Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Print publication year: 2010
  • Online publication date: July 2010

Chapter 24 - Placental bed disorders in the genesis of the great obstetrical syndromes

from Section 8: - Translation to obstetrics


1. DixonH G, RobertsonW B. A study of the vessels of the placental bed in normotensive and hypertensive women. J Obstet Gynaecol Br Emp 1958; 65: 803–09.
2. BrosensI. A Study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J Obstet Gynaecol Br Commonw 1964; 71: 222–30.
3. BrowneJ C, VeallN. The maternal placental blood flow in normotensive and hypertensive women. J Obstet Gynaecol Br Emp 1953; 60: 141–7.
4. MeschiaG. Techniques for the study of the uteroplacental circulation. In: RosenfeldC R, ed. The uterine circulation. Ithaca, NY: Perinatology Press; 1989: pp. 35–51.
5. Clavero-NunezJ A. Uteroplacental blood flow in pregnant women: its measurement by radioisotope techniques. In: MoawadA H, LindheimerM D, eds. Uterine and placental blood flow. New York: Masson Publishing USA, Inc.; 1982: pp. 53–9.
6. BrosensI, RobertsonW B, DixonH G. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 1967; 93: 569–79.
7. BrosensI A, RobertsonW B, DixonH G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1972; 1: 177–91.
8. BrosensI A. The uteroplacental vessels at term – the distribution and extent of physiological changes. Trophoblast Res 1988; 3: 61–7.
9. KhongT Y, De WolfF, RobertsonW B, BrosensI. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 1986; 93: 1049–59.
10. KhongT Y, LiddellH S, RobertsonW B. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br J Obstet Gynaecol 1987; 94: 649–55.
11. MichelM Z, KhongT Y, ClarkD A, BeardR W. A morphological and immunological study of human placental bed biopsies in miscarriage. Br J Obstet Gynaecol 1990; 97: 984–88.
12. DommisseJ, TiltmanA J. Placental bed biopsies in placental abruption. Br J Obstet Gynaecol 1992; 99: 651–54.
13. StoneS, PijnenborgR, VercruysseLet al. The placental bed in pregnancies complicated by primary antiphospholipid syndrome. Placenta 2006; 27: 457–67.
14. KimY M, BujoldE, ChaiworapongsaTet al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2003; 189: 1063–69.
15. KimY M, ChaiworapongsaT, GomezRet al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 2002; 187: 1137–42.
16. RomeroR. Prenatal medicine: the child is the father of the man. J Mat Fet Neonat Med, in press.
17. HustinJ, JauniauxE, SchaapsJ P. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 1990; 11: 477–86.
18. GunB D, NumanogluG, OzdamarS O. The comparison of vessels in elective and spontaneous abortion decidua in first trimester pregnancies: importance of vascular changes in early pregnancy losses. Acta Obstet Gynecol Scand 2006; 85: 402–6.
19. BallE, RobsonS C, AyisS, LyallF, BulmerJ N. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion. J Pathol 2006; 208: 528–34.
20. BallE, BulmerJ N, AyisS, LyallF, RobsonS C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol 2006; 208: 535–42.
21. GoldenbergR L, CulhaneJ F, IamsJ D, RomeroR. Epidemiology and causes of preterm birth. Lancet 2008; 371: 75–84.
22. RomeroR, EspinozaJ, KusanovicJ Pet al. The preterm parturition syndrome. BJOG 2006; 113(Suppl 3): 17–42.
23. NaeyeR L, RossS M. Amniotic fluid infection syndrome. Clin Obstet Gynaecol 1982; 9: 593–607.
24. MinkoffH. Prematurity: infection as an etiologic factor. Obstet Gynecol 1983; 62: 137–44.
25. RomeroR, MazorM, WuY Ket al. Infection in the pathogenesis of preterm labor. Semin Perinatol 1988; 12: 262–79.
26. RomeroR, MazorM. Infection and preterm labor. Clin Obstet Gynecol 1988; 31: 553–84.
27. RomeroR, SirtoriM, OyarzunEet al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol 1989; 161: 817–24.
28. GibbsR S, RomeroR, HillierS Let al. A review of premature birth and subclinical infection. Am J Obstet Gynecol 1992; 166: 1515–28.
