Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: August 2010

Part 2 - Neuroendocrine and homeostatic changes in the elderly

References

1. BliwiseDL. Sleep in normal aging and dementia. Sleep 1993;16(1):40–81.
2. BuckleyTM, SchatzbergAF. Aging and the role of the HPA axis and rhythm in sleep and memory-consolidation. Am J Geriatr Psychiatry 2005;13(5):344–52.
3. MooreRY, EichlerVB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972;42(1):201–6.
4. Van CauterE, TurekFW. Endocrine and other biological rhythms. In DegrootLJ, ed. Endocrinology, 3rd ed. Philadelphia: WB Saunders; 1995: pp. 2497–548.
5. Van CauterE, SpeigelK. Circadian and sleep control of hormonal secretions. In TurekFW, ZeePC, eds. Regulation of Sleep and Circadian Rhythms. New York: Marcel Decker, Inc.; 1999: pp. 397–425.
6. BornJ, KernW, BieberK, et al. Night-time plasma cortisol secretion is associated with specific sleep stages. Biol Psychiatry 1986;21(14):1415–24.
7. FolleniusM, BrandenbergerG, BandesaptJJ, LibertJP, EhrhartJ. Nocturnal cortisol release in relation to sleep structure. Sleep 1992;15(1):21–7.
8. ArboreliusL, OwensMJ, PlotskyPM, NemeroffCB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999;160(1):1–12.
9. BuckleyTM, MullenBC, SchatzbergAF. The acute effects of a mineralocorticoid receptor (MR) agonist on nocturnal hypothalamic-adrenal-pituitary (HPA) axis activity in healthy controls. Psychoneuroendocrinology 2007;32(8–10):859–64.
10. ReulJM, de KloetER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985;117(6):2505–11.
11. TsigosC, ChrousosGP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002;53(4):865–71.
12. SpencerRL, KimPJ, KalmanBA, ColeMA. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology 1998;139(6):2718–26.
13. RodenbeckA, HajakG. Neuroendocrine dysregulation in primary insomnia. Rev Neurol (Paris) 2001;157(11 Pt 2):S57–61.
14. RodenbeckA, HuetherG, RutherE, HajakG. Interactions between evening and nocturnal cortisol secretion and sleep parameters in patients with severe chronic primary insomnia. Neurosci Lett 2002;324(2):159–63.
15. VgontzasAN, BixlerEO, LinHM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab 2001;86(8):3787–94.
16. VgontzasAN, TsigosC, BixlerEO, et al. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res 1998;45(1 Spec No):21–31.
17. EhlersCL, ReedTK, HenriksenSJ. Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology 1986;42(6):467–74.
18. BuckleyTM, SchatzbergAF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab 2005;90(5):3106–14.
19. BuckleyT. Hippocampal mineralocorticoid receptors in healthy aging and depression: overlapping cortisol circadian rhythm, sleep, and memory change. Depression: Mind and Body 2005;2(2):47–52.
20. DodtC, TheineKJ, UthgenanntD, BornJ, FehmHL. Basal secretory activity of the hypothalamo-pituitary-adrenocortical axis is enhanced in healthy elderly: an assessment during undisturbed night-time sleep. Eur J Endocrinol 1994;131(5):443–50.
21. Van CauterE, LeproultR, KupferDJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 1996;81(7):2468–73.
22. van CoevordenA, MockelJ, LaurentE, et al. Neuroendocrine rhythms and sleep in aging men. Am J Physiol 1991;260(4 Pt 1):E651–61.
23. BornJ, FehmHL. Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Exp Clin Endocrinol Diabetes 1998;106(3):153–63.
24. MoranoMI, VazquezDM, AkilH. The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitary-adrenal axis of the aged Fisher rat. Mol Cell Neurosci 1994;5(5):400–12.
25. RothuizenJ, ReulJM, RijnberkA, MolJA, de KloetER. Aging and the hypothalamus-pituitary-adrenocortical axis, with special reference to the dog. Acta Endocrinol (Copenh) 1991;125(Suppl. 1):73–6.
26. RothuizenJ, ReulJM, van SluijsFJ, et al. Increased neuroendocrine reactivity and decreased brain mineralocorticoid receptor-binding capacity in aged dogs. Endocrinology 1993;132(1):161–8.
