Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T19:31:19.224Z Has data issue: false hasContentIssue false

12 - Applying Plasticity to Visual Rehabilitation in Adulthood

from III - PLASTICITY IN ADULTHOOD AND VISION REHABILITATION

Published online by Cambridge University Press:  05 January 2013

Shachar Maidenbaum
Affiliation:
The Hebrew University of Jerusalem
Amir Amedi
Affiliation:
The Hebrew University of Jerusalem
Jennifer K. E. Steeves
Affiliation:
York University, Toronto
Laurence R. Harris
Affiliation:
York University, Toronto
Get access

Summary

Introduction

Severe visual impairments varying in etiology and intensity, affect more than 280 million people worldwide (World Health Organization [WHO], 2011; Elkhayat, 2012). Although, as described in other chapters in this book, the brain of the blind undergoes massive plastic changes in an effort to compensate for the lack of vision, providing increased support for other senses and abilities, the blind and visually impaired remain significantly limited in their ability to perform tasks ranging from navigation and orientation to object recognition. Thus, the blind are prevented from fully taking part in modern society, constituting a major clinical and scientific challenge to develop effective visual rehabilitation techniques for them. Many attempts have been made to help the blind using a wide variety of different approaches; however, unfortunately, until recent years most have born discouraging results. This chapter discusses if and how the plasticity described in this book can be harnessed for visual rehabilitation in adulthood to enable the blind to use their own brain to process “raw” visual information, despite the discouraging outcome of past attempts. We describe several different approaches to visual rehabilitation and their practical real world and clinical results, focusing on sensory substitution devices and their potential. We then show some examples of what using these devices has taught us about the brain, offering a theoretical basis for their empirical results, and finish with some practical conclusions and recommendations for future visual rehabilitation attempts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amedi, A., Floel, A., Knecht, S., Zohary, E. and Cohen, L. G. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat. Neurosci., 7: 1266–1270.Google Scholar
Amedi, A., Jacobson, G., Hendler, T., Malach, R. and Zohary, E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb. Cortex, 12: 1202–1212.Google Scholar
Amedi, A., Malach, R., Hendler, T., Peled, S. and Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci., 4: 324–330.Google Scholar
Amedi, A., Raz, N., Azulay, H., Malach, R. and Zohary, E. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans. Restor. Neurol. Neurosci., 28: 143–156.Google Scholar
Amedi, A., Raz, N., Pankea, P., Malach, R. and Zohary, E. (2003). Early “visual” cortex activation correlates with superior verbal memory performance in the blind. Nat. Neurosci., 6: 758–766.Google Scholar
Amedi, A., Stern, W. M., Camprodon, J. A., Bmpohl, F., Merabet, L., Rotman, S., Hemond, C., Meijer, P. and Pascual-Leone, A. (2007). Shape conveyed by visual-toauditory sensory substitution activates the lateral occipital complex. Nat. Neurosci., 10: 687–689.Google Scholar
Auvray, M., Hanneton, S. and O'Regan, K. (2007). Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘The vOICe.’Perception, 36: 416–430.Google Scholar
Bach-y-Rita, P. (1972). Brain Mechanisms in Sensory Substitution. New York: Academic Press.
Bach-y-Rita, P. and Kercel, S. W. (2003). Sensory substitution and the human–machine interface. Trends Cogn. Sci., 7: 541–546.Google Scholar
Bavelier, D. and Hirshorn, E. A. (2010). I see where you're hearing: how cross-modal plasticity may exploit homologous brain structures. Nat. Neurosci., 13: 1421–1427.Google Scholar
Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E. and Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proc. Natl. Acad. Sci. USA, 108: 4429–4434.Google Scholar
Bologna, G., Deville, B., Gomez, J. D. and Pun, T. (2011). Toward local and global perception modules for vision substitution. Neurocomputing, 74: 1182–1190.Google Scholar
Bologna, G., Deville, B. and Pun, T. (2009). On the use of the auditory pathway to represent image scenes in real-time. Neurocomputing, 72: 839–849.Google Scholar
Bubic, A., Striem-Amit, E. and Amedi, A. (2010). Large-scale brain plasticity following blindness and the use of sensory substitution devices. In Naumer, M. J., and Kaiser, J. (eds.), Multisensory Object Perception in the Primate Brain. New York: Springer, pp. 351–380.
