Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2006
  • Online publication date: December 2009

Chapter 13 - Predictability of the North Atlantic thermohaline circulation


Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multi-decadal variability with unique spatial structure. It is shown by means of a global climate model which does not employ flux adjustments that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. This is shown by classical predictability experiments and greenhouse warming simulations with the global climate model.


The North Atlantic thermohaline circulation is an important component of the global climate system. Strong and rapid changes in the THC have been reported from palaeo-climatic records (e.g. Broecker et al., 1985), and a current topic for discussion is whether greenhouse warming may have a serious impact on the stability of THC (e.g. Cubasch et al., 2001). The North Atlantic SST varied on a wide range of timescales during the last century (e.g. Deser and Blackmon, 1993). It has been pointed out (Bjerknes, 1964) that the short-term interannual variations are driven primarily by the atmosphere, while the long-term multidecadal changes may be forced by variations in ocean dynamics. The latter is supported by simulations with coupled ocean–atmosphere models (Delworth et al., 1993; Timmermann et al., 1998; Park and Latif, 2005) which show that variations in the North Atlantic THC are reflected in large-scale SST anomalies.

Related content

Powered by UNSILO
Bjerknes, J. (1964). Atlantic air-sea interaction. Advances in Geophysics, 10, Academic Press, 1–82
Broecker, W. S., Peteet, D. M. and Rind, D. (1985). Does the ocean-atmosphere system have more than one stable mode of operation?Nature, 315, 21–6
Collins, M. and Sinha, B. (2003). Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett., 6, doi:10.1029/2002GL016504
Collins, M., Botzet, M., Carril, A., et al. (2006). Interannual to decadal climate predictability: a multi-perfect-model-ensemble study. J. Climate, in press
Cubasch, U. G. A., Meehl, G. J. Boer, et al. (2001). Projections of future climate change. In Climate Change: The Scientific Basis, pp. 525–82. Cambridge University Press
Delworth, T. L. and Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam., 16, 661–76
Delworth, T. L., Manabe, S. and Stouffer, R. J. (1993). Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate, 6, 1993–2011
Deser, C. and Blackmon, M. L. (1993). Surface climate variations over the North Atlantic during winter: 1900–1989. J. Climate, 6, 1743–53
Dommenget, D. and Latif, M. (2002). Analysis of observed and simulated SST spectra in midlatitudes. Clim. Dynam., 19, 277–88
Folland, C. K., Parker, D. E. and Kates, F. E. (1984). Worldwide marine temperature fluctuations 1856–1981. Nature, 310, 670–73
Folland, C. K., Palmer, T. N. and Parker, D. E. (1986). Sahel rainfall and world wide sea temperatures. Nature, 320, 602–06
Folland, C. K. D. E., Parker, A. W. Colman and Washington, R. (1999). Large scale models of ocean surface temperature since the late nineteenth century. In Beyond El Niño, ed. Navarra, A., pp. 73–102. Springer
Giorgetta, M. A., Manzini, E. and Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29(8), 10.1029–32
Griffies, S. M. and Bryan, K. (1997). Ensemble predictability of simulated North Atlantic inter-decadal variability. Science, 275, 181–4
Grötzner, A., Latif, M., Timmermann, A. and Voss, R. (1999). Interannual to decadal predictability in a coupled ocean-atmosphere general circulation model. J. Climate, 12, 2607–24
Hasselmann, K. (1976). Stochastic climate models. I: Theory. Tellus, 28, 473–85
Hegerl, G., Hasselmann, K., Cubasch, U., et al. (1997). Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus aerosol and solar forced climate change. Clim. Dynam., 13, 613–34
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation, regional temperatures and precipitation. Science, 269, 676–9
Jungclaus, J. H., Haak, H., Latif, M. and Mikolajewicz, U. (2005). Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 4013–31
Kushnir, Y. (1994). Interdecadal variations in North Atlantic sea surface temperature and atmospheric conditions. J. Climate, 7, 141–57
Latif, M., Roeckner, E., Mikolajewicz, U. and Voss, R. (2000). Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13, 1809–13
Latif, M., Roeckner, E., Botzet, M., et al. (2004). Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 1605–14
Lindzen, R. S. and Nigam, S. (1987). On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–36
Manabe, S. and Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1, 841–66
Manabe, S. and Stouffer, R. J.Manabe, S. and Stouffer, R. J. (1996). Low-frequency variability of surface temperature in a 1000-year integration of a coupled atmosphere-ocean-land surface modelJ. Climate, 9, 376–93
Manabe, S. and Stouffer, R. J. (1999). The role of thermohaline circulation in climate. Tellus, 51, 91–109
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. and Röske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model., 5, 91–127
Oberhuber, J., Roeckner, E., Christoph, M., Esch, M. and Latif, M. (1998). Predicting the '97 El Niño event with a global climate model. Geophys. Res. Lett., 25, 2273–6
Palmer, T. N. and Sun, Z. (1985). A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947–75
Park, W. and Latif, M. (2005). Ocean dynamics and the nature of air–sea interactions over the North Atlantic at decadal timescales. J. Climate, 18, 982–95
Philander, S. G. H. (1990). El Niño, La Niña and the Southern Oscillation. Academic Press
Pohlmann, H., Botzet, M., Latif, M., Roesch, A., Wild, M. and Tschuck, P. (2004). Estimating the decadal predictability of a coupled AOGCM. J. Climate, 22, 4463–72
Pohlmann, H., Sienz, F. and Latif, M. (2006). Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J. Climate, in press
Rahmstorf, S. (1999). Shifting seas in the greenhouse?Nature, 399, 523–4
Roeckner, E., Bäuml, G., Bonaventura, L., et al. (2003). The Atmospheric General Circulation Model ECHAM5. I: Model Description. MPI Report 349. Max-Planck-Institut für Meteorologie, Bundesstr. 53, 20146 Hamburg, Germany
Schiller, A., Mikolajewicz, U. and Voss, R. (1997). The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dynam., 13, 325–47
Segschneider, J., Anderson, D. L. T. and Anderson, T. N. (2000). Towards the use of altimetry for operational seasonal forecasting. J. Climate, 13, 3115–28
Timmermann, A., Latif, M., Voss, R. and Grötzner, A. (1998). Northern Hemisphere interdecadal variability: a coupled air-sea model. J. Climate, 11, 1906–31
Visbeck, M., Stammer, D., Toole, J., et al. (1998). Atlantic Climate Variability Experiment Prospectus. Report available from LDEO, Palisades, NY, 49 pp
Visbeck, M., Stammer, D., Toole, J.WOCE (2001). Objective 8 – To determine the important processes and balances for the dynamics of the general circulation. Contr. by N. Hogg, McWilliams, J., Niiler, P., J. Price. US WOCE Implementation Report, 13, 55