Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: August 2012

19 - Deterministic single quantum dot cavities at telecommunication wavelengths

from Part VI - Single dots for future telecommunications applications


Scalability requirements in future device application of self-assembled quantum dots for non-classical light generation necessitate control of the quantum dot nucleation site. In this chapter we discuss a site-control technique based on directed self-assembly of InAs/InP quantum dots emitting at telecommunication wavelengths. The site-control method preserves the high optical quality inherent in self-assembled quantum dots and the characteristic signatures of a strongly confined system are observed in the emission spectra. The efficacy of site-control manifests in the coupling of single quantum dots to microcavities required for the fabrication of efficient devices. The a priori knowledge of the quantum dot position is used to deterministically couple single dots to high-finesse microcavities with the assurance that one and only one quantum dot is coupled to each cavity. Such devices form the basis of efficient sources of single photons and entangled photon pairs for telecommunications applications that can be manufactured in a scalable manner using conventional semiconductor processing.


Self-assembled quantum dots possess the two-level emitter characteristics required for non-classical light generation [37] in quantum information processing and quantum key distribution. The performance of a quantum dot-based single photon source or entangled photon pair source will depend on how well the dot can be coupled to a high-quality factor Q, small volume Veff microcavity [44]. The cavity is required to channel photons from the exciton decay into an optical mode that can be collected by an external optical system.

