Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2010
  • Online publication date: July 2010

Section 8: - Translation to obstetrics

Related content

Powered by UNSILO

References

1. BynumW. Discarded diagnoses. The Lancet 2002; 359: 898.
2. Southampton Woman’s Survey. 2008. Available at http://www.mrc.soton.ac.uk/sws
3. SmithG C S. Life-table analysis of the risk of perinatal death at term and post term in singleton pregnancies. Am J Obstet Gynecol 2001; 184(3): 489–96.
4. PatelR R, PetersT J, MurphyD J. Prenatal risk factors for Caesarean section: analyses of the ALSPAC cohort of 12,944 women in England. Int J Epidemiol 2005; 34(2): 353–67.
5. SmithG C S, ShahI, PellJ P, CrossleyJ A, DobbieR. Maternal obesity in early pregnancy and risk of spontaneous and elective preterm deliveries: a retrospective cohort study. Am J Public Health 2007; 97(1): 157–62.
6. RothmanK J, GreenlandS, LashT L. Case-control studies. In: RothmanK J, GreenlandS, LashT L, eds. Modern epidemiology, 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 2008: pp. 111–27.
7. PasupathyD, DaceyA, CookEet al. Study protocol. A prospective cohort study of unselected primiparous women: the pregnancy outcome prediction study. BMC Pregnancy Childbirth 2008; 8(1): 51.
8. EvansE, FarrantP, GowlandM, McNayM B, RichardsB. Clinical applications of ultrasonic fetal measurements. London: British Medical Ultrasound Society/British Institute of Radiology; 1990.
9. RobinsonH P, FlemingJ E E. A critical evaluation of sonar “crown-rump length” measurements. Br J Obstet Gynaecol 1975; 82(9): 702–10.
10. SmithG C S, SmithM F S, McNayM B, FlemingJ E E. First-trimester growth and the risk of low birth weight. N Engl J Med 1998; 339: 1817–22.
11. DickeyR P, OlarT T, TaylorS Net al. Incidence and significance of unequal gestational sac diameter or embryo crown-rump length in twin pregnancy. Hum Reprod 1992; 7: 1170–2.
12. SebireN J, D’ErcoleC, SoaresW, NayarR, NicolaidesK H. Intertwin disparity in fetal size in monochorionic and dichorionic pregnancies. Obstet Gynecol 1998; 91(1): 82–5.
13. BukowskiR, SmithG C S, MaloneF Det al. Fetal growth in early pregnancy and risk of delivering low birth weight infant: prospective cohort study. BMJ 2007; 334(7598): 836.
14. BukowskiR, SmithG C S, MaloneF Det al. Human sexual size dimorphism in early pregnancy. Am J Epidemiol 2007; 165(10): 1216–18.
15. KalishR B, ChasenS T, GuptaMet al. First trimester prediction of growth discordance in twin gestations. Am J Obstet Gynecol 2003; 189(3): 706–9.
16. HafnerE, MetzenbauerM, HofingerDet al. Comparison between three-dimensional placental volume at 12 weeks and uterine artery impedance/notching at 22 weeks in screening for pregnancy-induced hypertension, pre-eclampsia and fetal growth restriction in a low-risk population. Ultrasound Obstet Gynecol 2006; 27(6): 652–7.
17. HafnerE, MetzenbauerM, Dillinger-PallerBet al. Correlation of first trimester placental volume and second trimester uterine artery Doppler flow. Placenta 2001; 22(8–9): 729–34.
18. HafnerE, MetzenbauerM, HofingerDet al. Placental growth from the first to the second trimester of pregnancy in SGA-foetuses and pre-eclamptic pregnancies compared to normal foetuses. Placenta 2003; 24(4): 336–42.
19. YuC K, SmithG C S, PapageorghiouA Tet al. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol 2005; 193(2): 429–36.
20. SmithG C S, YuC K, PapageorghiouA T, CachoA M, NicolaidesK H. Maternal uterine artery Doppler flow velocimetry and the risk of stillbirth. Obstet Gynecol 2007; 109(1): 144–51.
21. van den ElzenH J, Cohen-OverbeekT E, GrobbeeD E, QuarteroR W, WladimiroffJ W. Early uterine artery Doppler velocimetry and the outcome of pregnancy in women aged 35 years and older. Ultrasound Obstet Gynecol 1995; 5(5): 328–33.
22. MartinA M, BindraR, CurcioP, CiceroS, NicolaidesK H. Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11–14 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18(6): 583–86.
23. LawrenceJ B, OxvigC, OvergaardM Tet al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A 1999; 96(6): 3149–53.
24. ClemmonsD R. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol 1998; 140(1–2): 19–24.
25. BonnoM, OxvigC, KephartG Met al. Localization of pregnancy-associated plasma protein-A and colocalization of pregnancy-associated plasma protein-A messenger ribonucleic acid and eosinophil granule major basic protein messenger ribonucleic acid in placenta. Lab Invest 1994; 71(4): 560–6.
26. van KleffensM, GroffenC, Lindenbergh-KortleveD Jet al. The IGF system during fetal-placental development of the mouse. Mol Cell Endocrinol 1998; 140(1–2): 129–35.
27. KnissD A, ShubertP J, ZimmermanP D, LandonM B, GabbeS G. Insulinlike growth factors: their regulation of glucose and amino acid transport in placental trophoblasts isolated from first-trimester chorionic villi. J Reprod Med 1994; 39(4): 249–56.
28. IrwinJ C, SuenL F, MartinaN A, MarkS P, GiudiceL C. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod 1999; 14(Suppl 2): 90–6.
29. ConoverC A, BaleL K, OvergaardM Tet al. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 2004; 131(5): 1187–94.
30. MorssinkL P, KornmanL H, HallahanT Wet al. Maternal serum levels of free beta-hCG and PAPP-A in the first trimester of pregnancy are not associated with subsequent fetal growth retardation or preterm delivery. Prenat Diagn 1998; 18(2): 147–52.
31. PedersenJ F, SorensenS, RugeS. Human placental lactogen and pregnancy-associated plasma protein A in first trimester and subsequent fetal growth. Acta Obstet Gynecol Scand 1995; 74(7): 505–8.
32. JohnsonM R, RiddleA F, GrudzinskasJ Get al. Reduced circulating placental protein concentrations during the first trimester are associated with preterm labour and low birth weight. Hum Reprod 1993; 8: 1942–7.
33. OngC Y, LiaoA W, SpencerK, MunimS, NicolaidesK H. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 2000; 107(10): 1265–70.
34. SmithG C S, StenhouseE J, CrossleyJ Aet al. Early pregnancy levels of pregnancy-associated plasma protein A and the risk of intra-uterine growth restriction, premature birth, pre-eclampsia and stillbirth. J Clin Endocrinol Metab 2002; 87: 1762–7.
35. DugoffL, HobbinsJ C, MaloneF Det al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER Trial). Am J Obstet Gynecol 2004; 191(4): 1446–51.
36. SmithG C S, StenhouseE J, CrossleyJ Aet al. Development early-pregnancy origins of low birth weight. Nature 2002; 417: 916.
37. SmithG C S, FrettsR C. Stillbirth. Lancet 2007; 370(9600): 1715–25.
38. SmithG C S, CrossleyJ A, AitkenD Aet al. First-trimester placentation and the risk of antepartum stillbirth. JAMA 2004; 292(18): 2249–54.
39. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350(7): 672–83.
40. MaynardS, EpsteinF H, KarumanchiS A. Preeclampsia and angiogenic imbalance. Annu Rev Med 2008; 59: 61–78.
41. SmithG C S, CrossleyJ A, AitkenD Aet al. Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth. Obstet Gynecol 2007; 109(6): 1316–24.
42. ThadhaniR, MutterW P, WolfMet al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab 2004; 89(2): 770–5.
43. ZwahlenM, GerberS, BersingerN A. First trimester markers for pre-eclampsia: placental vs. non-placental protein serum levels. Gynecol Obstet Invest 2007; 63(1): 15–21.