27. FerrariE, CravelloL, MuzzoniB, et al. Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol 2001;144(4):319–29.
28. Van CauterE, PlatL, CopinschiG. Interrelations between sleep and the somatotropic axis. Sleep 1998;21(6):553–66.
29. Van CauterE, PlatL, LeproultR, CopinschiG. Alterations of circadian rhythmicity and sleep in aging: endocrine consequences. Horm Res 1998;49(34):147–52.
30. SteigerA, AntonijevicIA, BohlhalterS, et al. Effects of hormones on sleep. Horm Res 1998;49(34):125–30.
31. SteigerA, GuldnerJ, HemmeterU, et al. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology 1992;56(4):566–73.
32. SteigerA, HolsboerF. Neuropeptides and human sleep. Sleep 1997;20(11):1038–52.
33. PerrasB, MarshallL, KohlerG, BornJ, FehmHL. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology 1999;24(7):743–57.
34. FrieboesRM, MurckH, SchierT, HolsboerF, SteigerA. Somatostatin impairs sleep in elderly human subjects. Neuropsychopharmacology 1997;16(5):339–45.
35. BremnerWJ, VitielloMV, PrinzPN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab 1983;56(6):1278–81.
36. PenevPD. Association between sleep and morning testosterone levels in older men. Sleep 2007;30(4):427–32.
37. SchiaviRC, WhiteD, MandeliJ. Pituitary-gonadal function during sleep in healthy aging men. Psychoneuroendocrinology 1992;17(6):599–609.
38. HeatonJP. Hormone treatments and preventive strategies in the aging male: whom and when to treat?Rev Urol 2003;5(Suppl. 1):S16–21.
39. MaasD, JochenA, LalandeB. Age-related changes in male gonadal function. Implications for therapy. Drugs Aging 1997;11(1):45–60.
40. OpstadPK. The hypothalamo-pituitary regulation of androgen secretion in young men after prolonged physical stress combined with energy and sleep deprivation. Acta Endocrinol (Copenh) 1992;127(3):231–6.
41. OpstadPK. Androgenic hormones during prolonged physical stress, sleep, and energy deficiency. J Clin Endocrinol Metab 1992;74(5):1176–83.
42. SteigerA. Neurochemical regulation of sleep. J Psychiatr Res 2007;41(7):537–52.
43. WoodsNF, CarrMC, TaoEY, TaylorHJ, MitchellES. Increased urinary cortisol levels during the menopause transition. Menopause 2006;13(2):212–21.
44. AntonijevicIA, MurckH, FrieboesRM, UhrM, SteigerA. On the role of menopause for sleep-endocrine alterations associated with major depression. Psychoneuroendocrinology 2003;28(3):401–18.
45. EhlersCL, KupferDJ. Slow-wave sleep: do young adult men and women age differently?J Sleep Res 1997;6(3):211–5.
46. AntonijevicIA, StallaGK, SteigerA. Modulation of the sleep electroencephalogram by estrogen replacement in postmenopausal women. Am J Obstet Gynecol 2000;182(2):277–82.
47. FreedmanRR, RoehrsTA. Sleep disturbance in menopause. Menopause 2007;14(5):826–9.
48. ParryBL. Sleep disturbances at menopause are related to sleep disorders and anxiety symptoms. Menopause 2007;14(5):812–4.
49. AndersenML, BittencourtLR, AntunesIB, TufikS. Effects of progesterone on sleep: a possible pharmacological treatment for sleep-breathing disorders?Curr Med Chem 2006;13(29):3575–82.
50. SaaresrantaT, AittokallioT, UtriainenK, PoloO. Medroxyprogesterone improves nocturnal breathing in postmenopausal women with chronic obstructive pulmonary disease. Respir Res 2005;6:28.
51. DriverHS, McLeanH, KumarDV, et al. The influence of the menstrual cycle on upper airway resistance and breathing during sleep. Sleep 2005;28(4):449–56.
52. MolineML, BrochL, ZakR. Sleep in women across the life cycle from adulthood through menopause. Med Clin North Am 2004;88(3):705–36.
53. NetzerNC, EliassonAH, StrohlKP. Women with sleep apnea have lower levels of sex hormones. Sleep Breath 2003;7(1):25–9.
54. ManberR, KuoTF, CataldoN, ColrainIM. The effects of hormone replacement therapy on sleep-disordered breathing in postmenopausal women: a pilot study. Sleep 2003;26(2):163–8.
