (QDs).

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 205 - 220
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Archer, P. I., Santangelo, S. A. and Gamelin, D. R. 2007. Direct observation of sp–d exchange interactions in colloidal Mn2+ and Co2+ doped CdSe quantum dots. Nanoletters, 7, 1037.Google Scholar
[2] Bacher, G., Maksimov, A. A., Schömig, H. et al. 2002. Monitoring statistical magnetic fluctuations on the nanometer scale. Phys. Rev. Lett., 89(12), 127201.Google Scholar
[3] Beaulac, R., Schneider, L., Archer, P. I., Bacher, G. and Gamelin, D. R. 2009. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science, 325(5943), 973–976.Google Scholar
[4] Besombes, L., Léger, Y., Maingault, L. et al. 2004. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett., 93, 207403.Google Scholar
[5] Besombes, L., Léger, Y., Bernos, J. et al. 2008. Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot. Phys. Rev.B, 78, 125324.Google Scholar
[6] Bhattacharjee, A. K. and Pérez-Conde, J. 2003. Optical properties of paramagnetic ion-doped semiconductor nanocrystals. Phys. Rev.B, 68(4), 045303.Google Scholar
[7] Boukari, H., Kossacki, P., Bertolini, M. et al. 2002. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett., 88(20), 207204.Google Scholar
[8] Chernenko, A. V., Dorozhkin, P. S., Kulakovskii, V. D. et al. 2005. Auger recombination of excitons in semimagnetic quantum dot structure in a magnetic field. Phys. Rev.B, 72(4), 045302.Google Scholar
[9] Clément, T., Ferrand, D., Besombes, L., Boukari, H. and Mariette, H. 2010. Dynamical equilibrium between magnetic ions and photocarriers in low Mn-doped single quantum dots. Phys. Rev.B, 81(15), 155328.Google Scholar
[10] Dorozhkin, P. S., Chernenko, A. V., Kulakovskii, V. D. et al. 2003. Longitudinal and transverse fluctuations of magnetization of the excitonic magnetic polaron in a semimagnetic single quantum dot. Phys. Rev.B, 68(19), 195313.Google Scholar
[11] Dreiser, J., Atatüre, M., Galland, C. et al. 2008. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev.B, 77(7), 075317.Google Scholar
[12] Erwin, S. C., Zu, L., Haftel, M. I. et al. 2005. Doping semiconductor nanocrystals. Nature, 436, 91–94.Google Scholar
[13] Furdyna, J. K. 1998. Diluted magnetic semiconductors. J. Appl. Phys., 64, R29.Google Scholar
[14] Furdyna, J. K. and Kossut, J. (eds.) 1988. Diluted Magnetic Semiconductors. Semiconductors and Semimetals, vol. 25. Academic Press, Boston.
[15] Gaj, J. A., Planel, R. and Fishman, G. 1979. Solid State Commun., 29, 435.
[16] Gerardot, B. D., Brunner, D., Dalgarno, P. A. et al. 2008. Optical pumping of a single hole spin in a quantum dot. Nature, 451(7177), 441–444.Google Scholar
[17] Glazov, M. M., Ivchenko, E. L., Besombes, L. et al. 2007. Fine structure of exciton excited levels in a quantum dot with a magneticion. Phys. Rev.B, 75, 205313.Google Scholar
[18] Goryca, M., Ferrand, D., Kossacki, P. et al. 2009. Magnetization dynamics down to a zero field in dilute (Cd,Mn)Te quantum wells. Phys. Rev. Lett., 102, 046408.Google Scholar
[19] Govorov, A. O. and Kalameitsev, A. V. 2005. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation. Phys. Rev.B, 71, 035338.Google Scholar
[20] Hundt, A., Puls, J. and Henneberger, F. 2004. Spin properties of self-organized diluted magnetic Cd1−x Mnx Se quantum dots. Phys. Rev.B, 69(12), 121309.Google Scholar
[21] Kudelski, A., Lemaitre, A., Miard, A. et al. 2007. Optically probing the fine structure of a single Mn atom in an InAs quantum dot. Phys. Rev. Lett., 99, 247209.Google Scholar