44. SpencerK, CowansN J, NicolaidesK H. Maternal serum inhibin-A and activin-A levels in the first trimester of pregnancies developing pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32(5): 622–6.
45. SpencerK, CowansN J, StamatopoulouA. ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenat Diagn 2008; 28(3): 212–16.
46. RomeroR, KusanovicJ P, ThanN Get al. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol 2008; 199(2): 122.
47. MetzenbauerM, HafnerE, HoefingerDet al. Three-dimensional ultrasound measurement of the placental volume in early pregnancy: method and correlation with biochemical placenta parameters 7. Placenta 2001; 22(6): 602–5.
48. LeungT Y, ChanL W, LeungT Net al. First-trimester maternal serum levels of placental hormones are independent predictors of second-trimester fetal growth parameters. Ultrasound Obstet Gynecol 2006; 27(2): 156–61.
49. PilalisA, SoukaA P, AntsaklisPet al. Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler and PAPP-A at 11–14 weeks’ gestation. Ultrasound Obstet Gynecol 2007; 29(2): 135–40.
50. SpencerK, CowansN J, ChefetzI, TalJ, MeiriH. First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet Gynecol 2007; 29(2): 128–34.
51. PoonL C, ZaragozaE, AkolekarR, AnagnostopoulosE, NicolaidesK H. Maternal serum placental growth factor (PlGF) in small for gestational age pregnancy at 11(+0) to 13(+6) weeks of gestation. Prenat Diagn 2008; 28(12): 1110–5.
52. AkolekarR, ZaragozaE, PoonL C, PepesS, NicolaidesK H. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32(6): 732–9.
53. LeungT Y, SahotaD S, ChanL Wet al. Prediction of birth weight by fetal crown-rump length and maternal serum levels of pregnancy-associated plasma protein-A in the first trimester. Ultrasound Obstet Gynecol 2008; 31(1): 10–14.
54. MaloneF D, CanickJ A, BallR Het al. First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med 2005; 353(19): 2001–11.
55. SmithG C S, ShahI, WhiteI Ret al. Maternal and biochemical predictors of antepartum stillbirth among nulliparous women in relation to gestational age of fetal death. BJOG 2007; 114(6): 705–14.
56. SmithG C S, ShahI, WhiteI Ret al. Maternal and biochemical predictors of spontaneous preterm birth among nulliparous women: a systematic analysis in relation to the degree of prematurity. Int J Epidemiol 2006; 35(5): 1169–77.
57. NeilsonJ P, AlfirevicZ. Doppler ultrasound for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev 2000; (2): CD000073.
58. BrickerL, NeilsonJ P. Routine Doppler ultrasound in pregnancy. Cochrane Database Syst Rev 2000; (2): CD001450.
59. SmithG C S. Estimating risks of perinatal death. Am J Obstet Gynecol 2005; 192(1): 17–22.
60. AskieL M, DuleyL, Henderson-SmartD J, StewartL A. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet 2007; 369(9575): 1791–8.
61. WuO, RobertsonL, TwaddleSet al. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Health Technol Assess 2006; 10(11): 1–110.
62. BatesS M, GreerI A, HirshJ, GinsbergJ S. Use of antithrombotic agents during pregnancy: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126(Suppl 3): 627S–644S.
63. SayL, GulmezogluA M, HofmeyrG J. Maternal oxygen administration for suspected impaired fetal growth. Cochrane Database Syst Rev 2003; (1): CD000137.
64. RumboldA, DuleyL, CrowtherC A, HaslamR R. Antioxidants for preventing pre-eclampsia. Cochrane Database Syst Rev 2008; (1): CD004227.
65. SmithG C S. A population study of birthweight and the risk of cesarean section: Scotland 1980–1996. BJOG 2000; 107(6): 740–4.
66. SmithG C S. Sex, birth weight and the risk of stillbirth in Scotland, 1980–1996. Am J Epidemiol 2000; 151: 614–19.
67. HuxleyR, OwenC G, WhincupP Het al. Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr 2007; 85(5): 1244–50.
68. GodfreyK M, BarkerD J. Fetal nutrition and adult disease. Am J Clin Nutr 2000; 71(Suppl 5): 1344S–1352S.
69. GluckmanP D, HansonM A, CooperC, ThornburgK L. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359(1): 61–73.
70. SusserE, SusserM. Familial aggregation studies: a note on their epidemiologic properties. Am J Epidemiol 1989; 129(1): 23–30.
71. SmithG C S, PellJ P, WalshD. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 2001; 357: 2002–6.
72. DaveyS G, HypponenE, PowerC, LawlorD A. Offspring birth weight and parental mortality: prospective observational study and meta-analysis. Am J Epidemiol 2007; 166(2): 160–9.

References

1. VieroS, ChaddhaV, AlkazalehFet al. Prognostic value of placental ultrasound in pregnancies complicated by absent end-diastolic flow velocity in the umbilical arteries. Placenta 2004; 25(8–9): 735–41.
2. WhittleW, ChaddhaV, WyattPet al. Ultrasound detection of placental insufficiency in women with ‘unexplained’ abnormal maternal serum screening results. Clin Genet 2006; 69(2): 97–104.
3. BrosensI A, RobertsonW B, DixonH G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1972; 1: 177–91.
4. BrosensI, DixonH G, RobertsonW B. Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol 1977; 84(9): 656–63.
5. PijnenborgR, AnthonyJ, DaveyD Aet al. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 1991; 98(7): 648–55.
6. KimY M, ChaiworapongsamT, GomezRet al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 2002; 187(5): 1137–42.
7. PijnenborgR, BlandJ M, RobertsonW Bet al. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983; 4(4): 397–413.
8. LyallF. The human placental bed revisited. Placenta 2002; 23(8–9): 555–62.
9. PijnenborgR, BlandJ M, RobertsonW Bet al. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta 1981; 2(4): 303–16.
10. KadyrovM, KingdomJ C, HuppertzB. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006; 194(2): 557–63.
11. PalmerS K, ZamudioS, CoffinCet al. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol 1992; 80(6): 1000–6.
12. MollW. [Physiological cardiovascular adaptation in pregnancy – its significance for cardiac diseases.]Z Kardiol 2001; 90(Suppl 4): 2–9.
13. MuJ, AdamsonS L. Developmental changes in hemodynamics of uterine artery, utero- and umbilicoplacental, and vitelline circulations in mouse throughout gestation. Am J Physiol Heart Circ Physiol 2006; 291(3): H1421–8.
14. RayJ G, VermeulenM J, SchullM Jet al. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet 2005; 366(9499): 1797–803.
15. LausmanA, KingdomJ, BradleyTet al. Subclinical atherosclerosis in association with elevated placental vascular resistance in early pregnancy. Artherosclerosis 2009. doi.org/10.1016/j.atherosclerosis.2009.02.007.
16. ToalM, KeatingS, MachinGet al. Determinants of adverse perinatal outcome in high-risk women with abnormal uterine artery Doppler images. Am J Obstet Gynecol 2008; 198(3): 330 e1–7.
17. CostaS L, ProctorL, DoddJ Met al. Screening for placental insufficiency in high-risk pregnancies: is earlier better? Placenta 2008; 29(12): 1034–40.
18. KonjeJ C, KaufmannP, BellS Cet al. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol 2001; 185(3): 608–13.
19. McCowanL M, RitchieK, MoL Yet al. Uterine artery flow velocity waveforms in normal and growth-retarded pregnancies. Am J Obstet Gynecol 1988; 158(3 Pt 1): 499–504.
20. CnossenJ S, MorrisR K, ter RietGet al. Use of uterine artery Doppler ultrasonography to predict preeclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. CMAJ 2008; 178(6): 701–11.
21. LiH, GudmundssonS, OlofssonP. Clinical significance of uterine artery blood flow velocity waveforms during provoked uterine contractions in high-risk pregnancy. Ultrasound Obstet Gynecol 2004; 24(4): 429–34.
22. LiH, GudmundssonS, OlofssonP. Acute increase of umbilical artery vascular flow resistance in compromised fetuses provoked by uterine contractions. Early Hum Dev 2003; 74(1): 47–56.