55. KrystalAD, EdingerJ, WohlgemuthW, MarshGR. Sleep in peri-menopausal and post-menopausal women. Sleep Med Rev 1998;2(4):243–53.
56. EichlingPS, SahniJ. Menopause related sleep disorders. J Clin Sleep Med 2005;1(3):291–300.
57. YoungT, RabagoD, ZgierskaA, AustinD, LaurelF. Objective and subjective sleep quality in premenopausal, perimenopausal, and postmenopausal women in the Wisconsin Sleep Cohort Study. Sleep 2003;26(6):667–72.
58. SaperCB, ScammellTE, LuJ. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005;437(7063):1257–63.
59. ZeitzerJM, BuckmasterCL, ParkerKJ, et al. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 2003;23(8):3555–60.
60. BorbelyAA. A two process model of sleep regulation. Hum Neurobiol 1982;1(3):195–204.
61. DesarnaudF, Murillo-RodriguezE, LinL, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 2004;27(5):851–6.
62. TeraoA, Apte-DeshpandeA, MorairtyS, FreundYR, KilduffTS. Age-related decline in hypocretin (orexin) receptor 2 messenger RNA levels in the mouse brain. Neurosci Lett 2002;332(3):190–4.
63. ZhangJH, SampognaS, MoralesFR, ChaseMH. Age-related changes of hypocretin in basal forebrain of guinea pig. Peptides 2005;26(12):2590–6.
64. Porkka-HeiskanenT, AlankoL, KalinchukA, HeiskanenS, StenbergD. The effect of age on prepro-orexin gene expression and contents of orexin A and B in the rat brain. Neurobiol Aging 2004;25(2):231–8.
65. LattaF, LeproultR, TasaliE, et al. Sex differences in nocturnal growth hormone and prolactin secretion in healthy older adults: relationships with sleep EEG variables. Sleep 2005;28(12):1519–24.
66. TouitouY, HausE. Alterations with aging of the endocrine and neuroendocrine circadian system in humans. Chronobiol Int 2000;17(3):369–90.
67. van CoevordenA, LaurentE, DecosterC, et al. Decreased basal and stimulated thyrotropin secretion in healthy elderly men. J Clin Endocrinol Metab 1989;69(1):177–85.

References

1. LernerAB, CaseMD. Melatonin. Fed Proc 1960;19:590–2.
2. ArendtJ. Melatonin and human rhythms. Chronobiol Int 2006;23:21–37.
3. Pandi-PerumalSR, SrinivasanV, MaestroniGJM, et al. Melatonin: nature’s most versatile biological signal?FEBS J 2006;273:2813–38.
4. HardelandR. Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 2008;65:2001–18.
5. KarasekM. Melatonin in human physiology and pathology. In ColumbusF, ed. Frontiers in Chronobiology Research. Hauppage, N:, Nova Science; 2006: pp. 1–43.
6. AxelrodJ. The pineal gland: a neurochemical transducer. Science 1974;184:1341–8.
7. CardinaliDP, LynchHJ, WurtmanRJ. Binding of melatonin to human and rat plasma proteins. Endocrinology 1972;91:1213–8.
8. GeoffriauM, ClaustratB, VeldhuisJ. Estimation of frequently sampled nocturnal melatonin production in humans by deconvolution analysis: evidence for episodic or ultradian secretion. J Pineal Res 1999;27:139–44.
9. BrownEN, ChoeY, ShanahanTL, CzeislerCA. A mathematical model of diurnal variations in human plasma melatonin levels. Am J Physiol 1997;272:E506–16.
10. HirataF, HayaishiO, TokuyamaT, SenoS. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 1974;249:1311–13.
11. ReiterRJ, TanDX. Role of CSF in the transport of melatonin. J Pineal Res 2002;33:61
12. TanDX, ManchesterLC, TerronMP, FloresLJ, ReiterRJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?J Pineal Res 2007;42:28–42.
