Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-xdx58 Total loading time: 0 Render date: 2024-10-19T22:03:47.194Z Has data issue: false hasContentIssue false

8 - The transition from melt to glass and its molecular basis

Published online by Cambridge University Press:  10 November 2009

Richard Boyd
Affiliation:
University of Utah
Grant Smith
Affiliation:
University of Utah
Get access

Summary

Experimental description

The preceding chapters of Part II have dealt with the primary relaxation that takes place in the melt and secondary subglass relaxations at lower temperature. However, it is a matter of experimental observation that the time or frequency locations of these relaxations tend to merge as temperature increases or conversely to diverge as temperature is lowered. This is implied in loss maps such as Figure 7.13 where extrapolation to higher temperature, as illustrated in Figure 8.1, indicates the secondary and primary relaxations merge. In fact the extrapolations based on the centers of the processes seem to converge in the region of ∼1011–1012 Hz or on the time scale of picoseconds. This would seem to be inevitable since the time scale of slower intramolecular vibratory and torsional oscillations is of this order and motions related to more elaborate conformational transitions could not be faster than these limits. Since the relaxations are broad, the merging region is expected to be noticeable experimentally in loss vs. frequency curves at temperatures well below this implied high frequency limit. In fact this is the case.

Examples of the overlap and coalescence behavior from dielectric spectroscopy

It is useful to recognize several stages in the merging. The first is an overlap region where maxima in the loss processes for both relaxations are clearly visible.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoffmann, A., Kremer, F., and Fischer, E. W., Physica A, 201, 106 (1993).CrossRef
Bravard, S. P. and Boyd, R. H., Macromolecules, 36, 741 (2003).CrossRef
A. Schoenhals, in Dielectric Spectroscopy of Polymeric Materials, edited by Runt, J. P. and Fitzgerald, J. J. (Washington, DC: American Chemical Society, 1997), Chapter 3. In turn adapted from F. Kremer, A. Hofmann, and E. Fischer, Am. Chem. Soc. Polymer Preprints, 33, 96 (1992).Google Scholar
S. Sen, Dielectric relaxation in aliphatic polyesters, Ph.D., Dissertation, University of Utah (2001).
S. Havriliak and S. J. Havriliak, in Dielectric Spectroscopy of Polymeric Materials, edited by Runt, J. P. and Fitzgerald, J. J. (Washington, DC: American Chemical Society, 1997), Chapter 6.Google Scholar
Boyd, R. H. and Porter, C. H., J. Polymer Sci.: Part A-2, 10, 647 (1972).
Porter, C. H. and Boyd, R. H., Macromolecules, 4, 589 (1971).CrossRef
Williams, G., Trans. Faraday Soc., 61, 1564 (1965).CrossRef
Yano, S., Rahalkar, R. R., Hunter, S. P., Wang, C. H., and Boyd, R. H., J. Polymer Sci., Polym. Phys. Ed., 14, 1877 (1976).CrossRef
Arbe, A., Buchenau, U., Willner, L., Richter, D., Fargo, B., and Colmenero, J., Phys. Rev. Lett., 76, 1872 (1996).CrossRef
Arbe, A., Richter, D., Colmenero, J., and Farago, B., Phys. Rev. E, 54, 3853 (1996).CrossRef
Smith, G. D., Bedrov, D., and Paul, W., J. Chem. Phys., 121, 4961 (2004).CrossRef
Paul, W., Smith, G. D. and Bedrov, D., Phys. Rev. E., 74, 02150 (2006).CrossRef
Schmidt-Rohr, K. and Spiess, H. W., Multidimensional Solid-State NMR and Polymers (London: Academic Press, 1996).Google Scholar
Tracht, U., Wilhelm, M., Heuer, A., Feng, H., Schmidt-Rohr, K., and Spiess, H. W., Phys. Rev. Lett., 81, 2727 (1998).CrossRef