23. MatijevicR, JohnstonT. In vivo assessment of failed trophoblastic invasion of the spiral arteries in pre-eclampsia. Br J Obstet Gynaecol 1999; 106(1): 78–82.
24. KurjakA, KupesicS, HafnerTet al. Conflicting data on intervillous circulation in early pregnancy. J Perinat Med 1997; 25(3): 225–36.
25. SchaapsJ P, TsatsarisV. [Uteroplacental vascularization.]Gynecol Obstet Fertil 2001; 29(7–8): 509–11.
26. SchaapsJP, TsatsarisV, GoffinFet al. Shunting the intervillous space: new concepts in human uteroplacental vascularization. Am J Obstet Gynecol 2005; 192(1): 323–32.
27. HunterS, RobsonS C. Adaptation of the maternal heart in pregnancy. Br Heart J 1992; 68(6): 540–3.
28. BurtonG, WoodsA, KingdomJet al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30: 473-82.
29. PijnenborgR, LuytenC, VercruysseLet al. Attachment and differentiation in vitro of trophoblast from normal and preeclamptic human placentas. Am J Obstet Gynecol 1996; 175(1): 30–6.
30. ZybinaT G, FrankH G, BiesterfeldSet al. Genome multiplication of extravillous trophoblast cells in human placenta in the course of differentiation and invasion into endometrium and myometrium. II. Mechanisms of polyploidization. Tsitologiia 2004; 46(7): 640–8.
31. CrossJ C. How to make a placenta: mechanisms of trophoblast cell differentiation in mice – a review. Placenta 2005; 26(Suppl A): S3–9.
32. TanakaS, KunathT, HadjantonakisA Ket al. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998; 282(5396): 2072–5.
33. UyG D, DownsK M, GardnerR L. Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development 2002; 129(16): 3913–24.
34. BaczykD, DunkC, HuppertzBet al. Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta 2006; 27(4–5): 367–74.
35. GuillemotF, NagyA, AuerbachAet al. Essential role of Mash-2 in extraembryonic development. Nature 1994; 371(6495): 333–6.
36. AldersM, HodgesM, HadjantonakisA Ket al. The human Achaete-Scute homologue 2 (ASCL2, HASH2) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet 1997; 6(6): 859–67.
37. JanatpourM J, UtsetM F, CrossJ Cet al. A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. Dev Genet 1999; 25(2): 146–57.
38. Anson-CartwrightL, DawsonK, HolmyardDet al. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 2000; 25(3): 311–4.
39. BaczykD, SatkunaratnamA, Nait-OumesmarBet al. Complex patterns of GCM1 mRNA and protein in villous and extravillous trophoblast cells of the human placenta. Placenta 2004; 25(6): 553–9.
40. BaczykD, DrewloS, ProctorLet al. Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ 2009; 16: 719-27.
41. YuC, ShenK, LinMet al. GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 2002; 277(51): 50062–8.
42. LinC, LinM, ChenH. Biochemical characterization of the human placental transcription factor GCMa/1. Biochem Cell Biol 2005; 83(2): 188–95.
43. MalassineA, HandschuhK, TsatsarisVet al. Expression of HERV-W Env glycoprotein (syncytin) in the extravillous trophoblast of first trimester human placenta. Placenta 2005; 26(7): 556–62.
44. ChenC P, ChenC Y, YangY Cet al. Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta 2004; 25(5): 413–21.
45. DrewloS B, KingdomD J. GCM1 regulation of sflt-1 expression in first trimester placental villi: the missing link between disordered trophoblast differentiation and the development of severe early-onset preeclampsia. J Reprod Invest 2009; 16(3 Suppl): 90A.
46. SankaralingamS, ArenasI A, LaluM Met al. Preeclampsia: current understanding of the molecular basis of vascular dysfunction. Expert Rev Mol Med 2006; 8(3): 1–20.
47. MaynardS, EpsteinF H, KarumanchiS A. Preeclampsia and angiogenic imbalance. Annu Rev Med 2008; 59: 61–78.
48. RedlineR W. Villitis of unknown etiology: noninfectious chronic villitis in the placenta. Hum Pathol 2007; 38(10): 1439–46.
49. van DijkM, MuldersJ, PoutsmaAet al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37(5): 514–9.
50. BerendsA L, Bertoli-AvellaA M, de GrootC Jet al. STOX1 gene in pre-eclampsia and intrauterine growth restriction. BJOG 2007; 114(9): 1163–7.
51. KivinenK, PetersonH, HiltunenLet al. Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. Eur J Hum Genet 2007; 15(4): 494–7.
52. van DjikM, DunkC, OudejansC Bet al. Preeclampsia susceptibility gene STOX1 in migration and invasion of extravillous trophoblasts. Placenta 2008; 29(8): A7.
53. RigourdV, ChauvetC, ChelbiS Tet al. STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas. PLoS ONE 2008; 3(12): e3905.
54. OudejansC B, van DijkM, OosterkampMet al. Genetics of preeclampsia: paradigm shifts. Hum Genet 2007; 120(5): 607–12.
55. AdamsonS L, LuY, WhiteleyK Jet al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 2002; 250(2): 358–73.
56. NanaevA, ChwaliszK, FrankH Get al. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res 1995; 282(3): 407–21.
57. LyallF. Development of the utero-placental circulation: the role of carbon monoxide and nitric oxide in trophoblast invasion and spiral artery transformation. Microsc Res Tech 2003; 60(4): 402–11.
58. BainbridgeS A, SmithG N. HO in pregnancy. Free Radic Biol Med 2005; 38(8): 979–88.
59. PatelP, VatishM, HeptinstallJet al. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 2009; 7: 10.
60. KanasakiK, PalmstenK, SugimotoHet al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 2008; 453(7198): 1117–21.
61. ReisterF, FrankH G, KingdomJ Cet al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 2001; 81(8): 1143–52.
62. WilliamsK P, BaldwinV. The effect of ethnicity on the development of small for gestational age infants associated with hypertension in pregnancy. Am J Perinatol 1998; 15(2): 125–8.
63. SamadiA R, MayberryR M, ReedJ W. Preeclampsia associated with chronic hypertension among African-American and White women. Ethn Dis 2001; 11(2): 192–200.
64. CaugheyA B, StotlandN E, WashingtonA Eet al. Maternal ethnicity, paternal ethnicity, and parental ethnic discordance: predictors of preeclampsia. Obstet Gynecol 2005; 106(1): 156–61.
65. DeenM E, RuurdaL G, WangJet al. Risk factors for preeclampsia in multiparous women: primipaternity versus the birth interval hypothesis. J Matern Fetal Neonatal Med 2006; 19(2): 79–84.
66. ChenX K, WenS W, BottomleyJet al. In vitro fertilization is associated with an increased risk for preeclampsia. Hypertens Pregnancy 2009; 28(1): 1–12.
67. SaitoS, SakaiM, SasakiYet al. Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol 2007; 76(1–2): 30–9.
68. ChaouatG. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol 2007; 29(2): 95–113.
69. ChaouatG. Innately moving away from the Th1/Th2 paradigm in pregnancy. Clin Exp Immunol 2003; 131(3): 393–5.
70. BonvissutoA C, LalaP K, KennedyT Get al. Induction of transforming growth factor-alpha gene expression in rat decidua is independent of the conceptus. Biol Reprod 1992; 46(4): 607–16.
71. BellS C. Secretory endometrial and decidual proteins: studies and clinical significance of a maternally derived group of pregnancy-associated serum proteins. Hum Reprod 1986; 1(3): 129–43.
72. Hochner-CelnikierD, RonM, EldorAet al. Growth characteristics of human first trimester decidual cells cultured in serum-free medium: production of prolactin, prostaglandins and fibronectin. Biol Reprod 1984; 31(4): 827–36.
73. VailheB, KappM, DietlJet al. Human first-trimester decidua vascular density: an immunohistochemical study using VE-cadherin and endoglin as endothelial cell markers. Am J Reprod Immunol 2000; 44(1): 9–15.