13. MooreRY. Neural control of the pineal gland. Behav Brain Res 1996;73:125–30.
14. MarondeE, StehleJH. The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab 2007;18:142–9.
15. KennawayDJ, StampGE, GobleFC. Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab 1992;75:367–9.
16. KarasekM. Melatonin, human aging, and age-related diseases. Exp Gerontol 2004;39:1723–9.
17. SelmaouiB, TouitouY. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci 2003;73:3339–49.
18. DubocovichML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med 2007;8(Suppl. 3):34–42.
19. SrinivasanV, MaestroniGJM, CardinaliDP, et al. Melatonin, immune function and aging. Immunity Ageing 2005;2:17.
20. MayoJC, SainzRM, TanDX, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl- N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 2005;165:139–49.
21. SrinivasanV, SpenceDW, Pandi-PerumalSR, et al. Melatonin, environmental light, and breast cancer. Breast Cancer Res Treat 2008;108:339–50.
22. Acuña-CastroviejoD, EscamesG, RodriguezMI, LopezLC. Melatonin role in the mitochondrial function. Front Biosci 2007;12:947–63.
23. SrinivasanV, Pandi-PerumalSR, MaestroniGJ, et al. Role of melatonin in neurodegenerative diseases. Neurotox Res 2005;7:293–318.
24. TappE, HuxleyM. The histological appearance of the human pineal gland from puberty to old age. J Pathol 1972;108:137–44.
25. WurtmanRJ, AxelrodJ, BarchasJD. Age and enzyme activity in the human pineal. J Clin Endocrinol Metab 1964;24:299–301.
26. GriefahnB, BrodeP, RemerT, BlaszkewiczM. Excretion of 6-hydroxymelatonin sulfate (6-OHMS) in siblings during childhood and adolescence. Neuroendocrinology 2003;78:241–3.
27. MagriF, SarraS, CinchettiW, et al. Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res 2004;36:256–61.
28. ZhdanovaIV. Melatonin as a hypnotic: pro. Sleep Med Rev 2005;9:51–65.
29. BuscemiN, VandermeerB, HootonN, et al. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006;332:385–93.
30. BrzezinskiA, VangelMG, WurtmanRJ, et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 2005;9:41–50.
31. TurekFW, GilletteMU. Melatonin, sleep, and circadian rhythms: rationale for development of specific melatonin agonists. Sleep Med 2004;5:523–32.
32. LewyAJ, EmensJ, JackmanA, YuhasK. Circadian uses of melatonin in humans. Chronobiol Int 2006;23:403–12.
33. SrinivasanV, SmitsG, KayumovL, et al. Melatonin in circadian rhythm sleep disorders. In CardinaliDP, Pandi-PerumalSR, eds. Neuroendocrine Correlates of Sleep/Wakefulness. New York: Springer; 2006: pp. 269–94.
34. GarfinkelD, LaudonM, NofD, ZisapelN. Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 1995;346:541–4.
35. LemoineP, NirT, LaudonM, ZisapelN. Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res 2007;16:372–80.
36. WadeAG, FordI, CrawfordG, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Current Med Res Opin 2007; 23:2597–605.
37. SrinivasanV, SmitsM, SpenceW, et al. Melatonin in mood disorders. World J Biol Psychiatry 2006;7:138–51.
38. DolbergOT, HirschmannS, GrunhausL. Melatonin for the treatment of sleep disturbances in major depressive disorder. Am J Psychiatry 1998;155:1119–21.
39. Pandi-PerumalSR, SrinivasanV, PoeggelerB, HardelandR, CardinaliDP. Drug insight: the use of melatonergic agonists for the treatment of insomnia – focus on ramelteon. Nat Clin Pract Neurol 2007;3:221–8.
40. Pandi-PerumalSR, SrinivasanV, CardinaliDP, MontiMJ. Could agomelatine be the ideal antidepressant?Expert Rev Neurother 2006;6:1595–608.
41. DubocovichML. Agomelatine targets a range of major depressive disorder symptoms. Curr Opin Investig Drugs 2006;7:670–80.
42. BarnesLL, WilsonRS, SchneiderJA, et al. Gender, cognitive decline, and risk of AD in older persons. Neurology 2003;60:1777–81.
43. TerryAV Jr, BuccafuscoJJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003;306:821–7.
44. SiwickaA, MoledaZ, WojtasiewiczK, et al. The oxidation products of melatonin derivatives exhibit acetylcholinesterase and butyrylcholinesterase inhibitory activity. J Pineal Res 2008;45:40–9.