29. GoldenbergR L, HauthJ C, AndrewsW W. Intrauterine infection and preterm delivery. N Engl J Med 2000; 342: 1500–7.
30. YoonB H, RomeroR, MoonJ Bet al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2001; 185: 1130–36.
31. GoncalvesL F, ChaiworapongsaT, RomeroR. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8: 3–13.
32. ShimS S, RomeroR, HongJ Set al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 2004; 191: 1339–45.
33. KusanovicJ P, EspinozaJ, RomeroRet al. Clinical significance of the presence of amniotic fluid ‘sludge’ in asymptomatic patients at high risk for spontaneous preterm delivery. Ultrasound Obstet Gynecol 2007; 30: 706–14.
34. RomeroR, KusanovicJ P, EspinozaJet al. What is amniotic fluid ‘sludge’?Ultrasound Obstet Gynecol 2007; 30: 793–98.
35. RomeroR, SchaudinnC, KusanovicJ Pet al. Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol 2008; 198: 135.
36. AriasF, RodriquezL, RayneS C, KrausF T. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol 1993; 168: 585–91.
37. AriasF, VictoriaA, ChoK, KrausF. Placental histology and clinical characteristics of patients with preterm premature rupture of membranes. Obstet Gynecol 1997; 89: 265–71.
38. IamsJ D, JohnsonF F, SonekJet al. Cervical competence as a continuum: a study of ultrasonographic cervical length and obstetric performance. Am J Obstet Gynecol 1995; 172: 1097–103.
39. HassanS S, RomeroR, BerryS Met al. Patients with an ultrasonographic cervical length < or = 15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol 2000; 182: 1458–67.
40. RomeroR, EspinozaJ, ErezO, HassanS. The role of cervical cerclage in obstetric practice: can the patient who could benefit from this procedure be identified?Am J Obstet Gynecol 2006; 194: 1–9.
41. PhelanJ P, ParkY W, AhnM O, RutherfordS E. Polyhydramnios and perinatal outcome. J Perinatol 1990; 10: 347–50.
42. RomeroR, SepulvedaW, BaumannPet al. The preterm labor syndrome: biochemical, cytologic, immunologic, pathologic, microbiologic, and clinical evidence that preterm labor is a heterogeneous disease. Am J Obstet Gynecol 1993; 168(1 part 2): 287.
43. RomeroR, MazorM, AvilaC, QuinteroR, MunozH. Uterine “allergy”: a novel mechanism for preterm labor. Am J Obstet Gynecol 1991; 164(1 part 2): 375.
44. GarfieldR E, BytautieneE, VedernikovY P, MarshallJ S, RomeroR. Modulation of rat uterine contractility by mast cells and their mediators. Am J Obstet Gynecol 2000; 183: 118–25.
45. BytautieneE, RomeroR, VedernikovY Pet al. Induction of premature labor and delivery by allergic reaction and prevention by histamine H1 receptor antagonist. Am J Obstet Gynecol 2004; 191: 1356–61.
46. CsapoA I, PohankaO, KaiholaH L. Progesterone deficiency and premature labour. Br Med J 1974; 1: 137–40.
47. CheckJ H, LeeG, EpsteinR, VetterB. Increased rate of preterm deliveries in untreated women with luteal phase deficiencies: preliminary report. Gynecol Obstet Invest 1992; 33: 183–84.
48. MazorM, HershkovitzR, ChaimWet al. Human preterm birth is associated with systemic and local changes in progesterone/17 beta-estradiol ratios. Am J Obstet Gynecol 1994; 171: 231–36.
49. FidelP IJr, RomeroR, MaymonE, HertelendyF. Bacteria-induced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med 1998; 7: 222–26.