[22] Latta, C., Hogele, A., Zhao, Y. et al. 2009. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Physics, 5(10), 758–763.Google Scholar
[23] Le Gall, C., Besombes, L., Boukari, H. et al. 2009. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation. Phys. Rev. Lett., 102, 127402.Google Scholar
[24] Le Gall, C., Kolodka, R. S., Cao, C. L. et al. 2010. Optical initialization, readout, and dynamics of a Mn spin in a quantum dot. Phys. Rev.B, 81, 245315.Google Scholar
[25] Léger, Y., Besombes, L., Fernández-Rossier, J., Maingault, L. and Mariette, H. 2006. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett., 97(10), 107401.Google Scholar
[26] Léger, Y., Besombes, L., Maingault, L. and Mariette, H. 2007. Valence-band mixing in neutral, charged, and Mn-doped self-assembled quantum dots. Phys. Rev.B, 76, 045331.Google Scholar
[27] Linnarsson, M., Janzén, E., Monemar, B., Kleverman, M. and Thilderkvist, A. 1997. Electronic structure of the GaAs:MnGascenter. Phys. Rev.B, 55(11), 6938–6944.Google Scholar
[28] Mackh, G., Ossau, W., Yakovlev, D. R. et al. 1994. Localized exciton magnetic polarons in Cd1−xMnx Te.Phys. Rev.B, 49(15), 10248–10258.Google Scholar
[29] Mackowski, S., Gurung, T., Jackson, H. E., Smith, L. M. and Karczewski, G. 2005. Exciton-controlled magnetization in single magnetic quantum dots. Appl. Phys. Lett., 87, 072502.Google Scholar
[30] Maingault, L., Besombes, L., Léger, Y., Bougerol, C. and Mariette, H. 2006. Inserting one single Mn ion into a quantum dot. Appl. Phys. Lett., 89, 193109.Google Scholar
[31] Maksimov, A. A., Bacher, G., McDonald, A. et al. 2000. Magnetic polarons in a single diluted magnetic semiconductor quantum dot. Phys. Rev.B, 62(12), R7767–R7770.Google Scholar
[32] Myers, R. C., Mikkelsen, M. H., Tang, J.-M. et al. 2008. Zero-field optical manipulation of magnetic ions in semiconductors. Nature materials, 7, 203.Google Scholar
[33] Norris, D. J., Yao, N., Charnock, F. T. and Kennedy, T. A. 2001. High-quality manganese-doped ZnSe nanocrystals. Nanoletters, 1, 3.Google Scholar
[34] Press, D., Ladd, T. D., Zhang, B. and Yamamoto, Y. 2008. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 456(7219), 218–221.Google Scholar
[35] Qazzaz, M., Yang, G., Xin, S. H. et al. 1995. Electron paramagnetic resonance of Mn2+ in strained layer semiconductor superlattices. Solid State Commun., 96, 405.Google Scholar
[36] Reiter, D. E., Kuhn, T. and Axt, V. M. 2009. All-optical spin manipulation of a single manganese atom in a quantum dot. Phys. Rev. Lett., 102, 177403.Google Scholar
[37] Scheibner, M., Kennedy, T. A., Worschech, L. et al. 2006. Coherent dynamics of locally interacting spins in self-assembled Cd1−x Mnx Se/ ZnSe quantum dots. Phys. Rev.B, 73(8), 081308.Google Scholar
[38] Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M. and Köhl, F. 1987. Electronic structure of the neutral manganese acceptor in gallium arsenide. Phys. Rev. Lett., 59(2), 240–243.Google Scholar
[39] Seufert, J., Bacher, G., Scheibner, M. et al. 2001. Dynamical spin response in semimagnetic quantum dots. Phys. Rev. Lett., 88(2), 027402.Google Scholar
[40] Tinjod, F., Gilles, B., Moehl, S., Kheng, K. and Mariette, H. 2003. II–VI quantum dot formation induced by surface energy change of a strained layer. Appl. Phys. Lett., 82, 4340.Google Scholar
[41] Twardowski, A., Swiderski, P., von Ortenberg, M. and Pauthenet, R. 1984. Solid State Commun., 50, 509.
[42] Yakovlev, D. R., Kavokin, K. V., Merkulov, I. A. et al. 1997. Picosecond dynamics of magnetic polarons governed by energy transfer to the Zeeman reservoir. Phys. Rev.B, 56(15), 9782–9788.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×