[1] Andreani, L. C., Panzarini, G. and Gérard, J.-M. 1999. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev.B, 60, 13 276.
[2] Atkinson, P., Kiravittaya, S., Benyoucef, M., Rastelli, A. and Schmidt, O. G. 2008. Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates. Appl. Phys. Lett., 93, 101908.
[3] Badolato, A., Hennessy, K., Atatüre, M. et al. 2005. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 308, 1158.
[4] Baier, M. H., Pelucchi, E., Kapon, E. et al. 2004. Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett., 84, 648.
[5] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev.B, 65, 195315.
[6] Chithrani, D., Williams, R. L., Lefebvre, J., Poole, P. J. and Aers, G. C. 2004. Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots. Appl. Phys. Lett., 84, 978.
[7] Dalacu, D., Frédérick, S., Poole, P. J., Aers, G. C. and Willliams, R. L. 2005. Post-fabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes. Appl. Phys. Lett., 87, 151107.
[8] Dalacu, D., Mnaymneh, K., Sazonova, V. et al. 2010. Deterministic emitter-cavity coupling using a s ingle-site controlled quantum dot. Phys. Rev.B, 82, 033381.
[9] Dion, C., Poole, P. J., Raymond, S., Desjardins, P. and Schiettekatte, F. 2007. Tuning of the electronic properties of self-assembled InAs/InP (001) quantum dots using grown-in defect mediated intermixing. Appl. Phys. Lett., 89, 13105.
[10] Dousse, A., Lanco, L., Suffczyński, J. et al. 2008. Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett., 101, 267404.
[11] Ellis, D. J. P., Stevenson, R. M., Young, R. J. et al. 2007. Control of fine-structure splitting of i ndividual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett., 90, 011907.
[12] Faraon, A., Majumdar, A., Kim, H., Petroff, P. and Vučković, J. 2010. Fast electrical control of q quantum dot strongly coupled to a photonic-crystal cavity. Phys. Rev. Lett., 104, 047402.
[13] Frédérick, S., Dalacu, D., Lapointe, J. et al. 2006. Experimental demonstration of high quality factor, x-dipole modes in InAs/InP quantum dot photonic crystal microcvity membranes. Appl. Phys. Lett., 89, 191115.
[14] Gallo, P., Felici, M., Dwir, B. et al. 2008. Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett., 92, 263101.
[15] Hennessy, K., Badolato, A., Tamboli, A. et al. 2005. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett., 87, 021108.
[16] Hennessy, K., Badolato, A., Winger, M. et al. 2007. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445, 896–899.
[17] Hohenester, U. 2010. Cavity quantum electrodynamics with semiconductor quantum dots: role of phonon-assisted cavity feeding. Phys. Rev.B, 81, 155303.
[18] Hsieh, T. -P. and Chyi, J.-I. 2007. Single photon emission from an InGaAs quantum dot precisely position on a nanoplane. Appl. Phys. Lett., 90, 073105.
[19] Hughes, S. and Yao, P. 2009. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system. Opt. Exp., 17, 3322.
[20] Hughes, S., Yao, P., Milde, F. et al. 2011. Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system. Phys. Rev.B, 83, 165313.
[21] Lee, K. H., Green, A. M., Taylor, R. A. et al. 2006. Registration of single quantum dots using cryogenic laser photolithography. Appl. Phys. Lett., 88, 193106.
[22] Michler, P. 2003. Nonclassical light from single semiconductor quantum dots. Topics Appl. Phys., 90, 315.
[23] Milde, F., Knorr, A. and Hughes, S. 2008. Role of electron–phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity. Phys. Rev.B, 78, 035330.
[24] Mosor, S., Hendrickson, J., Richards, B. C. et al. 2005. Scanning a photonic crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett., 87, 141105.
[25] Painter, O. J., Husain, A., Scherer, A. et al. 1999. Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP. J. Lightwave Technol., 17, 2082.
[26] Pathak, K. and Hughes, S. 2009. Cavity-assisted fast generation of entangled photon pairs through the biexciton-exciton cascade. Phys. Rev.B, 80, 155525.
[27] Peter, E., Senellart, P., Martrou, D. et al. 2005. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401.
[28] Petroff, P. M. 2003. Epitaxial growth and electronic structure of self-assembled quantum dots. Topics Appl. Phys., 90, 1–24.
[29] Poole, P. J., McCaffrey, J., Williams, R., Lefebvre, J. and Chitrani, D. 2001. Chemical beam epitaxy of self-assembled InAs/InP quanum dots. J. Vac. Sci. Technol.B, 19, 1467.
[30] Poole, P. J., Dalacu, D., Lefebvre, J. and Williams, R. L. 2010. Selective epitaxy of semiconductor nanopyramids for nanophotonics. Nanotech., 21, 295302.
[31] Press, D., Götzinger, S. et al. 2007. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett., 98, 117402.
[32] Purcell, E. M. 1946. Spontaneous emission probabilities at radio reguencies. Phys. Rev., 69, 681.
[33] Rastelli, A., Ulhaq, A., Kiravittaya, S. et al. 2007. In situ laser microprocessing of single s elf-assembled quantum dots and optical microcavities. Appl. Phys. Lett., 90, 073120.
[34] Reimer, M. E., Korkusiński, M., Dalacu, D. et al. 2008. Prepositioned single quantum dot in a lateral electric field. Phys. Rev.B, 78, 195301.
[35] Reithmaier, J. P., Sek, G., Löffler, A. et al. 2004. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197.
[36] Schneider, C., Heindel, T., Huggenberger, A. et al. 2009. Single photon emission from a site-controlled quantum dot-micropillar cavity system. Appl. Phys. Lett., 94, 111111.
[37] Shields, A. J. 2007. Semiconductor quantum light sources. Nat. Photonics, 1, 215.
[38] Song, H. Z., Usuki, T., Hirose, S. et al. 2005. Site-controlled photoluminescence at telecommunication wavelength from InAs/InP quantum dots. Appl. Phys. Lett., 86, 113.
[39] Srinivasan, K. and Painter, O. 2007. Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cyrogenic temperatures. Appl. Phys. Lett., 90, 031114.
[40] Stanowski, R. and Dubowski, J. J. 2009. Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique. Appl. Phys.A, 94, 667.
[41] Stranski, I. N. and von Krastanow, L. 1939. Akad. Wiss. Lit. Mainz Math.-Naturwiss K1. IIb, 146, 797.
[42] Sünner, T., Schneider, C., Strauß, M. et al. 2008. Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Opt. Lett., 33, 1759.
[43] Tarel, G. and Savona, V. 2010. Linear spectrum of a quantum dot coupled to a nanocavity. Phys. Rev.B, 81, 075305.
[44] Vahala, K. J. 2003. Optical microcavities. Nature, 424, 839.
[45] Yoshie, T., Scherer, A., Hendrickson, J. et al. 2004. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200.