50. GermainA M, CarvajalJ, SanchezMet al. Preterm labor: placental pathology and clinical correlation. Obstet Gynecol 1999; 94: 284–89.
51. CombsC A, KatzM A, KitzmillerJ L, BresciaR J. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993; 169: 215–23.
52. AriasF. Placental insufficiency: an important cause of preterm labor and preterm premature ruptured membranes. Society of Perinatal Obstetricians (10th Annual Meeting) 1990; 158.
53. VintzileosA M, CampbellW A, NochimsonD J, WeinbaumP J. Preterm premature rupture of the membranes: a risk factor for the development of abruptio placentae. Am J Obstet Gynecol 1987; 156: 1235–38.
54. MorettiM, SibaiB M. Maternal and perinatal outcome of expectant management of premature rupture of membranes in the midtrimester. Am J Obstet Gynecol 1988; 159: 390–96.
55. MajorC, NageotteM, LewisD. Preterm premature rupture of membranes and placental abruption: is there an association between these pregnancy complications?Am J Obstet Gynecol 1991; 164: 381.
56. BrarH S, MedearisA L, DeVoreG R, PlattL D. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: prediction of successful tocolysis. Am J Obstet Gynecol 1988; 159: 947–50.
57. BrarH S, MedearisA L, De VoreG R, PlattL D. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: relationship to outcome. Am J Obstet Gynecol 1989; 161: 1519–22.
58. StriginiF A, LencioniG, De LucaGet al. Uterine artery velocimetry and spontaneous preterm delivery. Obstet Gynecol 1995; 85: 374–77.
59. WeinerC P, SabbaghaR E, VaisrubN, DeppR. A hypothetical model suggesting suboptimal intrauterine growth in infants delivered preterm. Obstet Gynecol 1985; 65: 323–26.
60. MacGregorS N, SabbaghaR E, TamuraR K, PieletB W, FeigenbaumS L. Differing fetal growth patterns in pregnancies complicated by preterm labor. Obstet Gynecol 1988; 72: 834–37.
61. OttW J. Intrauterine growth retardation and preterm delivery. Am J Obstet Gynecol 1993; 168: 1710–15.
62. ZeitlinJ, AncelP Y, Saurel-CubizollesM J, PapiernikE. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control study. BJOG 2000; 107: 750–58.
63. BukowskiR, GahnD, DenningJ, SaadeG. Impairment of growth in fetuses destined to deliver preterm. Am J Obstet Gynecol 2001; 185: 463–67.
64. MorkenN H, KallenK, JacobssonB. Fetal growth and onset of delivery: a nationwide population-based study of preterm infants. Am J Obstet Gynecol 2006; 195: 154–61.
65. EspinozaJ, KusanovicJ P, KimC Jet al. An episode of preterm labor is a risk factor for the birth of a small-for-gestational-age neonate. Am J Obstet Gynecol 2007; 196: 574–75.
66. PoisnerA M. The human placental renin-angiotensin system. Front Neuroendocrinol 1998; 19: 232–52.
67. KatzM, ShapiroW B, PorushJ G, ChouS Y, IsraelV. Uterine and renal renin release after ligation of the uterine arteries in the pregnant rabbit. Am J Obstet Gynecol 1980; 136: 676–78.
68. WoodsL L, BrooksV L. Role of the renin-angiotensin system in hypertension during reduced uteroplacental perfusion pressure. Am J Physiol 1989; 257: R204–R209.
69. LalanneC, MironneauC, MironneauJ, SavineauJ P. Contractions of rat uterine smooth muscle induced by acetylcholine and angiotensin II in Ca2+-free medium. Br J Pharmacol 1984; 81: 317–26.
70. CamposG A, GuerraF A, IsraelE J. Angiotensin II induced release of prostaglandins from rat uterus. Arch Biol Med Exp (Santiago) 1983; 16: 43–9.
