Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2003
  • Online publication date: August 2009

4 - Practice-induced plasticity in the human motor cortex

Summary

Introduction

It is common knowledge that ‘practice makes perfect’. Many types of human motor behaviour seem to rely heavily on the fact that the performance of subsequent movements is facilitated by prior performance of similar movements. Therefore, the capacity to build a memory trace of previously practised movements appears to be a fundamental property of the human motor system. Recent studies have focused on this theme in an attempt to gain insight into the physiology of motor memory. Such understanding may contribute to the development of techniques to promote recovery of function following brain damage in humans.

Use-dependent plasticity

Since the 1990s, numerous reports, by employing TMS, demonstrated plasticity induced by motor learning, motor practice or use. One of the earliest reports showed that the excitability of the muscle representation of the ‘reading’ finger is increased in Braille readers (Pascual-Leone et al., 1993). Pearce and coworkers found that, in highly trained Olympic badminton players, the excitability of the first dorsal interosseus muscle of the skilled hand is increased and its topographical representation is altered when compared to the unskilled hand or to the representations in untrained players (Pearce et al., 2000). These studies provided evidence that the organization of motor activity is modifiable. They also raised questions about the particular factors involved in long-term practice that were instrumental in triggering these profound changes.

Related content

Powered by UNSILO
REFERENCES
Baker, J. T., Donoghue, J. P. & Sanes, J. N. (1999). Gaze direction modulates finger movement activation patterns in human cerebral cortex. J. Neurosci., 19: 10044–10052
Bütefisch, C. M., Davis, B. C. & Wise, S. P. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci., USA, 97: 3661–3665
Bütefisch, C. M., Sawaki, L., Davis, B. C.. (2002). Modulation of use-dependent plasticity by d-amphetamine. Ann. Neurol., 51: 59–68
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403
Classen, J., Liepert, A., Wise, S. P., Hallett, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123
Classen, J., Liepert, J., Hallett, M. & Cohen, L. G. (1999). Plasticity of movement representation in the human motor cortex. In Transcranial Magnetic Stimulation, ed. W. Paulus, J. C. Rothwell, M. Hallett & P. M. Rossini, vol. 51, pp. 162–173. Amsterdam: Elsevier Press
Cohen, L. G., Gerloff, C., Faiz, L.. (1996). Directional modulation of motor cortex plasticity induced by synchronicity of motor outputs in humans. Soc. Neurosci. Abstr., 22: 576.11
Facchini, S., Romani, M., Tinazzi, M. & Aglioti, S. M. (2002). Time-related changes of excitability of the human motor system contingent upon immobilisation of the ring and little fingers. Clin. Neurophysiol., 113: 367–375
Feeney, D. M. (1997). From laboratory to clinic: noradrenergic enhancement of physical therapy for stroke or trauma patients. Adv. Neurol., 73: 383–394
Hagemann, G., Redecker, C., Neumann-Haefelin, T., Freund, H. J. & Witte, O. W. (1998). Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann. Neurol., 44: 255–258
Hasselmo, M. E. & Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci., 15: 6592–6604
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778
Jacobs, K. M. & Donoghue, J. P. (1991). Reshaping the cortical motor map by unmasking latent intracortical connections. Science, 251: 944–947
Kujirai, T., Caramia, M. D., Rothwell, J. C.. (1993). Corticocortical inhibition in human motor cortex. J. Physiol., 471: 501–519
Liepert, J., Tegenthoff, M. & Malin, J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalogr. Clin. Neurophysiol., 97: 382–386
Liepert, J., Classen, J., Cohen, L. G. & Hallett, M. (1998). Task-dependent changes of intracortical inhibition. Exp. Brain Res., 118: 421–426
Liepert, J., Terborg, C. & Weiller, C. (1999). Motor plasticity induced by synchronized thumb and foot movements. Exp. Brain Res., 125: 435–439
McNevin, N. H., Wulf, G. & Carlson, C. (2000). Effects of attentional focus, self-control, and dyad training on motor learning: implications for physical rehabilitation. Phys. Ther., 80: 373–385
Maalouf, M., Dykes, R. W. & Miasnikov, A. A. (1998). Effects of D-AP 5 and NMDA microiontophoresis on associative learning in the barrel cortex of awake rats. Brain Res., 793: 149–168
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res., 136: 431–438
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644
Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol., 527: 633–639
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Ann. Neurol., 34: 33–37
Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M. & Hallett, M. (1994). Responses to rapid rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858
Pascual-Leone, A., Nguyet, D., Cohen, L. G.Brasil-Neto, J. P., Cammarota, A. & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol., 74: 1037–1045
Pearce, A. J., Thickbroom, G. W., Byrnes, M. L. & Mastaglia, F. L. (2000). Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp. Brain Res., 130: 238–243
Reynolds, C. & Ashby, P. (1999). Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology, 53: 730–735
Ridding, M. C., Taylor, J. L. & Rothwell, J. C. (1995). The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J. Physiol. (Lond.), 487: 541–548
Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science, 290: 533–536
Kranz, Rosen K., Nitsche, M. A., Tergau, F. & Paulus, W. (2000). Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosc. Lett., 296: 61–63
Sawaki, L., Boroojerdi, B., Kaelin-Lang, A. (2002a). Cholinergic influences on use-dependent plasticity. J. Neurophysiol., 87: 166–171
Sawaki, L., Cohen, L. G., Classen, J., Davis, B. & Butefisch, C. M. (2002b). Enhancement of use-dependent plasticity by d-amphetamine. Neurology, 59: 1262–1264
Schiene, K., Bruehl, C., Zilles, K.. (1996). Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J. Cereb. Blood Flow Metab., 16: 906–914
Schwenkreis, P., Pleger, B., Hoffken, O., Malin, J. P. & Tegenthoff, M. (2001). Repetitive training of a synchronised movement induces short-term plastic changes in the human primary somatosensory cortex. Neurosci. Lett., 312: 99–102
Wolters, A., Kunesch, E., Benecke, R. & Classen, J. (2001). Zeitgang verschiedener Parameter kortikaler Exzitabilitätsveränderungen nach repetitiven Handgelenksbewegungen. Akt. Neurol., Suppl. 28: 68
Zanette, G., Tinazzi, M., Bonato, C.. (1997). Reversible changes of motor cortical outputs following immobilization of the upper limb. Electroencephalogr. Clin. Neurophysiol., 105: 269–279
Ziemann, U., Muellbacher, W., Hallett, M. & Cohen, L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124: 1171–1181