Bull, N. D. and Martin, K. R. (2011). Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells, 29: 1170–1175.Google Scholar
Capalbo, Z. and Glenney, B. (2009). Hearing color: radical pluralistic realism and SSDs. Pop-CAP, 135–141.
Chebat, D. R., Rainville, C., Kupers, R. and Ptito, M. (2007). Tactile-“visual” acuity of the tongue in early blind individuals. NeuroReport, 18: 1901–1904.Google Scholar
Chebat, D. R., Schneider, F. C., Kupers, R. and Ptito, M. (2011). Navigation with a sensory substitution device in congenitally blind individuals. NeuroReport, 22: 342–347.Google Scholar
Chekhchoukh, A., Vuillerme, N. and Glade, N. (2011). Vision substitution and moving objects tracking in 2 and 3 dimensions via vectorial electro-stimulation of the tongue. ASSISTH '2011: 2ème Conférence Internationale sur l'accessibilité et les systèmes de supplence aux personnes en situations de handicaps, Paris.
Chen, C. L., Liao, Y. F. and Tai, C. (2010). Image-to-MIDI mapping based on dynamic fuzzy color segmentation for visually impaired people. Pattern Recogn. Lett., 32: 549–560.Google Scholar
Christy, B. and Nirmalan, P. K. (2006). Acceptance of the long cane by persons who are blind in South India. J. Vis. Impair Blindness, 100: 115–119.Google Scholar
Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K. and Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Ann. Neurol., 45: 451–460.Google Scholar
Collignon, O., Vandewalle, G., Voss, P., Albouy, G., Charbonneau, G., Lassonde, M. and Lepore, F. (2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proc. Nat. Acad. Sci. USA, 108: 4435–4440.Google Scholar
Dehaene, S. and Cohen, L. (2011). The unique role of the visual word form area in reading. Trends Cogn. Sci., 15: 254–262.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Cehaene-Lanbertz, G., Kolinsky, R.,Morasi, J. and Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330: 1359–1364.Google Scholar
den Hollander, A. I., Black, A., Bennett, J. and Cremers, F. P. (2010). Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J. Clin. Invest., 120: 3042–3053.Google Scholar
Deroy, O. and Auvray, M. (in press). Beyond vision: the vertical integration of sensory substitution devices. In Stokes, D., Biggs, S. and Matthen, M. (eds.), Perception and Its Modalities. Oxford: Oxford University Press.
Djilas, M., Olès, C., Lorach, H., Bendali, A., Dégardin, J., Dubus, E., Lissorgues-Bajin, G., Rousseau, L., Benosman, R., Ieng, S. H., Joucla, S., Yvert, B., Bergonzo, O., Sahel, T. and Picaud, S. (2011). Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J. Neural Eng., 8: 046020.Google Scholar
Dormal, G. and Collignon, O. (2011). Functional selectivity in sensory-deprived cortices. J. Neurophysiol., 105: 2627–2630.Google Scholar
Durette, B., Louveton, N., Alleysson, D., and Hérault, J. (2008). Visuo-auditory sensory substitution for mobility assistance: testing TheVIBE. European Conference on Computer Vision, Marseille, France.
El-khayat, A. R. (2012). Blindness. InnovAiT. 10.1093/innovait/inr224.
Fiehler, K., Burke, M., Bien, S., Röder, B. and Rösler, F. (2009). The human dorsal action control system develops in the absence of vision. Cereb. Cortex, 19: 1–12.Google Scholar
Fine, I.,Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. E., Boyton, G. M., Wandell, B. A. and MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nat. Neurosci., 6: 915–916.Google Scholar
Frasnelli, J., Collignon, O., Voss, P. and Lepore, F. (2011). Crossmodal plasticity in sensory loss. Prog. Brain Res., 191: 233–249.Google Scholar
Furtado, J. M., Cade, F., Lansingh, V. C., Zin, A., Arieta, C. E., Fabiani, J., Luco, C. and Resnikoff, S. (2010). Is Misión Milagro an effective program to prevent blindness in Latin America?Arquivos Brasileiros de Oftalmologia, 73: 397–398.Google Scholar
Gomez, J. D., Bologna, G. and Pun, T. (2010). Color-audio encoding interface for visual substitution: See ColOr Matlab-based demo. ACM Conference on Assistive Technologies – ASSETS, pp. 245–246.
Gorlin, S. S. M. (2011). Kernels of learning: tracking the emergence of visual recognition through multivariate approaches. PhD thesis. Massachusetts Institute of Technology.
Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P. and Lepore, F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol., 3: e27.Google Scholar
Gregory, R. L. and Wallace, J. G. (1963). Recovery from Early Blindness. Exp. Psych. Soc. Monograph Number 2.