71. LockwoodC J, KrikunG, PappCet al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci 1994; 734: 57–79.
72. ElovitzM A, SaundersT, Ascher-LandsbergJ, PhillippeM. Effects of thrombin on myometrial contractions in vitro and in vivo. Am J Obstet Gynecol 2000; 183: 799–804.
73. RosenT, SchatzF, KuczynskiEet al. Thrombin-enhanced matrix metalloproteinase-1 expression: a mechanism linking placental abruption with premature rupture of the membranes. J Matern Fetal Neonatal Med 2002; 11: 11–17.
74. LockwoodC J, KrikunG, AignerS, SchatzF. Effects of thrombin on steroid-modulated cultured endometrial stromal cell fibrinolytic potential. J Clin Endocrinol Metab 1996; 81: 107–12.
75. LijnenH R. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mos.) 2002; 67: 92–8.
76. AplinJ D, CampbellS, AllenT D. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci 1985; 79: 119–36.
77. ChaiworapongsaT, EspinozaJ, YoshimatsuJet al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002; 11: 368–73.
78. GomezR, AthaydeN, PacoraPet al. Increased thrombin in intrauterine inflammation. Am J Obstet Gynecol 1998; 178: S62.
79. RosenT, KuczynskiE, O’NeillL M, FunaiE F, LockwoodC J. Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med 2001; 10: 297–300.
80. NagyS, BushM, StoneJ, LapinskiR H, GardoS. Clinical significance of subchorionic and retroplacental hematomas detected in the first trimester of pregnancy. Obstet Gynecol 2003; 102: 94–100.
81. FunderburkS J, GuthrieD, MeldrumD. Outcome of pregnancies complicated by early vaginal bleeding. Br J Obstet Gynaecol 1980; 87: 100–5.
82. WilliamsM A, MittendorfR, LiebermanE, MonsonR R. Adverse infant outcomes associated with first-trimester vaginal bleeding. Obstet Gynecol 1991; 78: 14–18.
83. SignoreC C, SoodA K, RichardsD S. Second-trimester vaginal bleeding: correlation of ultrasonographic findings with perinatal outcome. Am J Obstet Gynecol 1998; 178: 336–40.
84. GomezR, RomeroR, NienJ Ket al. Idiopathic vaginal bleeding during pregnancy as the only clinical manifestation of intrauterine infection. J Matern Fetal Neonatal Med 2005; 18: 31–7.
85. AnanthC V, WilcoxA J. Placental abruption and perinatal mortality in the United States. Am J Epidemiol 2001; 153: 332–37.
86. MooneyE E, al ShunnarA, O’ReganM, GillanJ E. Chorionic villous haemorrhage is associated with retroplacental haemorrhage. Br J Obstet Gynaecol 1994; 101: 965–69.
87. BranchD W, DudleyD J, ScottJ R, SilverR M. Antiphospholipid antibodies and fetal loss. N Engl J Med 1992; 326: 952–54.
88. StoneS, HuntB J, SeedP Tet al. Longitudinal evaluation of markers of endothelial cell dysfunction and hemostasis in treated antiphospholipid syndrome and in healthy pregnancy. Am J Obstet Gynecol 2003; 188: 454–60.
89. AbramowskyC R, VegasM E, SwinehartG, GyvesM T. Decidual vasculopathy of the placenta in lupus erythematosus. N Engl J Med 1980; 303: 668–72.
90. De WolfF, CarrerasL O, MoermanPet al. Decidual vasculopathy and extensive placental infarction in a patient with repeated thromboembolic accidents, recurrent fetal loss, and a lupus anticoagulant. Am J Obstet Gynecol 1982; 142: 829–34.
 91. OutH J, KooijmanC D, BruinseH W, DerksenR H. Histopathological findings in placentae from patients with intra-uterine fetal death and anti-phospholipid antibodies. Eur J Obstet Gynecol Reprod Biol 1991; 41: 179–86.