74. PlaisierM, RodriguesS, WillemsFet al. Different degrees of vascularization and their relationship to the expression of vascular endothelial growth factor, placental growth factor, angiopoietins, and their receptors in first-trimester decidual tissues. Fertil Steril 2007; 88(1): 176–87.
75. KlentzerisL D, BulmerJ N, WarrenAet al. Endometrial lymphoid tissue in the timed endometrial biopsy: morphometric and immunohistochemical aspects. Am J Obstet Gynecol 1992; 167(3): 667–74.
76. SalamonsenL A, LathburyL J. Endometrial leukocytes and menstruation. Hum Reprod Update 2000; 6(1): 16–27.
77. KingA, BurrowsT, VermaSet al. Human uterine lymphocytes. Hum Reprod Update 1998; 4(5): 480–5.
78. DunkC, SmithS, HazanAet al. Promotion of angiogenesis by human endometrial lymphocytes. Immunol Invest 2008; 37(5): 583–610.
79. HannaJ, Goldman-WohlD, HamaniYet al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065-74.
80. SargentI L, BorzychowskiA M, RedmanC W. NK cells and human pregnancy – an inflammatory view. Trends Immunol 2006; 27(9): 399–404.
81. RileyJ K, YokoyamaW M. NK cell tolerance and the maternal-fetal interface. Am J Reprod Immunol 2008; 59(5): 371–87.
82. TabiascoJ, RabotM, Aguerre-GirrMet al. Human decidual NK cells: unique phenotype and functional properties – a review. Placenta 2006; 27(Suppl A): S34–9.
83. WuX, JinL P, YuanM Met al. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175(1): 61–8.
84. JonesR L, HannanN J, Kaitu’uT Jet al. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 2004; 89(12): 6155–67.
85. HannanN J, JonesR L, CritchleyH Oet al. Coexpression of fractalkine and its receptor in normal human endometrium and in endometrium from users of progestin-only contraception supports a role for fractalkine in leukocyte recruitment and endometrial remodeling. J Clin Endocrinol Metab 2004; 89(12): 6119–29.
86. SentmanC L, MeadowsS K, WiraC Ret al. Recruitment of uterine NK cells: induction of CXC chemokine ligands 10 and 11 in human endometrium by estradiol and progesterone. J Immunol 2004; 173(11): 6760–6.
87. EngertS, RiegerL, KappMet al. Profiling chemokines, cytokines and growth factors in human early pregnancy decidua by protein array. Am J Reprod Immunol 2007; 58(2): 129–37.
88. Moffett-KingA. Natural killer cells and pregnancy. Nat Rev Immunol 2002; 2(9): 656–63.
89. KoopmanL A, KopcowH D, RybalovBet al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198(8): 1201–12.
90. JokhiP P, KingA, SharkeyA Met al. Screening for cytokine messenger ribonucleic acids in purified human decidual lymphocyte populations by the reverse-transcriptase polymerase chain reaction. J Immunol 1994; 153(10): 4427–35.
91. LiX F, Charnock-JonesD S, ZhangEet al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab 2001; 86(4): 1823–34.
92. LashG E, SchiesslB, KirkleyMet al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 2006; 80(3): 572–80.
93. MilneS A, CritchleyH O, DrudyT Aet al. Perivascular interleukin-8 messenger ribonucleic acid expression in human endometrium varies across the menstrual cycle and in early pregnancy decidua. J Clin Endocrinol Metab 1999; 84(7): 2563–7.
94. Charnock-JonesD S, MacphersonA M, ArcherD Fet al. The effect of progestins on vascular endothelial growth factor, oestrogen receptor and progesterone receptor immunoreactivity and endothelial cell density in human endometrium. Hum Reprod 2000; 15(Suppl 3): 85–95.
95. MilneS A, HendersonT A, KellyR Wet al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J Clin Endocrinol Metab 2005; 90(7): 4315–21.
96. DavidA L, TorondelB, ZacharyIet al. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther 2008; 15(19): 1344–50.
97. AvrilT, JarousseauA C, WatierHet al. Trophoblast cell line resistance to NK lysis mainly involves an HLA class I-independent mechanism. J Immunol 1999; 162(10): 5902–9.
98. HibyS E, WalkerJ J, O’ShaughnessyMet al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200(8): 957–65.
99. HibyS E, ReganL, LoWet al. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod 2008; 23(4): 972–6.
100. SharkeyA M, GardnerL, HibySet al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 2008; 181(1): 39–46.
101. SmithS, DunkC, AplinJet al. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 2009; 174: 1959-71.
102. DunkC, JonesR, SmithS, LyeS. Trophoblast leukocyte interactions mediate decidual vascular remodeling. Placenta 2007; 28(8–9): A21.
103. SaitoS, UmekageH, SakamotoYet al. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol 1999; 41(5): 297–306.
104. LachapelleM H, MironP, HemmingsRet al. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion: altered profile and pregnancy outcome. J Immunol 1996; 156(10): 4027–34.
105. AplinJ D, LaceyH, HaighTet al. Growth factor-extracellular matrix synergy in the control of trophoblast invasion. Biochem Soc Trans 2000; 28(2): 199–202.
106. RaghupathyR, MakhseedM, AziziehFet al. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Hum Reprod 2000; 15(3): 713–8.
107. ReisterF, FrankH G, HeylWet al. The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients. Placenta 1999; 20(2–3): 229–33.
108. Yusuf, K, KlimanH J. The fetus, not the mother, elicits maternal immunologic rejection: lessons from discordant dizygotic twin placentas. J Perinat Med 2008; 36(4): 291–6.
109. BoogG. Chronic villitis of unknown etiology. Eur J Obstet Gynecol Reprod Biol 2008; 136(1): 9–15.
110. MerblY, Zucker-ToledanoM, QuintanaF Jet al. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest 2007; 117(3): 712–8.
111. BenirschkeK, KaufmanP, BaergenR. Pathology of the human placenta, 5th ed. New York: Springer; 2006.
112. YuC K, KhouriO, OnwudiweNet al. Prediction of pre-eclampsia by uterine artery Doppler imaging: relationship to gestational age at delivery and small-for-gestational age. Ultrasound Obstet Gynecol 2008; 31(3): 310–3.
113. ACOG Practice Bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol 2002; 99(1): 159–67.
114. ChauhanS P, GuptaL M, HendrixN Wet al. Intrauterine growth restriction: comparison of American College of Obstetricians and Gynecologists practice bulletin with other national guidelines. Am J Obstet Gynecol 2009; 200: e401–6.
115. MadazliR, SomunkiranA, CalayZet al. Histomorphology of the placenta and the placental bed of growth restricted foetuses and correlation with the Doppler velocimetries of the uterine and umbilical arteries. Placenta 2003; 24(5): 510– 6.
116. AardemaM W, OosterhofH, TimmerAet al. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta 2001; 22(5): 405–11.
117. GuibourdencheJ, FrendoJ L, PidouxGet al. Expression of pregnancy-associated plasma protein-A (PAPP-A) during human villous trophoblast differentiation in vitro. Placenta 2003; 24(5): 532–9.
118. NicolaidesK H, SpencerK, AvgidouKet al. Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening. Ultrasound Obstet Gynecol 2005; 25(3): 221–6.
119. KaganK O, WrightD, BakerAet al. Screening for trisomy 21 by maternal age, fetal nuchal translucency thickness, free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 2008; 31(6): 618–24.
120. SmithG C, StenhouseE J, CrossleyJ Aet al. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab 2002; 87(4): 1762–7.
121. SmithG C, CrossleyJ A, AitkenD Aet al. First-trimester placentation and the risk of antepartum stillbirth. JAMA 2004; 292(18): 2249–54.
122. ProctorL, ToilM, KeatingSet al. Placental function testing predicts adverse perinatal outcomes in women with low PAPP-A at 11–13 weeks. Am J Obstet Gynecol 2008; 199(6, Supplement 1): S125.
123. HowleyH E, WalkerM, RodgerM A. A systematic review of the association between factor V Leiden or prothrombin gene variant and intrauterine growth restriction. Am J Obstet Gynecol 2005; 192(3): 694–708.