45. SkeneDJ, Vivien-RoelsB, SparksDL, et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 1990;528:170–4.
46. UchidaK, OkamotoN, OharaK, MoritaY. Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res 1996;717:154–9.
47. LiuRY, ZhouJN, Van HeerikhuizeJ, HofmanMA, SwaabDF. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 1999;84:323–7.
48. MishimaK, TozawaT, SatohK, et al. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry 1999;45:417–21.
49. OhashiY, OkamotoN, UchidaK, et al. Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Biol Psychiatry 1999;45:1646–52.
50. FerrariE, ArcainiA, GornatiR, et al. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 2000;35:1239–50.
51. WuYH, SwaabDF. The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 2005;38:145–52.
52. BraakH, BraakE. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995;16:271–8.
53. BraakH, BraakE. Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm 1998;53(Suppl.):127–40.
54. WuYH, FeenstraMG, ZhouJN, et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 2003;88:5898–906.
55. ZhouJN, LiuRY, KamphorstW, HofmanMA, SwaabDF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003;35:125–30.
56. FainsteinI, BonettoA, BruscoLI, CardinaliDP. Effects of melatonin in elderly patients with sleep disturbance. A pilot study. Curr Ther Res 1997;58:990–1000.
57. Jean-LouisG, von GizyckiH, ZiziF. Melatonin effects on sleep, mood, and cognition in elderly with mild cognitive impairment. J Pineal Res 1998;25:177–83.
58. MishimaK, OkawaM, HozumiS, HishikawaY. Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 2000;17:419–32.
59. Cohen-MansfieldJ, GarfinkelD, LipsonS. Melatonin for treatment of sundowning in elderly persons with dementia: a preliminary study. Arch Gerontol Geriatr 2000;31:65–76.
60. MahlbergR, KunzD, SutejI, KuhlKP, HellwegR. Melatonin treatment of day-night rhythm disturbances and sundowning in Alzheimer disease: an open-label pilot study using actigraphy. J Clin Psychopharmacol 2004;24:456–9.
61. BruscoLI, MarquezM, CardinaliDP. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol Lett 1998;19:111–5.
62. CardinaliDP, BruscoLI, LiberczukC, FurioAM. The use of melatonin in Alzheimer’s disease. Neuroendocrinol Lett 2002;23(Suppl. 1):20–3.
63. AsayamaK, YamaderaH, ItoT, et al. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 2003;70:334–41.
64. SingerC, TractenbergRE, KayeJ, et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 2003;26:893–901.
65. PappollaMA, ChyanYJ, PoeggelerB, et al. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm 2000;107:203–31.
66. DowlingGA, BurrRL, van SomerenEJ, et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 2008;56:239–46.
67. DuboisB, AlbertML. Amnestic MCI or prodromal Alzheimer’s disease?Lancet Neurol 2004;3:246–8.
68. FurioAM, BruscoLI, CardinaliDP. Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J Pineal Res 2007;43:404–9.
69. PappollaMA, SimovichMJ, Bryant-ThomasT, et al. The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res 2002;32:135–42.
70. TanDX, ChenLD, PoeggelerB, ManchesterLC, ReiterRJ. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1993;1:57–60.
71. MaldonadoMD, Murillo-CabezasF, TerronMP, et al. The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. J Pineal Res 2007;42:1–11.
72. MandaK, UenoM, AnzaiK. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007;42:386–93.
73. BoznerP, GrishkoV, LedouxSP, et al. The amyloid beta protein induces oxidative damage of mitochondrial DNA. J Neuropathol Exp Neurol 1997;56:1356–62.
74. SrinivasanV, Pandi-PerumalSR, CardinaliDP, PoeggelerB, HardelandR. Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2006;2:15.
75. WangJZ, WangZF. Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol Sin 2006;27:41–9.
76. ChengY, FengZ, ZhangQZ, ZhangJT. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 2006;27:129–39.

References

1. MokdadA, BowmanB, FordE, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001;286(10):1195–200.
2. KripkeD, SimonsR, GarfinkelL, HammondE. Short and long sleep and sleeping pills: is increased mortality associated?Arch Gen Psychiatry 1979;36(1):103–16.
3. National Sleep Foundation. 2008 Sleep in America Poll. Washington, DC: National Sleep Foundation; 2008.
4. National Center for Health Statistics. QuickStats: percentage of adults who reported an average of ≤ 6 hours of sleep per 24-hour period, by sex and age group – United States, 1985 and 2004. MMWR Morb Mortal Weekly Rep 2005;54(37):933.