 92. GirardiG, BermanJ, RedechaPet al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112: 1644–54.
 93. GirardiG, RedechaP, SalmonJ E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10: 1222–26.
 94. SebireN J, FoxH, BackosMet al. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum Reprod 2002; 17: 1067–71.
 95. FerraraN, Carver-MooreK, ChenHet al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–42.
 96. RobinsonJ S, KingstonE J, JonesC T, ThorburnG D. Studies on experimental growth retardation in sheep: the effect of removal of endometrial caruncles on fetal size and metabolism. J Dev Physiol 1979; 1: 379–98.
 97. RobinsonJ S, HartI C, KingstonE J, JonesC T, ThorburnG D. Studies on the growth of the fetal sheep. The effects of reduction of placental size on hormone concentration in fetal plasma. J Dev Physiol 1980; 2: 239–48.
 98. FalconerJ, OwensJ A, AllottaE, RobinsonJ S. Effect of restriction of placental growth on the concentrations of insulin, glucose and placental lactogen in the plasma of sheep. J Endocrinol 1985; 106: 7–11.
 99. LockwoodC J, WeinR, LapinskiRet al. The presence of cervical and vaginal fetal fibronectin predicts preterm delivery in an inner-city obstetric population. Am J Obstet Gynecol 1993; 169: 798–804.
100. IamsJ D, GoldenbergR L, MeisP Jet al. The length of the cervix and the risk of spontaneous premature delivery: National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Eng J Med 1996; 334: 567–72.
101. GoldenbergR L, MercerB M, IamsJ Det al. The preterm prediction study: patterns of cervicovaginal fetal fibronectin as predictors of spontaneous preterm delivery: National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1997; 177: 8–12.
102. TaipaleP, HiilesmaaV. Sonographic measurement of uterine cervix at 18–22 weeks’ gestation and the risk of preterm delivery. Obstet Gynecol 1998; 92: 902–07.
103. AndrewsW W, CopperR, HauthJ Cet al. Second-trimester cervical ultrasound: associations with increased risk for recurrent early spontaneous delivery. Obstet Gynecol 2000; 95: 222–26.
104. GoldenbergR L, IamsJ D, DasAet al. The Preterm Prediction Study: sequential cervical length and fetal fibronectin testing for the prediction of spontaneous preterm birth: National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2000; 182: 636–43.
105. HeathV C, DaskalakisG, ZagalikiA, CarvalhoM, NicolaidesK H. Cervicovaginal fibronectin and cervical length at 23 weeks of gestation: relative risk of early preterm delivery. BJOG 2000; 107: 1276–81.
106. ToM S, SkentouC, LiaoA W, CachoA, NicolaidesK H. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol 2001; 18: 200–3.
107. ShennanA, JonesG, HawkenJet al. Fetal fibronectin test predicts delivery before 30 weeks of gestation in high risk women, but increases anxiety. BJOG 2005; 112: 293–98.
108. HassanS, RomeroR, HendlerIet al. A sonographic short cervix as the only clinical manifestation of intra-amniotic infection. J Perinat Med 2006; 34: 13–19.
109. CassellG H, DavisR O, WaitesK Bet al. Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16–20 weeks of gestation: potential effect on outcome of pregnancy. Sex Transm Dis 1983; 10: 294–302.
110. GrayD J, RobinsonH B, MaloneJ, ThomsonR BJr. Adverse outcome in pregnancy following amniotic fluid isolation of Ureaplasma urealyticum. Prenat Diagn 1992; 12: 111–17.
111. HorowitzS, MazorM, RomeroR, HorowitzJ, GlezermanM. Infection of the amniotic cavity with Ureaplasma urealyticum in the midtrimester of pregnancy. J Reprod Med 1995; 40: 375–79.
112. GerberS, VialY, HohlfeldP, WitkinS S. Detection of Ureaplasma urealyticum in second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm labor and delivery. J Infect Dis 2003; 187: 518–21.