124. RodgerM A, PaidasM. Do thrombophilias cause placenta-mediated pregnancy complications? Semin Thromb Hemost 2007; 33(6): 597–603.
125. FanZ, LarsonP J, BognackiJet al. Tissue factor regulates plasminogen binding and activation. Blood 1998; 91(6): 1987–98.
126. ReyE, GarneauP, DavidMet al. Dalteparin for the prevention of recurrence of placental-mediated complications of pregnancy in women without thrombophilia: a pilot randomized controlled trial. J Thromb Haemost 2009; 7(1): 58–64.
127. GagnonA, WilsonR D, AudibertFet al. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can 2008; 30(10): 918–49.
128. DugoffL, HobbinsJ C, MaloneF Det al. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol 2005; 106(2): 260–7.
129. MacaraL, KingdomJ C, KaufmannPet al. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 1996; 17(1): 37–48.
130. DiabA E, El-BeheryM M, EbrahiemM Aet al. Angiogenic factors for the prediction of pre-eclampsia in women with abnormal midtrimester uterine artery Doppler velocimetry. Int J Gynaecol Obstet 2008; 102(2): 146–51.

References

1. DixonH G, RobertsonW B. A study of the vessels of the placental bed in normotensive and hypertensive women. J Obstet Gynaecol Br Emp 1958; 65: 803–09.
2. BrosensI. A Study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J Obstet Gynaecol Br Commonw 1964; 71: 222–30.
3. BrowneJ C, VeallN. The maternal placental blood flow in normotensive and hypertensive women. J Obstet Gynaecol Br Emp 1953; 60: 141–7.
4. MeschiaG. Techniques for the study of the uteroplacental circulation. In: RosenfeldC R, ed. The uterine circulation. Ithaca, NY: Perinatology Press; 1989: pp. 35–51.
5. Clavero-NunezJ A. Uteroplacental blood flow in pregnant women: its measurement by radioisotope techniques. In: MoawadA H, LindheimerM D, eds. Uterine and placental blood flow. New York: Masson Publishing USA, Inc.; 1982: pp. 53–9.
6. BrosensI, RobertsonW B, DixonH G. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 1967; 93: 569–79.
7. BrosensI A, RobertsonW B, DixonH G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1972; 1: 177–91.
8. BrosensI A. The uteroplacental vessels at term – the distribution and extent of physiological changes. Trophoblast Res 1988; 3: 61–7.
9. KhongT Y, De WolfF, RobertsonW B, BrosensI. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 1986; 93: 1049–59.
10. KhongT Y, LiddellH S, RobertsonW B. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br J Obstet Gynaecol 1987; 94: 649–55.
11. MichelM Z, KhongT Y, ClarkD A, BeardR W. A morphological and immunological study of human placental bed biopsies in miscarriage. Br J Obstet Gynaecol 1990; 97: 984–88.
12. DommisseJ, TiltmanA J. Placental bed biopsies in placental abruption. Br J Obstet Gynaecol 1992; 99: 651–54.
13. StoneS, PijnenborgR, VercruysseLet al. The placental bed in pregnancies complicated by primary antiphospholipid syndrome. Placenta 2006; 27: 457–67.
14. KimY M, BujoldE, ChaiworapongsaTet al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2003; 189: 1063–69.
15. KimY M, ChaiworapongsaT, GomezRet al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 2002; 187: 1137–42.
16. RomeroR. Prenatal medicine: the child is the father of the man. J Mat Fet Neonat Med, in press.
17. HustinJ, JauniauxE, SchaapsJ P. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 1990; 11: 477–86.
18. GunB D, NumanogluG, OzdamarS O. The comparison of vessels in elective and spontaneous abortion decidua in first trimester pregnancies: importance of vascular changes in early pregnancy losses. Acta Obstet Gynecol Scand 2006; 85: 402–6.
19. BallE, RobsonS C, AyisS, LyallF, BulmerJ N. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion. J Pathol 2006; 208: 528–34.
20. BallE, BulmerJ N, AyisS, LyallF, RobsonS C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol 2006; 208: 535–42.
21. GoldenbergR L, CulhaneJ F, IamsJ D, RomeroR. Epidemiology and causes of preterm birth. Lancet 2008; 371: 75–84.
22. RomeroR, EspinozaJ, KusanovicJ Pet al. The preterm parturition syndrome. BJOG 2006; 113(Suppl 3): 17–42.
23. NaeyeR L, RossS M. Amniotic fluid infection syndrome. Clin Obstet Gynaecol 1982; 9: 593–607.
24. MinkoffH. Prematurity: infection as an etiologic factor. Obstet Gynecol 1983; 62: 137–44.
25. RomeroR, MazorM, WuY Ket al. Infection in the pathogenesis of preterm labor. Semin Perinatol 1988; 12: 262–79.
26. RomeroR, MazorM. Infection and preterm labor. Clin Obstet Gynecol 1988; 31: 553–84.
27. RomeroR, SirtoriM, OyarzunEet al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol 1989; 161: 817–24.
28. GibbsR S, RomeroR, HillierS Let al. A review of premature birth and subclinical infection. Am J Obstet Gynecol 1992; 166: 1515–28.
29. GoldenbergR L, HauthJ C, AndrewsW W. Intrauterine infection and preterm delivery. N Engl J Med 2000; 342: 1500–7.
30. YoonB H, RomeroR, MoonJ Bet al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2001; 185: 1130–36.
31. GoncalvesL F, ChaiworapongsaT, RomeroR. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8: 3–13.
32. ShimS S, RomeroR, HongJ Set al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 2004; 191: 1339–45.
33. KusanovicJ P, EspinozaJ, RomeroRet al. Clinical significance of the presence of amniotic fluid ‘sludge’ in asymptomatic patients at high risk for spontaneous preterm delivery. Ultrasound Obstet Gynecol 2007; 30: 706–14.
34. RomeroR, KusanovicJ P, EspinozaJet al. What is amniotic fluid ‘sludge’?Ultrasound Obstet Gynecol 2007; 30: 793–98.
35. RomeroR, SchaudinnC, KusanovicJ Pet al. Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol 2008; 198: 135.
36. AriasF, RodriquezL, RayneS C, KrausF T. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol 1993; 168: 585–91.
37. AriasF, VictoriaA, ChoK, KrausF. Placental histology and clinical characteristics of patients with preterm premature rupture of membranes. Obstet Gynecol 1997; 89: 265–71.
38. IamsJ D, JohnsonF F, SonekJet al. Cervical competence as a continuum: a study of ultrasonographic cervical length and obstetric performance. Am J Obstet Gynecol 1995; 172: 1097–103.
39. HassanS S, RomeroR, BerryS Met al. Patients with an ultrasonographic cervical length < or = 15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol 2000; 182: 1458–67.
40. RomeroR, EspinozaJ, ErezO, HassanS. The role of cervical cerclage in obstetric practice: can the patient who could benefit from this procedure be identified?Am J Obstet Gynecol 2006; 194: 1–9.
41. PhelanJ P, ParkY W, AhnM O, RutherfordS E. Polyhydramnios and perinatal outcome. J Perinatol 1990; 10: 347–50.
42. RomeroR, SepulvedaW, BaumannPet al. The preterm labor syndrome: biochemical, cytologic, immunologic, pathologic, microbiologic, and clinical evidence that preterm labor is a heterogeneous disease. Am J Obstet Gynecol 1993; 168(1 part 2): 287.
43. RomeroR, MazorM, AvilaC, QuinteroR, MunozH. Uterine “allergy”: a novel mechanism for preterm labor. Am J Obstet Gynecol 1991; 164(1 part 2): 375.
44. GarfieldR E, BytautieneE, VedernikovY P, MarshallJ S, RomeroR. Modulation of rat uterine contractility by mast cells and their mediators. Am J Obstet Gynecol 2000; 183: 118–25.
