Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T22:21:20.716Z Has data issue: false hasContentIssue false

8 - Deterministic light–matter coupling with single quantum dots

from Part III - Optical properties of quantum dots in photonic cavities and plasmon-coupled dots

Published online by Cambridge University Press:  05 August 2012

P. Senellart
Affiliation:
Laboratoire de Photonique et de Nanostructures, France
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

In 1946, E. M. Purcell predicted that the radiative lifetime of an emitter is not an intrinsic property but can be modified by structuring the surrounding electromagnetic field [36]. By inserting a semiconductor quantum dot (QD) in an optical cavity, one can accelerate or inhibit its spontaneous emission. In the present article, we show that the QD spontaneous emission can be deterministically controlled to fabricate bright sources of quantum light.

QDs in cavities: basics, motivation, first demonstrations

Light-matter coupling

We note f the ground state of the QD and e its excited state. For a cavity mode close to resonance with the QD optical transition, we consider only the states with 0 or 1 photon in the cavity mode. The states ∣e, 0〉 and ∣ f, 1〉 are coupled through light–matter interaction, with a constant g, where hg = ∣〈e, 0∣ Edf, 1∣, with d the dipole of the optical transition ef and E the electric field at the QD position.

Each of the states ∣e, 0 > and ∣ f, 1 > are also coupled to continua of states: continuum of the free-space optical mode, phonons of the semiconductor matrix, etc. [4]. Here, we consider only the coupling to the continuum of the free-space optical mode, related to the cavity losses, with a constant γc. When g << γc, the photon emitted by the recombination of an exciton efficiently escapes outside the cavity. The QD optical transition radiative recombination rate can be accelerated (Purcell effect) or inhibited.