113. NguyenD P, GerberS, HohlfeldP, SandrineG, WitkinS S. Mycoplasma hominis in mid-trimester amniotic fluid: relation to pregnancy outcome. J Perinat Med 2004; 32: 323–26.
114. CarrollS G, PapaioannouS, NtumazahI L, Philpott-HowardJ, NicolaidesK H. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes. Br J Obstet Gynaecol 1996; 103: 54–9.
115. StepanH, FaberR. Cytomegalovirus-induced mirror syndrome associated with elevated levels of angiogenic factors. Obstet Gynecol 2007; 109: 1205–6.
116. EspinozaJ, RomeroR, NienJ Ket al. A role of the anti-angiogenic factor sVEGFR-1 in the ‘mirror syndrome’ (Ballantyne’s syndrome). J Matern Fetal Neonatal Med 2006; 19: 607–13.
117. RanaS, VenkateshaS, DePaepeMet al. Cytomegalovirus-induced mirror syndrome associated with elevated levels of circulating antiangiogenic factors. Obstet Gynecol 2007; 109: 549–52.
118. GantN F, DaleyG L, ChandS, WhalleyP J, MacDonaldP C. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973; 52: 2682–89.
119. GantN F, ChandS, WhalleyP J, MacDonaldP C. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet Gynecol 1974; 43: 854.
120. HarringtonK F, CampbellS, BewleyS, BowerS. Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur J Obstet Gynecol Reprod Biol 1991; 42(Suppl): S14–S20.
121. BowerS, BewleyS, CampbellS. Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet Gynecol 1993; 82: 78–83.
122. HarringtonK, CooperD, LeesC, HecherK, CampbellS. Doppler ultrasound of the uterine arteries: the importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestational-age baby. Ultrasound Obstet Gynecol 1996; 7: 182–88.
123. IrionO, MasseJ, ForestJ C, MoutquinJ M. Prediction of pre-eclampsia, low birthweight for gestation and prematurity by uterine artery blood flow velocity waveforms analysis in low risk nulliparous women. Br J Obstet Gynaecol 1998; 105: 422–29.
124. AardemaM W, De WolfB T, SaroM Cet al. Quantification of the diastolic notch in Doppler ultrasound screening of uterine arteries. Ultrasound Obstet Gynecol 2000; 16: 630–34.
125. AlbaigesG, Missfelder-LobosH, LeesC, ParraM, NicolaidesK H. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks’ gestation. Obstet Gynecol 2000; 96: 559–64.
126. ChienP F, ArnottN, GordonA, OwenP, KhanK S. How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. BJOG 2000; 107: 196–208.
127. LeesC, ParraM, Missfelder-LobosHet al. Individualized risk assessment for adverse pregnancy outcome by uterine artery Doppler at 23 weeks. Obstet Gynecol 2001; 98: 369–73.
128. PapageorghiouA T, YuC K, BindraR, PandisG, NicolaidesK H. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 441–49.
129. PapageorghiouA T, YuC K, CiceroS, BowerS, NicolaidesK H. Second-trimester uterine artery Doppler screening in unselected populations: a review. J Matern Fetal Neonatal Med 2002; 12: 78–88.
130. YuC K, PapageorghiouA T, BoliA, CachoA M, NicolaidesK H. Screening for pre-eclampsia and fetal growth restriction in twin pregnancies at 23 weeks of gestation by transvaginal uterine artery Doppler. Ultrasound Obstet Gynecol 2002; 20: 535–40.
131. PapageorghiouA T, YuC K, ErasmusI E, CuckleH S, NicolaidesK H. Assessment of risk for the development of pre-eclampsia by maternal characteristics and uterine artery Doppler. BJOG 2005; 112: 703–9.
132. YuC K, SmithG C, PapageorghiouA T, CachoA M, NicolaidesK H. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol 2005; 193: 429–36.
133. EspinozaJ, RomeroR, NienJ Ket al. Identification of patients at risk for early onset and/or severe preeclampsia with the use of uterine artery Doppler velocimetry and placental growth factor. Am J Obstet Gynecol 2007; 196: 326.e1–326.e13.