45. BytautieneE, RomeroR, VedernikovY Pet al. Induction of premature labor and delivery by allergic reaction and prevention by histamine H1 receptor antagonist. Am J Obstet Gynecol 2004; 191: 1356–61.
46. CsapoA I, PohankaO, KaiholaH L. Progesterone deficiency and premature labour. Br Med J 1974; 1: 137–40.
47. CheckJ H, LeeG, EpsteinR, VetterB. Increased rate of preterm deliveries in untreated women with luteal phase deficiencies: preliminary report. Gynecol Obstet Invest 1992; 33: 183–84.
48. MazorM, HershkovitzR, ChaimWet al. Human preterm birth is associated with systemic and local changes in progesterone/17 beta-estradiol ratios. Am J Obstet Gynecol 1994; 171: 231–36.
49. FidelP IJr, RomeroR, MaymonE, HertelendyF. Bacteria-induced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med 1998; 7: 222–26.
50. GermainA M, CarvajalJ, SanchezMet al. Preterm labor: placental pathology and clinical correlation. Obstet Gynecol 1999; 94: 284–89.
51. CombsC A, KatzM A, KitzmillerJ L, BresciaR J. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993; 169: 215–23.
52. AriasF. Placental insufficiency: an important cause of preterm labor and preterm premature ruptured membranes. Society of Perinatal Obstetricians (10th Annual Meeting) 1990; 158.
53. VintzileosA M, CampbellW A, NochimsonD J, WeinbaumP J. Preterm premature rupture of the membranes: a risk factor for the development of abruptio placentae. Am J Obstet Gynecol 1987; 156: 1235–38.
54. MorettiM, SibaiB M. Maternal and perinatal outcome of expectant management of premature rupture of membranes in the midtrimester. Am J Obstet Gynecol 1988; 159: 390–96.
55. MajorC, NageotteM, LewisD. Preterm premature rupture of membranes and placental abruption: is there an association between these pregnancy complications?Am J Obstet Gynecol 1991; 164: 381.
56. BrarH S, MedearisA L, DeVoreG R, PlattL D. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: prediction of successful tocolysis. Am J Obstet Gynecol 1988; 159: 947–50.
57. BrarH S, MedearisA L, De VoreG R, PlattL D. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: relationship to outcome. Am J Obstet Gynecol 1989; 161: 1519–22.
58. StriginiF A, LencioniG, De LucaGet al. Uterine artery velocimetry and spontaneous preterm delivery. Obstet Gynecol 1995; 85: 374–77.
59. WeinerC P, SabbaghaR E, VaisrubN, DeppR. A hypothetical model suggesting suboptimal intrauterine growth in infants delivered preterm. Obstet Gynecol 1985; 65: 323–26.
60. MacGregorS N, SabbaghaR E, TamuraR K, PieletB W, FeigenbaumS L. Differing fetal growth patterns in pregnancies complicated by preterm labor. Obstet Gynecol 1988; 72: 834–37.
61. OttW J. Intrauterine growth retardation and preterm delivery. Am J Obstet Gynecol 1993; 168: 1710–15.
62. ZeitlinJ, AncelP Y, Saurel-CubizollesM J, PapiernikE. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control study. BJOG 2000; 107: 750–58.
63. BukowskiR, GahnD, DenningJ, SaadeG. Impairment of growth in fetuses destined to deliver preterm. Am J Obstet Gynecol 2001; 185: 463–67.
64. MorkenN H, KallenK, JacobssonB. Fetal growth and onset of delivery: a nationwide population-based study of preterm infants. Am J Obstet Gynecol 2006; 195: 154–61.
65. EspinozaJ, KusanovicJ P, KimC Jet al. An episode of preterm labor is a risk factor for the birth of a small-for-gestational-age neonate. Am J Obstet Gynecol 2007; 196: 574–75.
66. PoisnerA M. The human placental renin-angiotensin system. Front Neuroendocrinol 1998; 19: 232–52.
67. KatzM, ShapiroW B, PorushJ G, ChouS Y, IsraelV. Uterine and renal renin release after ligation of the uterine arteries in the pregnant rabbit. Am J Obstet Gynecol 1980; 136: 676–78.
68. WoodsL L, BrooksV L. Role of the renin-angiotensin system in hypertension during reduced uteroplacental perfusion pressure. Am J Physiol 1989; 257: R204–R209.
69. LalanneC, MironneauC, MironneauJ, SavineauJ P. Contractions of rat uterine smooth muscle induced by acetylcholine and angiotensin II in Ca2+-free medium. Br J Pharmacol 1984; 81: 317–26.
70. CamposG A, GuerraF A, IsraelE J. Angiotensin II induced release of prostaglandins from rat uterus. Arch Biol Med Exp (Santiago) 1983; 16: 43–9.
71. LockwoodC J, KrikunG, PappCet al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci 1994; 734: 57–79.
72. ElovitzM A, SaundersT, Ascher-LandsbergJ, PhillippeM. Effects of thrombin on myometrial contractions in vitro and in vivo. Am J Obstet Gynecol 2000; 183: 799–804.
73. RosenT, SchatzF, KuczynskiEet al. Thrombin-enhanced matrix metalloproteinase-1 expression: a mechanism linking placental abruption with premature rupture of the membranes. J Matern Fetal Neonatal Med 2002; 11: 11–17.
74. LockwoodC J, KrikunG, AignerS, SchatzF. Effects of thrombin on steroid-modulated cultured endometrial stromal cell fibrinolytic potential. J Clin Endocrinol Metab 1996; 81: 107–12.
75. LijnenH R. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mos.) 2002; 67: 92–8.
76. AplinJ D, CampbellS, AllenT D. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci 1985; 79: 119–36.
77. ChaiworapongsaT, EspinozaJ, YoshimatsuJet al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002; 11: 368–73.
78. GomezR, AthaydeN, PacoraPet al. Increased thrombin in intrauterine inflammation. Am J Obstet Gynecol 1998; 178: S62.
79. RosenT, KuczynskiE, O’NeillL M, FunaiE F, LockwoodC J. Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med 2001; 10: 297–300.
80. NagyS, BushM, StoneJ, LapinskiR H, GardoS. Clinical significance of subchorionic and retroplacental hematomas detected in the first trimester of pregnancy. Obstet Gynecol 2003; 102: 94–100.
81. FunderburkS J, GuthrieD, MeldrumD. Outcome of pregnancies complicated by early vaginal bleeding. Br J Obstet Gynaecol 1980; 87: 100–5.
82. WilliamsM A, MittendorfR, LiebermanE, MonsonR R. Adverse infant outcomes associated with first-trimester vaginal bleeding. Obstet Gynecol 1991; 78: 14–18.
83. SignoreC C, SoodA K, RichardsD S. Second-trimester vaginal bleeding: correlation of ultrasonographic findings with perinatal outcome. Am J Obstet Gynecol 1998; 178: 336–40.
84. GomezR, RomeroR, NienJ Ket al. Idiopathic vaginal bleeding during pregnancy as the only clinical manifestation of intrauterine infection. J Matern Fetal Neonatal Med 2005; 18: 31–7.
85. AnanthC V, WilcoxA J. Placental abruption and perinatal mortality in the United States. Am J Epidemiol 2001; 153: 332–37.
86. MooneyE E, al ShunnarA, O’ReganM, GillanJ E. Chorionic villous haemorrhage is associated with retroplacental haemorrhage. Br J Obstet Gynaecol 1994; 101: 965–69.
87. BranchD W, DudleyD J, ScottJ R, SilverR M. Antiphospholipid antibodies and fetal loss. N Engl J Med 1992; 326: 952–54.
88. StoneS, HuntB J, SeedP Tet al. Longitudinal evaluation of markers of endothelial cell dysfunction and hemostasis in treated antiphospholipid syndrome and in healthy pregnancy. Am J Obstet Gynecol 2003; 188: 454–60.
89. AbramowskyC R, VegasM E, SwinehartG, GyvesM T. Decidual vasculopathy of the placenta in lupus erythematosus. N Engl J Med 1980; 303: 668–72.