Held, R., Ostrovsky, Y., de Gelder, B., Gandhi, T., Ganesh, S., Mathur, U. and Sinha, P. (2011). The newly sighted fail to match seen with felt. Nat. Neurosci., 14: 551–553.Google Scholar
Hubel, D. and Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol., 206: 419–436.Google Scholar
Humayun, M. S.,Dorn, J. D., da Cruz, L., Dagnelie, G., Sahel, J. A., Stanza, P. E., Cideciyan, A. V., Duncan, J. L., Eliott, D., Filley, E., Ho, A. C., Satran, A. B., Arditi, A., Del Priore, L. V. and Greenberg, R. J. (2012). Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology, 119: 779–788.Google Scholar
James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S. and Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 40: 1706–1714.Google Scholar
Kassuba, T., Klingeet, C., Höhg, C., Menz, M. M., Ptito, M., Röder, B. and Siebner, H. R. (2011). The left fusiform gyrus hosts trisensory representations of manipulable objects. Neuroimage, 56: 1566–1577.Google Scholar
Kim, J. K. and Zatorre, R. J. (2008). Generalized learning of visual-to-auditory substitution in sighted individuals. Brain Res., 1242: 263–275.
Kim, J. K. and Zatorre, R. J. (2011). Tactile-auditory shape learning engages the lateral occipital complex. J. Neurosci., 31: 7848–7856.Google Scholar
Kupers, R., Chebat, D. R., Madsen, K. H., Panlson, O. D. and Ptito, M. (2010). Neural correlates of virtual route recognition in congenital blindness. Proc. Nat. Acad. Sci., USA, 107: 12716–12721.Google Scholar
Lomber, S. G., Meredith, M. A. and Kral, A. (2010). Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci., 13: 1421–1427.Google Scholar
Mahon, B. Z., Anzellotti, S., Schwarbach, J., Zampini, M. and Caramazza, A. (2009). Category-specific organization in the human brain does not require visual experience. Neuron, 63: 397–405.Google Scholar
Matteau, I., Kupers, R., Ricciardi, E., Pietrini, P. and Ptito, M. (2010). Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res. Bull., 82: 264–270.Google Scholar
Meijer, P. (1992). An experimental system for auditory image representations. IEEE Trans. Biomed. Eng., 39: 112–121.Google Scholar
Meijer, P. (2012). http://www.seeingwithsound.com.
Merabet, L. B., Battelli, L., Obretenova, S., Maguire, S., Meijer, P. and Pascual-Leone, A. (2009). Functional recruitment of visual cortex for sound encoded object identification in the blind. NeuroReport, 20: 132–138.Google Scholar
Merabet, L. B. and Pascual-Leone, A. (2010). Neural reorganization following sensory loss: the opportunity of change. Nat. Rev. Neurosci., 11: 44–52.Google Scholar
Ortiz, T., Poch, J., Santos, J. M., Requena, C., Martinez, A. M., Ortiz-Terán, L., Turreno, A., Barcia, J., Nogales, R., Calvo, A.,Martinez, J. M., Córdoba, J. L. and Pascual-Leone, A. (2011). Recruitment of occipital cortex during sensory substitution training linked to subjective experience of seeing in people with blindness. PloS One, 6: e23264.Google Scholar
Ostrovsky, Y., and alman, A. and Sinha, P. (2006). Vision following extended congenital blindness. Psychol. Sci., 17: 1009–1014.Google Scholar
Ostrovsky, Y.,Meyers, E., Ganesh, S.,Mathur, U. and Sinha, P. (2009). Visual parsing after recovery from blindness. Psychol. Sci., 20: 1484–1491.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F. and Merabet, L. B. (2005). The plastic human brain cortex. Ann. Rev. Neurosci., 28: 377–401.Google Scholar
Pascual-Leone, A. and Hamilton, R. (2001). The metamodal organization of the brain. Prog. Brain Res., 134: 427–445.Google Scholar
Pascual-Leone, A., Obretenova, S. and Merabet, L. B. (2011). Paradoxical effects of sensory loss. In Kapur, N. (ed.), The Paradoxical Brain. New York: Cambridge University Press, pp. 14–39.
Peltier, S., Stilla, R., Mariola, E., LaConte, S., Hu, X. and Sathian, K.(2007). Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia, 45: 476–483.Google Scholar
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H., Cohen, L., Guazzelli, M. and Haxby, J. V. (2004). Beyond sensory images: object-based representation in the human ventral pathway. Proc. Nat. Acad. Sci. USA, 101: 5658–5663.Google Scholar
Poirier, C., Collignon, O., De Volder, A. G., Renier, L., Vanlierde, A., Tranduy, D., and Scheiber, C. (2005). Specific activation of the V5 brain area by auditory motion processing: an fMRI study. Brain Res. Cogn. Brain Res., 25: 650–658.Google Scholar
Poirier, C., Collignon, O., Scheiber, C., Reiner, L., Vanlierde, A., Tranduy, D., Veraart, C. and De Volder, A. G. (2006). Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage, 31: 279–285.Google Scholar