134. PlasenciaW, MaizN, PoonL, YuC, NicolaidesK H. Uterine artery Doppler at 11 + 0 to 13 + 6 weeks and 21 + 0 to 24 + 6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32: 138–46.
135. LivingstonJ C, HaddadB, GorskiL Aet al. Placenta growth factor is not an early marker for the development of severe preeclampsia. Am J Obstet Gynecol 2001; 184: 1218–20.
136. SuY N, LeeC N, ChengW Fet al. Decreased maternal serum placenta growth factor in early second trimester and preeclampsia. Obstet Gynecol 2001; 97: 898–904.
137. TidwellS C, HoH N, ChiuW H, TorryR J, TorryD S. Low maternal serum levels of placenta growth factor as an antecedent of clinical preeclampsia. Am J Obstet Gynecol 2001; 184: 1267–72.
138. TjoaM L, van VugtJ M, MuldersM Aet al. Plasma placenta growth factor levels in midtrimester pregnancies. Obstet Gynecol 2001; 98: 600–7.
139. ChappellL C, SeedP T, BrileyAet al. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstet Gynecol 2002; 187: 127–36.
140. TaylorR N, GrimwoodJ, TaylorR Set al. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol 2003; 188: 177–82.
141. KraussT, PauerH U, AugustinH G. Prospective analysis of placenta growth factor (PlGF) concentrations in the plasma of women with normal pregnancy and pregnancies complicated by preeclampsia. Hypertens Pregnancy 2004; 23: 101–11.
142. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–83.
143. ThadhaniR, MutterW P, WolfMet al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab 2004; 89: 770–75.
144. ChaiworapongsaT, RomeroR, KimY Met al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005; 17: 3–18.
145. ParraM, RodrigoR, BarjaPet al. Screening test for preeclampsia through assessment of uteroplacental blood flow and biochemical markers of oxidative stress and endothelial dysfunction. Am J Obstet Gynecol 2005; 193: 1486–91.
146. LevineR J, LamC, QianCet al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005.
147. Moore SimasT A, CrawfordS L, SolitroM Jet al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol 2007; 197: 244–48.
148. OhkuchiA, HirashimaC, MatsubaraSet al. Alterations in placental growth factor levels before and after the onset of preeclampsia are more pronounced in women with early onset severe preeclampsia. Hypertens Res 2007; 30: 151–59.
149. RobinsonC J, JohnsonD D. Soluble endoglin as a second-trimester marker for preeclampsia. Am J Obstet Gynecol 2007; 197: 174–75.
150. StepanH, UnversuchtA, WesselN, FaberR. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension 2007; 49: 818–24.
151. UnalE R, RobinsonC J, JohnsonD D, ChangE Y. Second-trimester angiogenic factors as biomarkers for future-onset preeclampsia. Am J Obstet Gynecol 2007; 197: 211–14.
152. AkolekarR, ZaragozaE, PoonL C, PepesS, NicolaidesK H. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32: 732–39.
153. BaumannM U, BersingerN A, MohauptM Get al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol 2008; 199: 266.
154. CrispiF, LlurbaE, DominguezCet al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol 2008; 31: 303–9.
155. ErezO, RomeroR, EspinozaJet al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med 2008; 21: 279–87.
156. LimJ H, KimS Y, ParkS Yet al. Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors. Obstet Gynecol 2008; 111: 1403–9.
157. StepanH, GeipelA, SchwarzFet al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 2008; 198: 175–76.
158. NicolaidesK H, BindraR, TuranO Met al. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 2006; 27: 13–17.
159. ChafetzI, KuhnreichI, SammarMet al. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 2007; 197: 35–7.
160. GonenR, ShaharR, GrimpelY Iet al. Placental protein 13 as an early marker for pre-eclampsia: a prospective longitudinal study. BJOG 2008; 115: 1465–72.
