Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-21T20:54:43.063Z Has data issue: false hasContentIssue false

4 - The Neuropsychology of Covert and Overt Speech: Implications for the Study of Private Speech in Children and Adults

from Part I - Theoretical and Biological Foundations

Published online by Cambridge University Press:  29 July 2009

Adam Winsler
Affiliation:
George Mason University, Virginia
Charles Fernyhough
Affiliation:
University of Durham
Ignacio Montero
Affiliation:
Universidad Autónoma de Madrid
Get access

Summary

Although by 370 b.c. Hippocrates had concluded that the brain played a role in the generation of behavior (Carlson, 2003), it was not until seminal studies performed in the 1860s that specific human cognitive abilities began to be mapped onto regions of the brain with some accuracy. Postmortem studies by Paul Broca and Karl Wernicke allowed individuals' cognitive deficits to be linked tentatively to lesions discovered in specific brain regions. It was not until almost a century later that the advent of noninvasive neuroimaging techniques allowed the functional neuroanatomy of the brain of a living individual to be visualized for the first time. The striking contemporary images produced by functional magnetic resonance imaging (fMRI) have allowed researchers to examine in detail the neural correlates of a wide range of cognitive processes such as visual perception, speech perception, and short-term memory.

Contemporary neuroimaging studies of speech production are typically designed to isolate regions of the brain involved in one of the “core processes” (Indefrey & Levelt, 2000) of speech, such as lexical retrieval (selecting an appropriate word) or phonological code retrieval (retrieving information about the sound of the word). Such studies have generated extensive documentation of the neural correlates of overt and inner speech, as well as the neural activation that differentiates them. The latter is of particular relevance for private speech researchers because it may help shed light on what happens when private speech “goes underground” (Vygotsky, 1934/1986, p. 33) to form inner speech.

Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aziz-Zadeh, L., Cattaneo, L., Rochat, M., & Rizzolatti, G. (2005). Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. Journal of Cognitive Neuroscience, 17, 928–938.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986). Working memory. Oxford, England: Oxford University Press.Google ScholarPubMed
Baddeley, A. D. (2001). Is working memory still working?American Psychologist, 56, 851–864.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. A. (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 47–90). New York: Academic Press.Google Scholar
Barch, D. M., Sabb, F. W., Carter, C. S., Braver, T. S., Noll, D. C., & Cohen, D. C. (1999). Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions. Neuroimage, 10, 642–657.CrossRefGoogle ScholarPubMed
Berk, L. E. (1986). Relationship of elementary school children's private speech to behavioural accompaniment to task, attention, and task performance. Developmental Psychology, 22, 671–680.CrossRefGoogle Scholar
Berk, L. E. (1992). Children's private speech: An overview of theory and the status of research. In Díaz, R. M. & Berk, L. E. (Eds.), Private speech: From social interaction to self-regulation (pp. 17–53). Hillsdale, NJ: Erlbaum.Google Scholar
Binder, J., & Price, C. J. (2001). Functional neuroimaging of language. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of functional neuroimaging of cognition (pp. 187–252). Cambridge, MA: MIT Press.Google Scholar
Birn, R. M., Bandettini, P. A., Cox, R. W., & Shaker, R. (1999). Event-related fMRI of tasks involving brief motion. Human Brain Mapping, 7, 106–114.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Bivens, J. A., & Hagstrom, F. (1992). The representation of private speech in children's literature. In Díaz, R. M. & Berk, L. E. (Eds.), Private speech: From social interaction to self-regulation (pp. 159–177). Hillsdale, NJ: Erlbaum.Google Scholar
Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.CrossRefGoogle ScholarPubMed
Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T., Gaillard, W., & Theodore, W. (1995). Regional cerebral blood flow during object naming and word reading. Human Brain Mapping, 3, 93–106.CrossRefGoogle Scholar
Borowsky, R., Owen, W. J., Wile, T. L., Friesen, C. K., Martin, J. L., & Sarty, G. E. (2005). Neuroimaging of language processes: fMRI of silent and overt lexical processing and the promise of multiple process imaging in single brain studies. Canadian Association of Radiologists, 56, 204–213.Google ScholarPubMed
Bresch, E., Nielsen, J., Nayak, K., & Narayanan, S. (2006). Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans. Journal of the Acoustical Society of America, 120, 1791–1794.CrossRefGoogle ScholarPubMed
Brown, S., Ingham, R. J., Ingham, J. C., Laird, A. R., & Fox, P. T. (2005). Stuttered and fluent speech production: An ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping, 25, 105–117.CrossRefGoogle ScholarPubMed
Bullmore, E., Horwitz, B., Honey, G., Brammer, M., Williams, S., & Sharma, T. (2000). How good is good enough in path analysis of fMRI data?Neuroimage, 11, 289–301.CrossRefGoogle ScholarPubMed
Carlson, N. R. (2003). Physiology of behavior. Boston: Allyn & Bacon.Google Scholar
Carruthers, P. (2002). The cognitive functions of language. Behavioral and Brain Sciences, 25, 657–726.CrossRefGoogle ScholarPubMed
Counter, S. A., Olofsson, A., Borg, E., Bjelke, S., Haggstrom, A., & Grahn, H. F. (2000). Analysis of magnetic resonance imaging acoustic noise generated by a 4.7 T experimental system. Acta Oto-Laryngologica, 120, 739–743.Google Scholar
Cusack, R., Cumming, N., Bor, D., Norris, D., & Lyzenga, J. (2005). Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner. Human Brain Mapping, 24, 299–304.CrossRefGoogle Scholar
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298, 2013–2015.CrossRefGoogle ScholarPubMed
Demonet, J. F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: Functional neuroimaging. Physiological Reviews, 85, 49–95.CrossRefGoogle ScholarPubMed
Zubicaray, G. I., Zelaya, F. O., Andrew, C., Williams, S. C. R., & Bullmore, E. T. (2000). Cerebral regions associated with verbal response initiation, suppression and strategy use. Neuropsychologica, 38, 1292–1304.CrossRefGoogle ScholarPubMed
Dronkers, N., & Ogar, J. (2004). Brain areas involved in speech production. Brain, 127, 1461–1462.CrossRefGoogle ScholarPubMed
Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161.CrossRefGoogle ScholarPubMed
Duncan, R. M., & Cheyne, J. A. (2001). Private speech in young adults – task difficulty, self-regulation, and psychological predication. Cognitive Development, 16, 889–906.Google Scholar
Fernyhough, C. (1996). The dialogic mind: A dialogic approach to the higher mental functions. New Ideas in Psychology, 14, 47–62.CrossRefGoogle Scholar
Fernyhough, C. (2004). Alien voices and inner dialogue: Towards a developmental account of auditory verbal hallucinations. New Ideas in Psychology, 22, 49–68.CrossRefGoogle Scholar
Fernyhough, C., & Fradley, E. (2005). Private speech on an executive task: Relations with task difficulty and task performance. Cognitive Development, 20, 103–120.CrossRefGoogle Scholar
Fiez, J. A. (2001). Neuroimaging studies of speech: An overview of techniques and methodological approaches. Journal of Communication Disorders, 34, 445–454.CrossRefGoogle ScholarPubMed
Flavell, J. H. (1966). Le langage privé. Bulletin de Psychologie, 19, 698–701.Google Scholar
Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences of the United States of America, 83, 1140–1144.CrossRefGoogle ScholarPubMed
Friedman, L., Kenny, J. T., Wise, A. L., Wu, D., Stuve, T. A., Miller, D. A., et al. (1998). Brain activation during silent word generation evaluated with functional MRI. Brain and Language, 64, 231–256.CrossRefGoogle ScholarPubMed
Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with cognitive subtraction. Neuroimage, 4, 97–104.CrossRefGoogle ScholarPubMed
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346–355.CrossRefGoogle ScholarPubMed
Gernsbacher, M. A., & Kaschak, M. P. (2003). Neuroimaging studies of language production and comprehension. Annual Review of Psychology, 54, 91–114.CrossRefGoogle ScholarPubMed