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 137 - 152
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akopian, N., Lindner, N. H., Poem, E. et al. 2006. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96(13), 130501.Google Scholar
[2] Badolato, A., Hennessy, K., Atatüre, M. et al. 2005. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 308(5725), 1158–1161.Google Scholar
[3] Benson, O., Santori, C., Pelton, M. and Yamamoto, Y. 2000. Regulated and entangled photons from a single quantum Dot. Phys. Rev. Lett., 84(11), 2513–2516.Google Scholar
[4] Besombes, L., Kheng, K., Marsal, L. and Mariette, H. 2001. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev.B, 63(15), 155307.Google Scholar
[5] Böckler, C., Reitzenstein, S., Kistner, C. et al. 2008. Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett., 92(9), 091107.Google Scholar
[6] Dalacu, D., Mnaymneh, K., Sazonova, V. et al. 2010. Deterministic emitter–cavity coupling using a single-site controlled quantum dot. Phys. Rev.B, 82(3), 033301.Google Scholar
[7] Ding, L., Baker, C., Senellart, P. et al. 2010. High frequency GaAs nanooptomechanical disk resonator. Phys. Rev. Lett., 105(26), 263903.Google Scholar
[8] Dousse, A., Lanco, L., Suffczyński, J. et al. 2008. Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett., 101(26), 267404.Google Scholar
[9] Dousse, A., Suffczyński, J., Krebs, O. et al. 2010. A quantum dot based bright source of entangled photon pairs operating at 53 K.Appl. Phys. Lett., 97(8), 081104.Google Scholar
[10] Ellis, D. J. P., Stevenson, R. M., Young, R. J. et al. 2007. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett., 90(1), 011907.Google Scholar
[11] Gayral, B. and Gérard, J. M. 2008. Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity. Phys.Rev.B, 78(23), 235306.Google Scholar
[12] Gayral, B., Gérard, J. M., Legrand, B., Costard, E. and Thierry-Mieg, V. 1998. Optical study of GaAs/AlAs pillar microcavities with elliptical cross section. Appl. Phys. Lett., 72(12), 1421–1423.Google Scholar
[13] Gerard, J. -M. and Gayral, B. 1999. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol., 17(11), 2089–2095.Google Scholar
[14] Gérard, J. M., Sermage, B., Gayral, B. et al. 1998. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett., 81(5), 1110–1113.Google Scholar
[15] Gogneau, N., Gratiet, L. Le, Cambril, E. et al. 2008. One-step nano-selective area growth (nano-SAG) of localized InAs/InP quantum dots: First step towards single-photon source applications. J. Crystal Growth, 310(15), 3413–3415.Google Scholar
[16] Hafenbrak, R., Ulrich, S. M., Michler, P. et al. 2007. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K.New J. Phys., 9(9), 315.Google Scholar
[17] Hennessy, K., Badolato, A., Tamboli, A. et al. 2005. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett., 87(2), 021108.Google Scholar
[18] Hennessy, K., Badolato, A., Winger, M. et al. 2007. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445(7130), 896–9.Google Scholar
[19] Hu, C. Y., Young, A., O'Brien, J. L., Munro, W. J. and Rarity, J. G. 2008. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev.B, 78(8), 085307.Google Scholar
[20] Hu, C. Y., Munro, W. J., O'Brien, J. L. and Rarity, J. G. 2009. Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev.B, 80(20), 205326.Google Scholar
[21] James, D., Kwiat, P., Munro, W. and White, A. 2001. Measurement of qubits. Physical ReviewA, 64(5), 1–15.Google Scholar
[22] Kiravittaya, S., Benyoucef, M., Zapf-Gottwick, R., Rastelli, A. and Schmidt, O. G. 2006. Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting. Appl. Phys. Lett., 89(23), 233102.Google Scholar
[23] Kiraz, A., Michler, P., Becher, C. et al. 2001. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett., 78(25), 3932–3934.Google Scholar
[24] Kowalik, K., Krebs, O., Golnik, A. et al. 2007. Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field. Phys.Rev.B, 75(19), 195340.Google Scholar
[25] Laucht, A., Hofbauer, F., Hauke, N. et al. 2009. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys., 11(2), 023034.Google Scholar
[26] Leifer, K., Pelucchi, E., Watanabe, S. et al. 2007. Narrow ([approximate] 4 meV) inhomogeneous broadening and its correlation with confinement potential of pyramidal quantum dot arrays. Appl. Phys. Lett., 91(8), 081106.Google Scholar
[27] Lohmeyer, H., Kalden, J., Sebald, K. et al. 2008. Fine tuning of quantum-dot pillar microcavities by focused ion beam milling. Appl. Phys. Lett., 92(1), 011116.Google Scholar
[28] Loo, V., Lanco, L., Lemaître, A. et al. 2010. Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett., 97(24), 241110.Google Scholar
[29] Larqué, M., Karle, T., Robert-Philip, I. and Beveratos, A. 2009. Optimizing H1 cavities for the generation of entangled photon pairs. New J. Phys., 033022(11).Google Scholar
[30] Michler, P., Kiraz, A., Becher, C. et al. 2000. A quantum dot single-photon turnstile device. Science, 290(5500), 2282–2285.
[31] Mohan, A., Felici, M., Gallo, P. et al. 2010. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photonics, 4(March), 302.Google Scholar
[32] Moreau, E., Robert, I., Manin, L. et al. 2001. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett., 87(18), 183601.Google Scholar
[33] Munsch, M., Mosset, A., Auffèves, A. et al. P. 2009. Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Phys. Rev. B, 80(11), 115312.Google Scholar
[34] Patel, R. B., Bennett, A. J., Farrer, I. et al. 2010. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics, 4, 632.Google Scholar
[35] Peter, E., Senellart, P., Martrou, D. et al. 2005. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95(6), 067401.Google Scholar
[36] Purcell, E. M. 1946. Phys. Rev., 69(11–12), 674.
[37] Rastelli, A., Ulhaq, A., Kiravittaya, S. et al. 2007. In situ laser microprocessing of single self-assembled quantum dots and optical microcavities. Appl. Phys. Lett., 90(7), 073120.Google Scholar
[38] Reithmaier, J. P., Sek, G., Löffler, A. et al. 2004. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432(7014), 197–200.Google Scholar
[39] Reitzenstein, S., Hofmann, C., Gorbunov, A. et al. 2007. AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett., 90(25), 251109.Google Scholar
[40] Santori, C., Pelton, M., Solomon, G., Dale, Y. and Yamamoto, Y. 2001. Triggered single photons from a quantum dot. Phys. Rev. Lett., 86(8), 1502–1505.Google Scholar
[41] Santori, C., Fattal, D., Vucković, J., Solomon, G. S., and Yamamoto, Y. 2002a. Indistinguishable photons from a single-photon device. Nature, 419(6907), 594–597.Google Scholar
[42] Santori, C., Fattal, D., caronkovic, J. V., Solomon, G. S. and Yamamoto, Y. 2002b. Indistinguishable photons from a single-photon device. Nature, 419(October), 594–597.Google Scholar
[43] Schneider, C., Strauss, M., Sunner, T. et al. 2008. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett., 92(18), 183101.Google Scholar
[44] Schneider, C., Heindel, T., Huggenberger, A. et al. 2009. Single photon emission from a site-controlled quantum dot-micropillar cavity system. Appl. Phys. Lett., 94(11), 111111.Google Scholar
[45] Solomon, G. S., Pelton, M. and Yamamoto, Y. 2001. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett., 86(17), 3903–3906.Google Scholar
[46] Stace, T., Milburn, G. and Barnes, C. 2003. Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity. Phys.Rev.B, 67(8), 1–15.Google Scholar
[47] Stevenson, R., Young, R., See, P., et al. 2006a. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.Google Scholar
[48] Stevenson, R., Young, R. P., Gevaux, D. 2006b. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.Google Scholar
[49] Stevenson, R., Hudson, A., Bennett, A. et al. 2008. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett., 101(17), 1–4.Google Scholar
[50] Suffczyński, J., Dousse, A., Gauthron, K. et al. 2009. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett., 103(2), 027401.Google Scholar
[51] Watanabe, S., Pelucchi, E., Leifer, K. et al. 2005. Patterning of confined-state energies in site-controlled semiconductor quantum dots. Appl. Phys. Lett., 86(24), 243105.Google Scholar
[52] Yoshie, T., Scherer, A., Hendrickson, J. et al. 2004. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014), 200–203.Google Scholar
[53] Young, R. J., Stevenson, R. M., Atkinson, P. et al. 2006. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys., 8(2), 29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×