161. RomeroR, KusanovicJ P, ThanN Get al. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol 2008; 199: 122.
162. KhalilA, CowansN J, SpencerKet al. First trimester maternal serum placental protein 13 for the prediction of pre-eclampsia in women with a priori high risk. Prenat Diagn, in press.
163. McCowanL M, NorthR A, HardingJ E. Abnormal uterine artery Doppler in small-for-gestational-age pregnancies is associated with later hypertension. Aust N Z J Obstet Gynaecol 2001; 41: 56–60.
164. PageE W. On the pathogenesis of pre-eclampsia and eclampsia. J Obstet Gynaecol Br Commonw 1972; 79: 883–94.
165. AdamsE M, FinlaysonA. Familial aspects of pre-eclampsia and hypertension in pregnancy. Lancet 1961; 2: 1375–78.
166. ChesleyL C, AnnittoJ E, CosgroveR A. The familial factor in toxemia of pregnancy. Obstet Gynecol 1968; 32: 303–11.
167. CooperD W, ListonW A. Genetic control of severe pre-eclampsia. J Med Genet 1979; 16: 409–16.
168. SutherlandA, CooperD W, HowieP W, ListonW A, MacGillivrayI. The indicence of severe pre-eclampsia amongst mothers and mothers-in-law of pre-eclamptics and controls. BJOG 1981; 88: 785–91.
169. ArngrimssonR, BjornssonS, GeirssonR Tet al. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. BJOG 1990; 97: 762–69.
170. AlexanderB T. Prenatal influences and endothelial dysfunction: a link between reduced placental perfusion and preeclampsia. Hypertension 2007; 49: 775–76.
171. HarrisonG A, HumphreyK E, JonesNet al. A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am J Hum Genet 1997; 60: 1158–67.
172. ArngrimssonR, SigurardT S, FriggeM Let al. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet 1999; 8: 1799–805.
173. MosesE K, LadeJ A, GuoGet al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet 2000; 67: 1581–85.
174. LachmeijerA M, ArngrimssonR, BastiaansE Jet al. A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet. 2001; 9: 758–64.
175. LaivuoriH, LahermoP, OllikainenVet al. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet. 2003; 72: 168–77.
176. KalmyrzaevB, AldashevA, KhalmatovMet al. Genome-wide scan for premature hypertension supports linkage to chromosome 2 in a large Kyrgyz family. Hypertension 2006; 48: 908–13.
177. MosesE K, FitzpatrickE, FreedK Aet al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod 2006; 12: 505–12.
178. JohnsonM P, FitzpatrickE, DyerT Det al. Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 2007; 13: 61–67.
179. GoddardK A, TrompG, RomeroRet al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered 2007; 63: 1–16.
180. ParimiN, TrompG, KuivaniemiHet al. Analytical approaches to detect maternal/fetal genotype incompatibilities that increase risk of pre-eclampsia. BMC Med Genet 2008; 9: 60.
181. StoneJ L, LockwoodC J, BerkowitzG Set al. Risk factors for severe preeclampsia. Obstet Gynecol 1994; 83: 357–61.
182. SibaiB M, GordonT, ThomEet al. Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 1995; 172: 642–48.
183. O’BrienT E, RayJ G, ChanW S. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 2003; 14: 368–74.
184. BodnarL M, NessR B, MarkovicN, RobertsJ M. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann Epidemiol 2005; 15: 475–82.
185. BodnarL M, CatovJ M, KlebanoffM A, NessR B, RobertsJ M. Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiology 2007; 18: 234–39.
186. FaasM M, SchuilingG A, BallerJ F, VisscherC A, BakkerW W. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol 1994; 171: 158–64.
187. FaasM M, SchuilingG A, LintonE A, SargentI L, RedmanC W. Activation of peripheral leukocytes in rat pregnancy and experimental preeclampsia. Am J Obstet Gynecol 2000; 182: 351–57.
188. Conde-AgudeloA, VillarJ, LindheimerM. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol 2008; 198: 7–22.