5. LauderdaleD, KnutsonK, YanL, et al. Objectively measured sleep characteristics among early middle-aged adults: the CARDIA Study. Am J Epidemiol 2006;164(1):5–16.
6. TasaliE, MokhlesiB, Van CauterE. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 2008;133(2):496–506.
7. VgontzasAN, LinHM, PapaliagaM, et al. Short sleep duration and obesity: the role of emotional stress and sleep disturbances. Int J Obesity 2008;32(5):801–9.
8. Van CauterE, PolonskyKS, ScheenAJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997;18:716–38.
9. ScheenAJ, ByrneMM, PlatL, Van CauterE. Relationships between sleep quality and glucose regulation in normal humans. Am J Physiol 1996;271:E261–70.
10. NofzingerEA, BuysseDJ, MiewaldJM, et al. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain 2002;125(Pt 5):1105–15.
11. MaquetP. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 2000;9(3):207–31.
12. LeproultR, CopinschiG, BuxtonO, Van CauterE. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997;20:865–70.
13. VgontzasAN, BixlerEO, LinHM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab 2001;86(8):3787–94.
14. MielkeR, KesslerJ, SzeliesB, et al. Normal and pathological aging: findings of positron-emission-tomography. J Neural Transm 1998;105(8–9):821–37.
15. InoueM, McHughM, PappiusH. The effect of alpha-adrenergic receptor blockers prazosin and yohimbine on cerebral metabolism and biogenic amine content of traumatized brain. J Cereb Blood Flow Metab 1991;11(2):242–52.
16. GaleSM, CastracaneVD, MantzorosCS. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr 2004;134(2):295–8.
17. van der LelyA, TschopM, HeimanM, GhigoE. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004;25(3):426–57.
18. SchoellerDA, CellaLK, SinhaMK, CaroJF. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 1997;100:1882–7.
19. SimonC, GronfierC, SchliengerJL, BrandenbergerG. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab 1998;83:1893–9.
20. DzajaA, DalalMA, HimmerichH, et al. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab 2004;286(6):E963–7.
21. TaheriS, ZeitzerJM, MignotE. The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annl Rev Neurosci 2002;25:283–313.
22. SakuraiT. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 2005;9(4):231–41.
23. SaperCB, ChouTC, ElmquistJK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002;36(2):199–211.
24. HarrisGC, WimmerM, Aston-JonesG. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005;437(7058):556–9.
25. HarrisGC, Aston-JonesG. Arousal and reward: a dichotomy in orexin function. Trends Neurosci 2006;29(10):571–7.
26. SakuraiT. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Rev 2007;8(3):171–81.
27. de LeceaL, SutcliffeJG. The hypocretins and sleep. FEBS J 2005;272(22):5675–88.
28. WuMF, JohnJ, MaidmentN, LamHA, SiegelJM. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J Physiol Regul Integr Comp Physiol 2002;283(5):R1079–86.
29. EstabrookeIV, McCarthyMT, KoE, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci 2001;21(5):1656–62.
30. ZeitzerJM, BuckmasterCL, LyonsDM, MignotE. Increasing length of wakefulness and modulation of hypocretin-1 in the wake-consolidated squirrel monkey. Am J Physiol Regul Integr Comp Physiol 2007;293(4):R1736–42.
31. Van CauterE, LeproultR, PlatL. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000;284(7):861–8.
32. PrinzP, MoeK, DulbergE, et al. Higher plasma IGF-1 levels are associated with increased delta sleep in healthy older men. J Gerontol 1995;50A:M222–6.
33. PlatL, FéryF, L’Hermite-BalériauxM, MockelJ, Van CauterE. Metabolic effects of short-term physiological elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab 1999;84:3082–92.
34. HolsboerF, von BardeleinU, SteigerA. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology 1988;48:32–8.
35. BornJ, Späth-SchwalbeE, SchwakenhoferH, KernW, FehmHL. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J Clin Endocrinol Metab 1989;68:904–11.
36. SpiegelK, LeproultR, Van CauterE. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.
37. SpiegelK, LeproultR, L’Hermite-BaleriauxM, et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004;89(11):5762–71.
38. SpiegelK, KnutsonK, LeproultR, TasaliE, Van CauterE. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol 2005;99(5):2008–19.