Gracco, V. L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. Neuroimage, 26, 294–301.CrossRefGoogle ScholarPubMed
Haller, S., Radue, E. W., Erb, M., Grodd, W., & Kircher, T. (2005). Overt sentence production in event-related fMRI. Neuropsychologia, 43, 807–814.CrossRefGoogle ScholarPubMed
Hillis, A. E., Work, M., Barker, P. B., Jacobs, M. A., Breese, E. L., & Maurer, K. (2004). Re-examining the brain regions crucial for orchestrating speech articulation. Brain, 127, 1479–1487.CrossRefGoogle ScholarPubMed
Hoeller, M., Krings, T., Reinges, M. H. T., Hans, F. J., Gilsbach, J. M., & Thron, A. (2002). Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochirurgica, 144, 279–284.CrossRefGoogle Scholar
Howseman, A. M., & Bowtell, R. W. (1999). Functional magnetic resonance imaging: Imaging techniques and contrast mechanisms. Philosophical Transactions of the Royal Society of London B – Biological Sciences, 354, 1179–1194.CrossRefGoogle ScholarPubMed
Huang, J., Carr, T. H., & Cao, Y. (2001). Comparing cortical activations for silent and overt speech using event-related fMRI. Human Brain Mapping, 15, 39–53.CrossRefGoogle Scholar
Indefrey, P., Brown, C. M., Hellwig, F., Amunts, K., Herzog, H., Seitz, R. J., et al. (2001). A neural correlate of syntactic encoding during speech production. Proceedings of the National Academy of Sciences of the United States of America, 98, 5933–5936.CrossRefGoogle ScholarPubMed
Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In Gazzaniga, M. S. (Ed.), The new cognitive neurosciences (pp. 845–865). Cambridge, MA: MIT Press.Google Scholar
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144.CrossRefGoogle ScholarPubMed
John-Steiner, V. (1992). Private speech among adults. In Díaz, R. M. & Berk, L. E. (Eds.), Private speech: From social interaction to self-regulation (pp. 285–296). Hillsdale, NJ: Erlbaum.Google Scholar
Jones, S. R., & Fernyhough, C. (2007a). Neural correlates of inner speech and auditory verbal hallucinations: A critical review and theoretical integration. Clinical Psychology Review, 27, 140–154.CrossRefGoogle ScholarPubMed
Jones, S. R., & Fernyhough, C. (2007b). Thought as action: Inner speech, self-monitoring and auditory verbal hallucinations. Consciousness and Cognition, 16, 391–399.CrossRefGoogle ScholarPubMed
Kemeny, S., Ye, F. Q., Birn, R., & Braun, A. R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24, 173–183.CrossRefGoogle ScholarPubMed
Kircher, T. T., Brammer, M., Williams, S. C. R., & McGuire, P. K. (2000). Lexical retrieval during fluent speech production: An fMRI study. Neuroreport, 11, 4093–4096.CrossRefGoogle Scholar
Marien, P., Pickut, B. A., Engelborghs, S., Martin, J. J., & Deyn, P. P. (2001). Phonological agraphia following a focal anterior insuloopercular infarction. Neuropsychologia, 39, 845–855.CrossRefGoogle Scholar
McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Schulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences of the United States of America, 90, 4952–4956.CrossRefGoogle ScholarPubMed
McGuire, P. K., Silbersweig, D. A., Murray, R. M., David, A. S., Frackowiak, R. S. J., & Frith, C. D. (1996). Functional anatomy of inner speech and auditory verbal imagery. Psychological Medicine, 26, 29–38.CrossRefGoogle ScholarPubMed
Okada, K., Smith, K. R., Humphries, C., & Hickok, G. (2003). Word length modulates neural activity in auditory cortex during covert object naming. Neuroreport, 14, 2323–2326.CrossRefGoogle ScholarPubMed
Overy, K., Norton, A. C., Cronin, K. T., Gaab, N., Alsop, D. C., Winner, E., et al. (2004). Imaging melody and rhythm processing in young children. Neuroreport, 15, 1723–1726.CrossRefGoogle ScholarPubMed
Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., & Petersen, S. E. (2001). An event-related fMRI study of overt and covert word stem completion. Neuroimage, 14, 182–193.CrossRefGoogle ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K., Collins, L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 1908–1911.CrossRefGoogle ScholarPubMed
Piaget, J. (1962). The language and thought of the child (M. Gabain, Trans.). Cleveland, OH: Meridian. (Original work published 1923)Google Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data?Trends in Cognitive Sciences, 10, 59–63.CrossRefGoogle ScholarPubMed
Riecker, A., Wildgruber, D., Grodd, W., & Ackermann, H. (2005). Functional magnetic resonance imaging studies on cerebral organization of speech motor control. Nervenheilkunde, 24, 177.Google Scholar
Rosen, H. J., Ojemann, J. G., Ollinger, J. M., & Petersen, S. E. (2000). Comparison of brain activation during word retrieval done silently and aloud using fMRI. Brain and Cognition, 42, 201–217.CrossRefGoogle ScholarPubMed
Schlagger, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476–1479.CrossRefGoogle Scholar
Scott, S. K., & Wise, R. J. S. (2003). Functional imaging and language: A critical guide to methodology and analysis. Speech Communication, 41, 7–21.CrossRefGoogle Scholar
Shergill, S. S., Bullmore, E. T., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31, 241–253.CrossRefGoogle ScholarPubMed
Shuster, L. I., & Lemieux, S. K. (2005). An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain and Language, 93, 20–31.CrossRefGoogle ScholarPubMed
Soltysik, D. A., & Hyde, J. S. (2006). Strategies for block-design fMRI experiments during task-related motion of structures of the oral cavity. Neuroimage, 29, 1260–1271.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2006). Dissecting the language organ: A new look at the role of Broca's language area in language processing. In Cutler, A. (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 173–189). Hillsdale, NJ: Erlbaum.Google Scholar
Vazquez, A. L., & Noll, D. C. (1998). Nonlinear aspects of the BOLD response in functional MRI. Neuroimage, 7, 108–118.CrossRefGoogle ScholarPubMed
Vygotsky, L. S. (1986). Thought and language (Kozulin, A., Trans.). Cambridge, MA: MIT Press. (Original work published 1934)Google Scholar
Wise, R. J. S., Greene, J., Buchel, C., & Scott, S. K. (1999). Brain regions involved in articulation. Lancet, 353, 1057–1061.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×