Pschorn, U., Roessler, E., Sillescu, H., Kaufmann, S., Schaefer, D., and Spiess, H. W., Macromolecules, 24, 398 (1991).CrossRef
Schaeffer, D., Spiess, H. W., Suter, U. W., and Fleming, W. W., Macromolecules, 23, 3431 (1990).CrossRef
Heuer, A., Wilhelm, M., Zimmermann, H., and Spiess, H. W., Phys. Rev. Lett., 75, 2851 (1995).CrossRef
Ediger, M. D., Annu. Rev. Phys. Chem., 51, 99 (2000).CrossRef
Pant, P. V. K., Han, J., Smith, G. D., and Boyd, R. H.J. Chem. Phys., 99, 597 (1993).CrossRef
Boyd, R. H., Gee, R. H., Han, J., and Jin, Y., J. Chem. Phys., 101, 788 (1994).CrossRef
Rigby, D. and Roe, R. J., J. Chem. Phys., 87, 7285 (1987).CrossRef
Rigby, D. and Roe, R. J., J. Chem. Phys., 89, 5280 (1988).CrossRef
Rigby, D. and Roe, R. J., Macromolecules, 22, 2259 (1989).CrossRef
Rigby, D. and Roe, R. J., Macromolecules, 23, 5312 (1990).CrossRef
D. Rigby and R. J. Roe, in Computer Simulation of Polymers, edited by Roe, R. J. (New York: Prentice Hall, 1991), Chapter 6.Google Scholar
Takeuchi, H. and Roe, R. J., J. Chem. Phys., 94, 7446 (1991).CrossRef
Takeuchi, H. and Roe, R. J., J. Chem. Phys., 94, 7458 (1991).CrossRef
Muthukumar, M., Adv. Chem. Phys., 128, 1 (2004).
Dukovski, I. and Muthukumar, M., J. Chem. Phys., 118, 6648 (2003).CrossRef
Muthukumar, M., Phil. Trans. Roy. Soc., A361, 539 (2003).CrossRef
Rutledge, G. and Balijepalli, S., J. Chem. Phys., 109, 6523 (1998).
Rutledge, G., Lavine, M. S. and Waheed, N. W., Polymer, 44, 1771 (2003).
Toxvaerd, S., J. Chem. Phys., 93, 4290 (1990).CrossRef
Padilla, P. and Toxvaerd, S., J. Chem. Phys., 94, 5650 (1991).CrossRef
Han, J.Gee, R. H., and Boyd, R. H., Macromolecules, 27, 7781 (1994).CrossRef
Boyd, R. H., Trends Polymer Sci., 4, 12 (1996).
R. J. Roe, in Atomistic Modeling of Physical Properties, Advances in Polymers Science, Vol. 116, edited by Monnerie, L. and Suter, U. (New York: Springer Verlag, 1994), pp. 114–144.CrossRefGoogle Scholar
Jin, Y. and Boyd, R. H., J. Chem. Phys., 108, 9912 (1998).CrossRef
Helfand, E., Wasserman, Z. R., and Weber, T., Macromolecules, 13, 526 (1980).CrossRef
Adolf, D. B. and Ediger, M. D., Macromolecules, 24, 5834 (1991).CrossRef
Ediger, M. D. and Adolf, D. B., Macromolecules, 25, 1074 (1992).
Zuniga, I., Bahar, I., Dodge, R., and Mattice, W. L., J. Chem. Phys., 95, 5348 (1991).CrossRef
Helfand, E., J. Chem. Phys., 54, 4651 (1971).CrossRef
Pechhold, W., Blasenbrey, S., and Woerner, S., Colloid Polym. Sci., 189, 14 (1963).
Boyd, R. H. and Breitling, S. M., Macromolecules, 7, 855 (1974).CrossRef
Boyd, R. H., J. Polymer Sci. Polymer Phys. Ed., 13, 2345 (1975).CrossRef
Boyd, R. H. and Phillips, P. J., The Science of Polymer Molecules (New York: Cambridge University Press, 1996).Google Scholar
Jin, W. and Boyd, R. H., Polymer, 43, 503 (2002). The time scales in Figures 2–5 in this paper were mislabeled and should read from 0 to 30 ns in each.CrossRef
Smith, G. D., Borodin, O., and Paul, W., J. Chem. Phys., 117, 10350 (2002).CrossRef
R. H. Boyd and W. Jin, ACS PMSE Abstracts, August (2001).
Paul, W. and Smith, G. D., Rep. Prog. Phys., 67, 1117 (2004).CrossRef
Aouadi, A., Lebon, M. J., Dreyfus, C., et al., J. Phys.: Condens. Matter, 9, 3803 (1997).
Smith, G. D. and Bedrov, D., J. Polym. Sci. Part B: Polym. Phys., 145, 627 (2007).CrossRef
Döß, A., Paluch, M., Sillescu, H., and Hinze, G., J. Chem. Phys., 117, 6582 (2002).CrossRef
Smith, G. D. and Bedrov, D., J. Non. Cryst. Solids, 352, 293 (2006).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×