90. De WolfF, CarrerasL O, MoermanPet al. Decidual vasculopathy and extensive placental infarction in a patient with repeated thromboembolic accidents, recurrent fetal loss, and a lupus anticoagulant. Am J Obstet Gynecol 1982; 142: 829–34.
 91. OutH J, KooijmanC D, BruinseH W, DerksenR H. Histopathological findings in placentae from patients with intra-uterine fetal death and anti-phospholipid antibodies. Eur J Obstet Gynecol Reprod Biol 1991; 41: 179–86.
 92. GirardiG, BermanJ, RedechaPet al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112: 1644–54.
 93. GirardiG, RedechaP, SalmonJ E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10: 1222–26.
 94. SebireN J, FoxH, BackosMet al. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum Reprod 2002; 17: 1067–71.
 95. FerraraN, Carver-MooreK, ChenHet al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–42.
 96. RobinsonJ S, KingstonE J, JonesC T, ThorburnG D. Studies on experimental growth retardation in sheep: the effect of removal of endometrial caruncles on fetal size and metabolism. J Dev Physiol 1979; 1: 379–98.
 97. RobinsonJ S, HartI C, KingstonE J, JonesC T, ThorburnG D. Studies on the growth of the fetal sheep. The effects of reduction of placental size on hormone concentration in fetal plasma. J Dev Physiol 1980; 2: 239–48.
 98. FalconerJ, OwensJ A, AllottaE, RobinsonJ S. Effect of restriction of placental growth on the concentrations of insulin, glucose and placental lactogen in the plasma of sheep. J Endocrinol 1985; 106: 7–11.
 99. LockwoodC J, WeinR, LapinskiRet al. The presence of cervical and vaginal fetal fibronectin predicts preterm delivery in an inner-city obstetric population. Am J Obstet Gynecol 1993; 169: 798–804.
100. IamsJ D, GoldenbergR L, MeisP Jet al. The length of the cervix and the risk of spontaneous premature delivery: National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Eng J Med 1996; 334: 567–72.
101. GoldenbergR L, MercerB M, IamsJ Det al. The preterm prediction study: patterns of cervicovaginal fetal fibronectin as predictors of spontaneous preterm delivery: National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1997; 177: 8–12.
102. TaipaleP, HiilesmaaV. Sonographic measurement of uterine cervix at 18–22 weeks’ gestation and the risk of preterm delivery. Obstet Gynecol 1998; 92: 902–07.
103. AndrewsW W, CopperR, HauthJ Cet al. Second-trimester cervical ultrasound: associations with increased risk for recurrent early spontaneous delivery. Obstet Gynecol 2000; 95: 222–26.
104. GoldenbergR L, IamsJ D, DasAet al. The Preterm Prediction Study: sequential cervical length and fetal fibronectin testing for the prediction of spontaneous preterm birth: National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2000; 182: 636–43.
105. HeathV C, DaskalakisG, ZagalikiA, CarvalhoM, NicolaidesK H. Cervicovaginal fibronectin and cervical length at 23 weeks of gestation: relative risk of early preterm delivery. BJOG 2000; 107: 1276–81.
106. ToM S, SkentouC, LiaoA W, CachoA, NicolaidesK H. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001; 18: 200–3.
107. ShennanA, JonesG, HawkenJet al. Fetal fibronectin test predicts delivery before 30 weeks of gestation in high risk women, but increases anxiety. BJOG 2005; 112: 293–98.
108. HassanS, RomeroR, HendlerIet al. A sonographic short cervix as the only clinical manifestation of intra-amniotic infection. J Perinat Med 2006; 34: 13–19.
109. CassellG H, DavisR O, WaitesK Bet al. Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16–20 weeks of gestation: potential effect on outcome of pregnancy. Sex Transm Dis 1983; 10: 294–302.
110. GrayD J, RobinsonH B, MaloneJ, ThomsonR BJr. Adverse outcome in pregnancy following amniotic fluid isolation of Ureaplasma urealyticum. Prenat Diagn 1992; 12: 111–17.
111. HorowitzS, MazorM, RomeroR, HorowitzJ, GlezermanM. Infection of the amniotic cavity with Ureaplasma urealyticum in the midtrimester of pregnancy. J Reprod Med 1995; 40: 375–79.
112. GerberS, VialY, HohlfeldP, WitkinS S. Detection of Ureaplasma urealyticum in second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm labor and delivery. J Infect Dis 2003; 187: 518–21.
113. NguyenD P, GerberS, HohlfeldP, SandrineG, WitkinS S. Mycoplasma hominis in mid-trimester amniotic fluid: relation to pregnancy outcome. J Perinat Med 2004; 32: 323–26.
114. CarrollS G, PapaioannouS, NtumazahI L, Philpott-HowardJ, NicolaidesK H. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes. Br J Obstet Gynaecol 1996; 103: 54–9.
115. StepanH, FaberR. Cytomegalovirus-induced mirror syndrome associated with elevated levels of angiogenic factors. Obstet Gynecol 2007; 109: 1205–6.
116. EspinozaJ, RomeroR, NienJ Ket al. A role of the anti-angiogenic factor sVEGFR-1 in the ‘mirror syndrome’ (Ballantyne’s syndrome). J Matern Fetal Neonatal Med 2006; 19: 607–13.
117. RanaS, VenkateshaS, DePaepeMet al. Cytomegalovirus-induced mirror syndrome associated with elevated levels of circulating antiangiogenic factors. Obstet Gynecol 2007; 109: 549–52.
118. GantN F, DaleyG L, ChandS, WhalleyP J, MacDonaldP C. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973; 52: 2682–89.
119. GantN F, ChandS, WhalleyP J, MacDonaldP C. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet Gynecol 1974; 43: 854.
120. HarringtonK F, CampbellS, BewleyS, BowerS. Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur J Obstet Gynecol Reprod Biol 1991; 42(Suppl): S14–S20.
121. BowerS, BewleyS, CampbellS. Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet Gynecol 1993; 82: 78–83.
122. HarringtonK, CooperD, LeesC, HecherK, CampbellS. Doppler ultrasound of the uterine arteries: the importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestational-age baby. Ultrasound Obstet Gynecol 1996; 7: 182–88.
123. IrionO, MasseJ, ForestJ C, MoutquinJ M. Prediction of pre-eclampsia, low birthweight for gestation and prematurity by uterine artery blood flow velocity waveforms analysis in low risk nulliparous women. Br J Obstet Gynaecol 1998; 105: 422–29.
124. AardemaM W, De WolfB T, SaroM Cet al. Quantification of the diastolic notch in Doppler ultrasound screening of uterine arteries. Ultrasound Obstet Gynecol 2000; 16: 630–34.
125. AlbaigesG, Missfelder-LobosH, LeesC, ParraM, NicolaidesK H. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks’ gestation. Obstet Gynecol 2000; 96: 559–64.
126. ChienP F, ArnottN, GordonA, OwenP, KhanK S. How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. BJOG 2000; 107: 196–208.
127. LeesC, ParraM, Missfelder-LobosHet al. Individualized risk assessment for adverse pregnancy outcome by uterine artery Doppler at 23 weeks. Obstet Gynecol 2001; 98: 369–73.
128. PapageorghiouA T, YuC K, BindraR, PandisG, NicolaidesK H. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 441–49.
129. PapageorghiouA T, YuC K, CiceroS, BowerS, NicolaidesK H. Second-trimester uterine artery Doppler screening in unselected populations: a review. J Matern Fetal Neonatal Med 2002; 12: 78–88.
130. YuC K, PapageorghiouA T, BoliA, CachoA M, NicolaidesK H. Screening for pre-eclampsia and fetal growth restriction in twin pregnancies at 23 weeks of gestation by transvaginal uterine artery Doppler. Ultrasound Obstet Gynecol 2002; 20: 535–40.
131. PapageorghiouA T, YuC K, ErasmusI E, CuckleH S, NicolaidesK H. Assessment of risk for the development of pre-eclampsia by maternal characteristics and uterine artery Doppler. BJOG 2005; 112: 703–9.
132. YuC K, SmithG C, PapageorghiouA T, CachoA M, NicolaidesK H. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol 2005; 193: 429–36.