Poirier, C., De Volder, A., Trabdyt, D. and Scheiber, C. (2007). Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects. Neuropsychologia, 45: 1108–1121.Google Scholar
Prather, S., Votaw, J. R. and Sathian, K. (2004). Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia, 42: 1079–1087.Google Scholar
Proulx, M. J., Stoerig, P., Ludowig, E. and Knoll, I. (2008). Seeing “where” through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PloS ONE, 3: e1840.Google Scholar
Ptito, M., Fumal, A., de Noordhout, A. M., Schoenen, J., Gejedde, A. and Kupers, R. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Exp. Brain Res., 184: 193–200.Google Scholar
Ptito, M., Matteau, I., Gejedde, A. and Kuppers, R. (2009). Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport, 20: 543–547.Google Scholar
Rauschecker, J. P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci., 18: 36–43.Google Scholar
Reich, L., Maidenbaum, S. and Amedi, A. (2012). The brain as a flexible task machine: implications for visual rehabilitation using non-invasive vs. invasive approaches. Curr. Opin. Neurol., 25: 86–95.Google Scholar
Reich, L., Szwed, M., Cohen, L. and Amedi, A. (2011). A ventral visual stream reading center independent of visual experience. Curr. Biol., 21: 363–368.Google Scholar
Renier, L. and De Volder, A. G. (2010). Vision substitution and depth perception: Early blind subjects experience visual perspective through their ears. Disabil. Rehabil., 5: 175–183.Google Scholar
Renier, L. A., Anurova, I.,DeVolder, A. G., Carlson, S.,van Meter, J. and Rauschecker, J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron, 68: 138–148.Google Scholar
Reynolds, Z. and Glenney, B. (2009). Interactive training for sensory substitution devices. Asia-Pacific Computing and Philosophy (AP-CAP) (2009), Tokyo.
Ricciardi, E. and Pietrini, P. (2011). New light from the dark: what blindness can teach us about brain function. Curr. Opin. Neurol., 24: 357–363.Google Scholar
Ricciardi, E., Vanello, N., Sani, L., Gentili, C., Scilingo, E. P., Landini, L., Guazzelli, M., Bicchi, A., Haxy, J. V. and Pietrini, P. (2007). The effect of visual experience on the development of functional architecture in hMT+. Cereb. Cortex, 17: 2933–2939.Google Scholar
Rizzo, J. F. III, (2011). Update on retinal prosthetic research: the Boston retinal implant project. J. Neuroophthalmol., 31: 160–168.Google Scholar
Röder, B. and Rosler, F. (2003). Memory for environmental sounds in sighted, congenitally blind and late blind adults: evidence for cross-modal compensation. Int. J. Psychophysiol., 50: 27–39.Google Scholar
Striem-Amit, E., Dakwar, O., Reich, L. and Amedi, A. (2012). The large-scale organization of “visual” streams emerges without visual experience. Cereb. Cortex., 22: 1698–1709.Google Scholar
Summers, I. R., Francis, S. T., Bowtell, R. W., McGlone, F. P. and Clemence, M. (2009). A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip. J. Acoust. Soc. Am., 125: 1033–1039.Google Scholar
Tal, N. and Amedi, A. (2009). Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp. Brain Res., 198: 165–182.Google Scholar
Tan, S. S., Maul, T. H. B., Mennie, N. R. and Mitchell, P. (2010). Swiping with luminophonics. 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS), pp. 52–57, Singapore.
Thomas, S. (2011). Project Prakash: challenging the critical period. Association of Research in Vision and Ophthalmology National Meeting. Yale J. Biol. Med., 84: 483–485.Google Scholar
Von Senden, M. (1960). Space and Sight: The Perception of Space and Shape in the Congenitally Blind before and after Operation. London: Methuen.
Ward, J. and Meijer, P. (2010). Visual experiences in the blind induced by an auditory sensory substitution device. Conscious. Cogn., 19: 492–500.Google Scholar
Weiland, J. D., Faraji, B., Greenberg, R. J., Humayun, M. S. and Shellock, F. G. (2012). Assessment of MRI issues for the Argus II retinal prosthesis. Magn. Reson. Imaging, 30: 382–389.Google Scholar
,World Health Organization (WHO). (2011). Visual Impairment and Blindness – Key Facts and World Demographics. Fact Sheet No. 282.
Yoshida, T., Kitani, K. M., Koike, H., Belongie, S. and Schlei, K. (2011). EdgeSonic: image feature sonification for the visually impaired, AH'11 Proc. 2nd Augmented Human International Conference.
Zeki, S. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol., 277: 273–280.Google Scholar
Zöllner, M., Huber, S., Jetter, H.-C. and Reiterer, H. (2011). NAVI – a proof-of-concept of a mobile navigational aid for visually impaired based on the Microsoft Kinect. INTERACT. 6949: 584–587.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×