39. BuxtonO, PavlovaM, ReidE, SimonsonD, AdlerG. Sleep restriction for one week reduces insulin sensitivity measured using the euglycemic hyperinsulinemic clamp technique. Sleep 2008;31:A107.
40. TasaliE, LeproultR, EhrmannDA, Van CauterE. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci USA 2008;105(3):1044–9.
41. TasaliE, LeproultR, SpiegelK. Reduced sleep duration or quality: relationships with insulin resistance and type 2 diabetes. Prog Cardiovasc Dis 2009;in press.
42. AyasNT, WhiteDP, Al-DelaimyWK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care 2003;26(2):380–4.
43. MallonL, BromanJE, HettaJ. High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population. Diabetes Care 2005;28(11):2762–7.
44. YaggiHK, AraujoAB, McKinlayJB. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 2006;29(3):657–61.
45. GangwischJE, HeymsfieldSB, Boden-AlbalaB, et al. Sleep duration as a risk factor for diabetes incidence in a large US sample. Sleep 2007;30(12):1667–73.
46. BjorkelundC, Bondyr-CarlssonD, LapidusL, et al. Sleep disturbances in midlife unrelated to 32-year diabetes incidence: the prospective population study of women in Gothenburg. Diabetes Care 2005;28(11):2739–44.
47. HayashinoY, FukuharaS, SuzukamoY, et al. Relation between sleep quality and quantity, quality of life, and risk of developing diabetes in healthy workers in Japan: the High-risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) Study. BMC Public Health 2007;7:129.
48. KawakamiN, TakatsukaN, ShimizuH. Sleep disturbance and onset of type 2 diabetes. Diabetes Care 2004;27(1):282–3.
49. NilssonPM, RoostM, EngstromG, HedbladB, BerglundG. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 2004;27(10):2464–9.
50. MeisingerC, HeierM, LoewelH. Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia 2005;48(2):235–41.
51. GuilleminaultC, PowellNB, MartinezS, et al. Preliminary observations on the effects of sleep time in a sleep restriction paradigm. Sleep Med 2003;4(3):177–84.
52. SpiegelK, TasaliE, PenevP, Van CauterE. Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels and increased hunger and appetite. Ann Intern Med 2004;141(11):846–50.
53. NedeltchevaA, PenevP. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 2009;89(1):126–33.
54. TaheriS, LinL, AustinD, YoungT, MignotE. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index (BMI). Sleep 2004;27(Abstract Suppl.):A146–7.
55. ChaputJP, DespresJP, BouchardC, TremblayA. Short sleep duration is associated with reduced leptin levels and increased adiposity: Results from the Quebec family study. Obesity (Silver Spring) 2007;15(1):253–61.
56. SchmidSM, HallschmidM, Jauch-CharaK, BornJ, SchultesB. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 2008;17(3):331–4.
57. LittmanAJ, VitielloMV, Foster-SchubertK, et al. Sleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int J Obesity 2007;31(3):466–75.
58. CappuccioFP, TaggartFM, KandalaNB, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008;31(5):619–26.
59. PatelSR, HuFB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16(3):643–53.
60. Van CauterE, KnutsonKL. Sleep and the epidemic of obesity in children and adults. Eur J Endocrinol/European Federation of Endocrine Societies 2008; Aug 21.
61. Lopez-GarciaE, FaubelR, Leon-MunozL, et al. Sleep duration, general and abdominal obesity, and weight change among the older adult population of Spain. Am J Clin Nutr 2008;87(2):310–6.
62. StrangesS, CappuccioFP, KandalaNB, et al. Cross-sectional versus prospective associations of sleep duration with changes in relative weight and body fat distribution: the Whitehall II Study. Am J Epidemiol 2008;167(3):321–9.
63. KeithSW, ReddenDT, KatzmarzykPT, et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obesity 2006;30(11):1585–94.
64. YoungT. Increasing sleep duration for a healthier (and less obese?) population tomorrow. Sleep 2008;31(5):593–4.
65. HorneJ. Too weighty a link between short sleep and obesity?Sleep 2008;31(5):595–6.
66. VgontzasAN, BixlerEO. Short sleep and obesity: are poor sleep, chronic stress, and unhealthy behaviors the link?Sleep 2008;31(9):1203.