133. EspinozaJ, RomeroR, NienJ Ket al. Identification of patients at risk for early onset and/or severe preeclampsia with the use of uterine artery Doppler velocimetry and placental growth factor. Am J Obstet Gynecol 2007; 196: 326.e1–326.e13.
134. PlasenciaW, MaizN, PoonL, YuC, NicolaidesK H. Uterine artery Doppler at 11 + 0 to 13 + 6 weeks and 21 + 0 to 24 + 6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32: 138–46.
135. LivingstonJ C, HaddadB, GorskiL Aet al. Placenta growth factor is not an early marker for the development of severe preeclampsia. Am J Obstet Gynecol 2001; 184: 1218–20.
136. SuY N, LeeC N, ChengW Fet al. Decreased maternal serum placenta growth factor in early second trimester and preeclampsia. Obstet Gynecol 2001; 97: 898–904.
137. TidwellS C, HoH N, ChiuW H, TorryR J, TorryD S. Low maternal serum levels of placenta growth factor as an antecedent of clinical preeclampsia. Am J Obstet Gynecol 2001; 184: 1267–72.
138. TjoaM L, van VugtJ M, MuldersM Aet al. Plasma placenta growth factor levels in midtrimester pregnancies. Obstet Gynecol 2001; 98: 600–7.
139. ChappellL C, SeedP T, BrileyAet al. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstet Gynecol 2002; 187: 127–36.
140. TaylorR N, GrimwoodJ, TaylorR Set al. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol 2003; 188: 177–82.
141. KraussT, PauerH U, AugustinH G. Prospective analysis of placenta growth factor (PlGF) concentrations in the plasma of women with normal pregnancy and pregnancies complicated by preeclampsia. Hypertens Pregnancy 2004; 23: 101–11.
142. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–83.
143. ThadhaniR, MutterW P, WolfMet al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab 2004; 89: 770–75.
144. ChaiworapongsaT, RomeroR, KimY Met al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005; 17: 3–18.
145. ParraM, RodrigoR, BarjaPet al. Screening test for preeclampsia through assessment of uteroplacental blood flow and biochemical markers of oxidative stress and endothelial dysfunction. Am J Obstet Gynecol 2005; 193: 1486–91.
146. LevineR J, LamC, QianCet al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005.
147. Moore SimasT A, CrawfordS L, SolitroM Jet al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol 2007; 197: 244–48.
148. OhkuchiA, HirashimaC, MatsubaraSet al. Alterations in placental growth factor levels before and after the onset of preeclampsia are more pronounced in women with early onset severe preeclampsia. Hypertens Res 2007; 30: 151–59.
149. RobinsonC J, JohnsonD D. Soluble endoglin as a second-trimester marker for preeclampsia. Am J Obstet Gynecol 2007; 197: 174–75.
150. StepanH, UnversuchtA, WesselN, FaberR. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension 2007; 49: 818–24.
151. UnalE R, RobinsonC J, JohnsonD D, ChangE Y. Second-trimester angiogenic factors as biomarkers for future-onset preeclampsia. Am J Obstet Gynecol 2007; 197: 211–14.
152. AkolekarR, ZaragozaE, PoonL C, PepesS, NicolaidesK H. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32: 732–39.
153. BaumannM U, BersingerN A, MohauptM Get al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol 2008; 199: 266.
154. CrispiF, LlurbaE, DominguezCet al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol 2008; 31: 303–9.
155. ErezO, RomeroR, EspinozaJet al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med 2008; 21: 279–87.
156. LimJ H, KimS Y, ParkS Yet al. Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors. Obstet Gynecol 2008; 111: 1403–9.
157. StepanH, GeipelA, SchwarzFet al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 2008; 198: 175–76.
158. NicolaidesK H, BindraR, TuranO Met al. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 2006; 27: 13–17.
159. ChafetzI, KuhnreichI, SammarMet al. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 2007; 197: 35–7.
160. GonenR, ShaharR, GrimpelY Iet al. Placental protein 13 as an early marker for pre-eclampsia: a prospective longitudinal study. BJOG 2008; 115: 1465–72.
161. RomeroR, KusanovicJ P, ThanN Get al. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol 2008; 199: 122.
162. KhalilA, CowansN J, SpencerKet al. First trimester maternal serum placental protein 13 for the prediction of pre-eclampsia in women with a priori high risk. Prenat Diagn, in press.
163. McCowanL M, NorthR A, HardingJ E. Abnormal uterine artery Doppler in small-for-gestational-age pregnancies is associated with later hypertension. Aust N Z J Obstet Gynaecol 2001; 41: 56–60.
164. PageE W. On the pathogenesis of pre-eclampsia and eclampsia. J Obstet Gynaecol Br Commonw 1972; 79: 883–94.
165. AdamsE M, FinlaysonA. Familial aspects of pre-eclampsia and hypertension in pregnancy. Lancet 1961; 2: 1375–78.
166. ChesleyL C, AnnittoJ E, CosgroveR A. The familial factor in toxemia of pregnancy. Obstet Gynecol 1968; 32: 303–11.
167. CooperD W, ListonW A. Genetic control of severe pre-eclampsia. J Med Genet 1979; 16: 409–16.
168. SutherlandA, CooperD W, HowieP W, ListonW A, MacGillivrayI. The indicence of severe pre-eclampsia amongst mothers and mothers-in-law of pre-eclamptics and controls. BJOG 1981; 88: 785–91.
169. ArngrimssonR, BjornssonS, GeirssonR Tet al. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. BJOG 1990; 97: 762–69.
170. AlexanderB T. Prenatal influences and endothelial dysfunction: a link between reduced placental perfusion and preeclampsia. Hypertension 2007; 49: 775–76.
171. HarrisonG A, HumphreyK E, JonesNet al. A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am J Hum Genet 1997; 60: 1158–67.
172. ArngrimssonR, SigurardT S, FriggeM Let al. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet 1999; 8: 1799–805.
173. MosesE K, LadeJ A, GuoGet al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet 2000; 67: 1581–85.
174. LachmeijerA M, ArngrimssonR, BastiaansE Jet al. A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet. 2001; 9: 758–64.
175. LaivuoriH, LahermoP, OllikainenVet al. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet. 2003; 72: 168–77.
176. KalmyrzaevB, AldashevA, KhalmatovMet al. Genome-wide scan for premature hypertension supports linkage to chromosome 2 in a large Kyrgyz family. Hypertension 2006; 48: 908–13.
177. MosesE K, FitzpatrickE, FreedK Aet al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod 2006; 12: 505–12.
178. JohnsonM P, FitzpatrickE, DyerT Det al. Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 2007; 13: 61–67.
179. GoddardK A, TrompG, RomeroRet al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered 2007; 63: 1–16.
180. ParimiN, TrompG, KuivaniemiHet al. Analytical approaches to detect maternal/fetal genotype incompatibilities that increase risk of pre-eclampsia. BMC Med Genet 2008; 9: 60.
181. StoneJ L, LockwoodC J, BerkowitzG Set al. Risk factors for severe preeclampsia. Obstet Gynecol 1994; 83: 357–61.
182. SibaiB M, GordonT, ThomEet al. Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 1995; 172: 642–48.
183. O’BrienT E, RayJ G, ChanW S. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 2003; 14: 368–74.
184. BodnarL M, NessR B, MarkovicN, RobertsJ M. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann Epidemiol 2005; 15: 475–82.
185. BodnarL M, CatovJ M, KlebanoffM A, NessR B, RobertsJ M. Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiology 2007; 18: 234–39.
186. FaasM M, SchuilingG A, BallerJ F, VisscherC A, BakkerW W. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol 1994; 171: 158–64.
187. FaasM M, SchuilingG A, LintonE A, SargentI L, RedmanC W. Activation of peripheral leukocytes in rat pregnancy and experimental preeclampsia. Am J Obstet Gynecol 2000; 182: 351–57.
188. Conde-AgudeloA, VillarJ, LindheimerM. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol 2008; 198: 7–22.